DLMF:22.14.E7 (Q7082)

From DRMF
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:22.14.E7
No description defined

    Statements

    dc ( x , k ) d x = ln ( nc ( x , k ) + sc ( x , k ) ) , Jacobi-elliptic-dc 𝑥 𝑘 𝑥 Jacobi-elliptic-nc 𝑥 𝑘 Jacobi-elliptic-sc 𝑥 𝑘 {\displaystyle{\displaystyle\int\operatorname{dc}\left(x,k\right)\mathrm{d}x=% \ln\left(\operatorname{nc}\left(x,k\right)+\operatorname{sc}\left(x,k\right)% \right),}}
    0 references
    DLMF:22.14.E7
    0 references
    dc ( z , k ) Jacobi-elliptic-dc 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{dc}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E8.m3adec
    0 references
    nc ( z , k ) Jacobi-elliptic-nc 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{nc}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E5.m3adec
    0 references
    sc ( z , k ) Jacobi-elliptic-sc 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{sc}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E9.m2adec
    0 references
    d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
    C1.S4.SS4.m1afdec
    0 references
    {\displaystyle{\displaystyle\int}}
    C1.S4.SS4.m3afdec
    0 references
    ln z 𝑧 {\displaystyle{\displaystyle\ln\NVar{z}}}
    C4.S2.E2.m2abdec
    0 references
    x 𝑥 {\displaystyle{\displaystyle x}}
    C22.S1.XMD1.m1fdec
    0 references
    k 𝑘 {\displaystyle{\displaystyle k}}
    C22.S1.XMD4.m1fdec
    0 references