# Results of 3j,6j,9j Symbols

DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
34.8.E2 ${\displaystyle{\displaystyle\cos\theta=\frac{j_{1}(j_{1}+1)+j_{2}(j_{2}+1)-j_{% 3}(j_{3}+1)}{2\sqrt{j_{1}(j_{1}+1)j_{2}(j_{2}+1)}}}}$ cos(theta)=(j[1]*(j[1]+ 1)+ j[2]*(j[2]+ 1)- j[3]*(j[3]+ 1))/(2*sqrt(j[1]*(j[1]+ 1)* j[2]*(j[2]+ 1))) Cos[\[Theta]]=Divide[Subscript[j, 1]*(Subscript[j, 1]+ 1)+ Subscript[j, 2]*(Subscript[j, 2]+ 1)- Subscript[j, 3]*(Subscript[j, 3]+ 1),2*Sqrt[Subscript[j, 1]*(Subscript[j, 1]+ 1)* Subscript[j, 2]*(Subscript[j, 2]+ 1)]] Failure Failure
Fail
-.1603260076-1.911393109*I <- {theta = 2^(1/2)+I*2^(1/2), j[1] = 2^(1/2)+I*2^(1/2), j[2] = 2^(1/2)+I*2^(1/2), j[3] = 2^(1/2)+I*2^(1/2)}
-1.096456218-2.155913947*I <- {theta = 2^(1/2)+I*2^(1/2), j[1] = 2^(1/2)+I*2^(1/2), j[2] = 2^(1/2)+I*2^(1/2), j[3] = 2^(1/2)-I*2^(1/2)}
-.4687166361-1.730742061*I <- {theta = 2^(1/2)+I*2^(1/2), j[1] = 2^(1/2)+I*2^(1/2), j[2] = 2^(1/2)+I*2^(1/2), j[3] = -2^(1/2)-I*2^(1/2)}
-.9158051696-1.847523319*I <- {theta = 2^(1/2)+I*2^(1/2), j[1] = 2^(1/2)+I*2^(1/2), j[2] = 2^(1/2)+I*2^(1/2), j[3] = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip