DLMF:18.18.E27 (Q5817)

From DRMF
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:18.18.E27
No description defined

    Statements

    n = 0 n ! L n ( α ) ( x ) L n ( α ) ( y ) ( α + 1 ) n z n = Γ ( α + 1 ) ( x y z ) - 1 2 α 1 - z exp ( - ( x + y ) z 1 - z ) I α ( 2 ( x y z ) 1 2 1 - z ) , superscript subscript 𝑛 0 𝑛 Laguerre-polynomial-L 𝛼 𝑛 𝑥 Laguerre-polynomial-L 𝛼 𝑛 𝑦 Pochhammer 𝛼 1 𝑛 superscript 𝑧 𝑛 Euler-Gamma 𝛼 1 superscript 𝑥 𝑦 𝑧 1 2 𝛼 1 𝑧 𝑥 𝑦 𝑧 1 𝑧 modified-Bessel-first-kind 𝛼 2 superscript 𝑥 𝑦 𝑧 1 2 1 𝑧 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}\frac{n!\,L^{(\alpha)}_{n}\left% (x\right)L^{(\alpha)}_{n}\left(y\right)}{{\left(\alpha+1\right)_{n}}}z^{n}=% \frac{\Gamma\left(\alpha+1\right)(xyz)^{-\frac{1}{2}\alpha}}{1-z}\*\exp\left(% \frac{-(x+y)z}{1-z}\right)I_{\alpha}\left(\frac{2(xyz)^{\frac{1}{2}}}{1-z}% \right),}}
    0 references
    DLMF:18.18.E27
    0 references
    | z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2abdec
    0 references
    L n ( α ) ( x ) Laguerre-polynomial-L 𝛼 𝑛 𝑥 {\displaystyle{\displaystyle L^{(\NVar{\alpha})}_{\NVar{n}}\left(\NVar{x}% \right)}}
    C18.S3.T1.t1.r12.m2afdec
    0 references
    ( a ) n Pochhammer 𝑎 𝑛 {\displaystyle{\displaystyle{\left(\NVar{a}\right)_{\NVar{n}}}}}
    C5.S2.SS3.m1akdec
    0 references
    exp z 𝑧 {\displaystyle{\displaystyle\exp\NVar{z}}}
    C4.S2.E19.m2adec
    0 references
    ! {\displaystyle{\displaystyle!}}
    introduction.Sx4.p1.t1.r15.m5andec
    0 references
    I ν ( z ) modified-Bessel-first-kind 𝜈 𝑧 {\displaystyle{\displaystyle I_{\NVar{\nu}}\left(\NVar{z}\right)}}
    C10.S25.E2.m2adec
    0 references
    y 𝑦 {\displaystyle{\displaystyle y}}
    C18.S1.XMD1.m1adec
    0 references
    z 𝑧 {\displaystyle{\displaystyle z}}
    C18.S1.XMD2.m1adec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C18.S1.XMD6.m1zdec
    0 references
    x 𝑥 {\displaystyle{\displaystyle x}}
    C18.S2.XMD3.m1vdec
    0 references