Jacobi: Special cases
Koornwinder Addendum: Jacobi
Orthogonality relation


Symmetry

Jacobi: Special cases: Special values



Bilateral generating functions


Quadratic transformations




Differentiation formulas




Generalized Gegenbauer polynomials








Gegenbauer / Ultraspherical
Hypergeometric representation
Orthogonality relation(s)
Recurrence relation
Monic recurrence relation

Differential equation
Forward shift operator
Backward shift operator

Rodrigues-type formula
Generating functions



Limit relation
Gegenbauer / Ultraspherical polynomial to Hermite polynomial

Koornwinder Addendum: Gegenbauer
Orthogonality relation
Hypergeometric representation


Jacobi: Special cases: Special value

Expression in terms of Jacobi


Re: (9.8.21)

Bilateral generating functions
![{\displaystyle {\displaystyle
\sum_{n=0}^\infty\frac{n!}{\pochhammer{2\lambda}{n}} r^n \Ultra{\lambda}{n}@{x} \Ultra{\lambda}{n}@{y}
=\frac1{(1-2rxy+r^2)^\lambda} \HyperpFq{2}{1}@@{\frac12\lambda,\frac12(\lambda+1)}{\lambda+\frac12}{\frac{4r^2(1-x^2)(1-y^2)}{(1-2rxy+r^2)^2}}
(r\in(-1,1),\;x,y\in[-1,1])
}}](/index.php?title=Special:MathShowImage&hash=54d310d6ce7a19a436b9fca5b4f6b7cf&mode=latexml)
![{\displaystyle {\displaystyle
\sum_{n=0}^\infty\frac{\lambda+n}\lambda \frac{n!}{\pochhammer{2\lambda}{n}} r^n \Ultra{\lambda}{n}@{x} \Ultra{\lambda}{n}@{y}
=\frac{1-r^2}{(1-2rxy+r^2)^{\lambda+1}}
\HyperpFq{2}{1}@@{\frac12(\lambda+1),\frac12(\lambda+2)}{\lambda+\frac12}{\frac{4r^2(1-x^2)(1-y^2)}{(1-2rxy+r^2)^2}}
(r\in(-1,1),\;x,y\in[-1,1])
}}](/index.php?title=Special:MathShowImage&hash=ac6f07ddcad881f300249ca698249e92&mode=latexml)
Trigonometric expansions



