DLMF:18.18.E14 (Q5804)

From DRMF
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:18.18.E14
No description defined

    Statements

    P n ( γ , β ) ( x ) = ( β + 1 ) n ( α + β + 2 ) n = 0 n α + β + 2 + 1 α + β + 1 ( α + β + 1 ) ( n + β + γ + 1 ) ( β + 1 ) ( n + α + β + 2 ) ( γ - α ) n - ( n - ) ! P ( α , β ) ( x ) , Jacobi-polynomial-P 𝛾 𝛽 𝑛 𝑥 Pochhammer 𝛽 1 𝑛 Pochhammer 𝛼 𝛽 2 𝑛 superscript subscript 0 𝑛 𝛼 𝛽 2 1 𝛼 𝛽 1 Pochhammer 𝛼 𝛽 1 Pochhammer 𝑛 𝛽 𝛾 1 Pochhammer 𝛽 1 Pochhammer 𝑛 𝛼 𝛽 2 Pochhammer 𝛾 𝛼 𝑛 𝑛 Jacobi-polynomial-P 𝛼 𝛽 𝑥 {\displaystyle{\displaystyle P^{(\gamma,\beta)}_{n}\left(x\right)=\dfrac{{% \left(\beta+1\right)_{n}}}{{\left(\alpha+\beta+2\right)_{n}}}\sum_{\ell=0}^{n}% \dfrac{\alpha+\beta+2\ell+1}{\alpha+\beta+1}\dfrac{{\left(\alpha+\beta+1\right% )_{\ell}}{\left(n+\beta+\gamma+1\right)_{\ell}}}{{\left(\beta+1\right)_{\ell}}% {\left(n+\alpha+\beta+2\right)_{\ell}}}\dfrac{{\left(\gamma-\alpha\right)_{n-% \ell}}}{(n-\ell)!}P^{(\alpha,\beta)}_{\ell}\left(x\right),}}
    0 references
    DLMF:18.18.E14
    0 references
    P n ( α , β ) ( x ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 {\displaystyle{\displaystyle P^{(\NVar{\alpha},\NVar{\beta})}_{\NVar{n}}\left(% \NVar{x}\right)}}
    C18.S3.T1.t1.r2.m2acdec
    0 references
    ( a ) n Pochhammer 𝑎 𝑛 {\displaystyle{\displaystyle{\left(\NVar{a}\right)_{\NVar{n}}}}}
    C5.S2.SS3.m1abdec
    0 references
    ! {\displaystyle{\displaystyle!}}
    introduction.Sx4.p1.t1.r15.m5agdec
    0 references
    {\displaystyle{\displaystyle\ell}}
    C18.S1.XMD4.m1ddec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C18.S1.XMD6.m1mdec
    0 references
    x 𝑥 {\displaystyle{\displaystyle x}}
    C18.S2.XMD3.m1jdec
    0 references