DLMF:20.5.E14 (Q6781)

From DRMF
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:20.5.E14
No description defined

    Statements

    θ 1 ( z | τ ) = z θ 1 ( 0 | τ ) lim N n = - N N lim M m = - M | m | + | n | 0 M ( 1 + z ( m + n τ ) π ) , Jacobi-theta-tau 1 𝑧 𝜏 𝑧 diffop Jacobi-theta-tau 1 1 0 𝜏 subscript 𝑁 superscript subscript product 𝑛 𝑁 𝑁 subscript 𝑀 superscript subscript product 𝑚 𝑀 𝑚 𝑛 0 𝑀 1 𝑧 𝑚 𝑛 𝜏 𝜋 {\displaystyle{\displaystyle\theta_{1}\left(z\middle|\tau\right)=z\theta_{1}'% \left(0\middle|\tau\right)\*\lim_{N\to\infty}\prod_{n=-N}^{N}\lim_{M\to\infty}% \prod_{\begin{subarray}{c}m=-M\\ \left|m\right|+\left|n\right|\neq 0\end{subarray}}^{M}\left(1+\frac{z}{(m+n% \tau)\pi}\right),}}
    0 references
    DLMF:20.5.E14
    0 references
    θ j ( z | τ ) Jacobi-theta-tau 𝑗 𝑧 𝜏 {\displaystyle{\displaystyle\theta_{\NVar{j}}\left(\NVar{z}\middle|\NVar{\tau}% \right)}}
    C20.S2.SS1.m1aedec
    0 references
    π {\displaystyle{\displaystyle\pi}}
    C3.S12.E1.m2aedec
    0 references
    m 𝑚 {\displaystyle{\displaystyle m}}
    C20.S1.XMD1.m1dec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C20.S1.XMD2.m1mdec
    0 references
    z 𝑧 {\displaystyle{\displaystyle z}}
    C20.S1.XMD3.m1mdec
    0 references
    τ 𝜏 {\displaystyle{\displaystyle\tau}}
    C20.S1.XMD4.m1edec
    0 references