Results of Combinatorial Analysis
Jump to navigation
Jump to search
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
26.3.E1 | binomial(m,n)=binomial(m,m - n) |
Binomial[m,n]=Binomial[m,m - n] |
Failure | Successful | Skip | - | |
26.3.E1 | binomial(m,m - n)=(factorial(m))/(factorial(m - n)*factorial(n)) |
Binomial[m,m - n]=Divide[(m)!,(m - n)!*(n)!] |
Successful | Successful | - | - | |
26.3.E2 | binomial(m,n)= 0 |
Binomial[m,n]= 0 |
Failure | Failure | Skip | Successful | |
26.3.E3 | sum(binomial(m,n)*(x)^(n), n = 0..m)=(1 + x)^(m) |
Sum[Binomial[m,n]*(x)^(n), {n, 0, m}]=(1 + x)^(m) |
Successful | Successful | - | - | |
26.3.E4 | sum(binomial(m + n,m)*(x)^(m), m = 0..infinity)=(1)/((1 - x)^(n + 1)) |
Sum[Binomial[m + n,m]*(x)^(m), {m, 0, Infinity}]=Divide[1,(1 - x)^(n + 1)] |
Successful | Failure | - | Successful | |
26.3.E5 | binomial(m,n)=binomial(m - 1,n)+binomial(m - 1,n - 1) |
Binomial[m,n]=Binomial[m - 1,n]+Binomial[m - 1,n - 1] |
Successful | Successful | - | - | |
26.3.E6 | binomial(m,n)=(m)/(n)*binomial(m - 1,n - 1) |
Binomial[m,n]=Divide[m,n]*Binomial[m - 1,n - 1] |
Successful | Successful | - | - | |
26.3.E6 | (m)/(n)*binomial(m - 1,n - 1)=(m - n + 1)/(n)*binomial(m,n - 1) |
Divide[m,n]*Binomial[m - 1,n - 1]=Divide[m - n + 1,n]*Binomial[m,n - 1] |
Successful | Successful | - | - | |
26.3.E7 | binomial(m + 1,n + 1)= sum(binomial(k,n), k = n..m) |
Binomial[m + 1,n + 1]= Sum[Binomial[k,n], {k, n, m}] |
Successful | Successful | - | - | |
26.3.E8 | binomial(m,n)= sum(binomial(m - n - 1 + k,k), k = 0..n) |
Binomial[m,n]= Sum[Binomial[m - n - 1 + k,k], {k, 0, n}] |
Successful | Successful | - | - | |
26.3.E9 | binomial(n,0)=binomial(n,n) |
Binomial[n,0]=Binomial[n,n] |
Successful | Successful | - | - | |
26.3.E9 | binomial(n,n)= 1 |
Binomial[n,n]= 1 |
Successful | Successful | - | - | |
26.3.E10 | binomial(m,n)= sum((- 1)^(n - k)*binomial(m + 1,k), k = 0..n) |
Binomial[m,n]= Sum[(- 1)^(n - k)*Binomial[m + 1,k], {k, 0, n}] |
Successful | Failure | - | Successful | |
26.4.E1 | multinomial(n[1]+ n[2], n[1], n[2])=binomial(n[1]+ n[2],n[1]) |
Multinomial[Subscript[n, 1]+ Subscript[n, 2]]=Binomial[Subscript[n, 1]+ Subscript[n, 2],Subscript[n, 1]] |
Failure | Failure | Error | Fail
Complex[1.1103428718503567, -2.707788083134227] <- {Rule[Subscript[n, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[n, 2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-6.999993813234755, 0.0] <- {Rule[Subscript[n, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[n, 2], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[6.885584583718428, -3.3383853150444147] <- {Rule[Subscript[n, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[n, 2], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[1.2573870593198788, -0.21521656299188482] <- {Rule[Subscript[n, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[n, 2], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.4.E1 | binomial(n[1]+ n[2],n[1])=binomial(n[1]+ n[2],n[2]) |
Binomial[Subscript[n, 1]+ Subscript[n, 2],Subscript[n, 1]]=Binomial[Subscript[n, 1]+ Subscript[n, 2],Subscript[n, 2]] |
Failure | Successful | Successful | - | |
26.5.E1 | (1)/(n + 1)*binomial(2*n,n)=(1)/(2*n + 1)*binomial(2*n + 1,n) |
Divide[1,n + 1]*Binomial[2*n,n]=Divide[1,2*n + 1]*Binomial[2*n + 1,n] |
Successful | Successful | - | - | |
26.5.E1 | (1)/(2*n + 1)*binomial(2*n + 1,n)=binomial(2*n,n)-binomial(2*n,n - 1) |
Divide[1,2*n + 1]*Binomial[2*n + 1,n]=Binomial[2*n,n]-Binomial[2*n,n - 1] |
Successful | Failure | - | Successful | |
26.5.E1 | binomial(2*n,n)-binomial(2*n,n - 1)=binomial(2*n - 1,n)-binomial(2*n - 1,n + 1) |
Binomial[2*n,n]-Binomial[2*n,n - 1]=Binomial[2*n - 1,n]-Binomial[2*n - 1,n + 1] |
Failure | Failure | Skip | Successful | |
26.7.E1 | BellB(0, 1)= 1 |
BellB[0]= 1 |
Successful | Successful | - | - | |
26.7.E2 | BellB(n, 1)= sum(Stirling2(n, k), k = 0..n) |
BellB[n]= Sum[StirlingS2[n, k], {k, 0, n}] |
Failure | Successful | Skip | - | |
26.7.E3 | BellB(n, 1)= sum(((k)^(n))/(factorial(k))*sum(((- 1)^(j))/(factorial(j)), j = 0..m - k), k = 1..m) |
BellB[n]= Sum[Divide[(k)^(n),(k)!]*Sum[Divide[(- 1)^(j),(j)!], {j, 0, m - k}], {k, 1, m}] |
Failure | Failure | Skip | Successful | |
26.7.E4 | BellB(n, 1)= exp(- 1)*sum(((k)^(n))/(factorial(k)), k = 1..infinity) |
BellB[n]= Exp[- 1]*Sum[Divide[(k)^(n),(k)!], {k, 1, Infinity}] |
Failure | Failure | Skip | Fail
Complex[0.8939534673502062, 0.8939534673502062] <- {Rule[BellB[n], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.8939534673502062, 1.934473657395984] <- {Rule[BellB[n], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[1.934473657395984, 1.934473657395984] <- {Rule[BellB[n], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[1.934473657395984, 0.8939534673502062] <- {Rule[BellB[n], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.7.E4 | exp(- 1)*sum(((k)^(n))/(factorial(k)), k = 1..infinity)= 1 + floor(exp(- 1)*sum(((k)^(n))/(factorial(k)), k = 1..2*n)) |
Exp[- 1]*Sum[Divide[(k)^(n),(k)!], {k, 1, Infinity}]= 1 + Floor[Exp[- 1]*Sum[Divide[(k)^(n),(k)!], {k, 1, 2*n}]] |
Failure | Failure | Skip | Fail
Complex[-0.47973990497711105, 0.520260095022889] <- {Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, Times[2, n]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-0.47973990497711105, -0.520260095022889] <- {Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, Times[2, n]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.520260095022889, -0.520260095022889] <- {Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, Times[2, n]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.520260095022889, 0.520260095022889] <- {Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, Times[2, n]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, n], Power[Factorial[k], -1]], {k, 1, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.7.E5 | sum(BellB(n, 1)*((x)^(n))/(factorial(n)), n = 0..infinity)= exp(exp(x)- 1) |
Sum[BellB[n]*Divide[(x)^(n),(n)!], {n, 0, Infinity}]= Exp[Exp[x]- 1] |
Failure | Successful | Skip | - | |
26.7.E6 | BellB(n + 1, 1)= sum(binomial(n,k)*BellB(k, 1), k = 0..n) |
BellB[n + 1]= Sum[Binomial[n,k]*BellB[k], {k, 0, n}] |
Failure | Failure | Skip | Fail
Complex[0.0, 2.8284271247461903] <- {Rule[BellB[Plus[1, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[BellB[k], Binomial[n, k]], {k, 0, n}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[BellB[Plus[1, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[BellB[k], Binomial[n, k]], {k, 0, n}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} 2.8284271247461903 <- {Rule[BellB[Plus[1, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[BellB[k], Binomial[n, k]], {k, 0, n}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -2.8284271247461903] <- {Rule[BellB[Plus[1, n]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[BellB[k], Binomial[n, k]], {k, 0, n}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.7#Ex1 | BellB(n + 1, 1)= sum(binomial(n,k)*BellB(n, 1), k = 0..n) |
BellB[n + 1]= Sum[Binomial[n,k]*BellB[n], {k, 0, n}] |
Failure | Failure | Skip | Fail
-3.0 <- {Rule[n, 2]} -25.0 <- {Rule[n, 3]} | |
26.7.E8 | N*ln(N)= n |
N*Log[N]= n |
Failure | Failure | Fail -1.130462591+2.090978877*I <- {N = 2^(1/2)+I*2^(1/2), n = 1} -2.130462591+2.090978877*I <- {N = 2^(1/2)+I*2^(1/2), n = 2} -3.130462591+2.090978877*I <- {N = 2^(1/2)+I*2^(1/2), n = 3} -1.130462591-2.090978877*I <- {N = 2^(1/2)-I*2^(1/2), n = 1} ... skip entries to safe data |
Fail
Complex[-1.1304625910710442, 2.090978878008139] <- {Rule[n, 1], Rule[N, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-2.130462591071044, 2.090978878008139] <- {Rule[n, 2], Rule[N, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-3.130462591071044, 2.090978878008139] <- {Rule[n, 3], Rule[N, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-1.1304625910710442, -2.090978878008139] <- {Rule[n, 1], Rule[N, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.8.E1 | Stirling1(n, n)= 1 |
StirlingS1[n, n]= 1 |
Successful | Failure | - | Fail
Complex[0.41421356237309515, 1.4142135623730951] <- {Rule[n, 3], Rule[StirlingS1[n, n], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.41421356237309515, -1.4142135623730951] <- {Rule[n, 3], Rule[StirlingS1[n, n], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.414213562373095, -1.4142135623730951] <- {Rule[n, 3], Rule[StirlingS1[n, n], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.414213562373095, 1.4142135623730951] <- {Rule[n, 3], Rule[StirlingS1[n, n], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
26.8.E2 | Stirling1(1, k)= KroneckerDelta[1, k] |
StirlingS1[1, k]= KroneckerDelta[1, k] |
Failure | Failure | Fail -.414213562-1.414213562*I <- {KroneckerDelta[1,k] = 2^(1/2)+I*2^(1/2), k = 1} -1.414213562-1.414213562*I <- {KroneckerDelta[1,k] = 2^(1/2)+I*2^(1/2), k = 2} -1.414213562-1.414213562*I <- {KroneckerDelta[1,k] = 2^(1/2)+I*2^(1/2), k = 3} -.414213562+1.414213562*I <- {KroneckerDelta[1,k] = 2^(1/2)-I*2^(1/2), k = 1} ... skip entries to safe data |
Successful | |
26.8.E4 | Stirling2(n, n)= 1 |
StirlingS2[n, n]= 1 |
Successful | Failure | - | Fail
Complex[0.41421356237309515, 1.4142135623730951] <- {Rule[n, 3], Rule[StirlingS2[n, n], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.41421356237309515, -1.4142135623730951] <- {Rule[n, 3], Rule[StirlingS2[n, n], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.414213562373095, -1.4142135623730951] <- {Rule[n, 3], Rule[StirlingS2[n, n], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.414213562373095, 1.4142135623730951] <- {Rule[n, 3], Rule[StirlingS2[n, n], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
26.8.E6 | Stirling2(n, k)=(1)/(factorial(k))*sum((- 1)^(k - j)*binomial(k,j)*(j)^(n), j = 0..k) |
StirlingS2[n, k]=Divide[1,(k)!]*Sum[(- 1)^(k - j)*Binomial[k,j]*(j)^(n), {j, 0, k}] |
Failure | Failure | Skip | Successful | |
26.8.E7 | sum(Stirling1(n, k)*(x)^(k), k = 0..n)=x - n + 1[n] |
Sum[StirlingS1[n, k]*(x)^(k), {k, 0, n}]=Subscript[x - n + 1, n] |
Failure | Failure | Skip | Successful | |
26.8.E8 | sum(Stirling1(n, k)*((x)^(n))/(factorial(n)), n = 0..infinity)=((ln(1 + x))^(k))/(factorial(k)) |
Sum[StirlingS1[n, k]*Divide[(x)^(n),(n)!], {n, 0, Infinity}]=Divide[(Log[1 + x])^(k),(k)!] |
Failure | Failure | Skip | Skip | |
26.8.E9 | sum(sum(Stirling1(n, k)*((x)^(n))/(factorial(n))*(y)^(k), k = 0..infinity), n = 0..infinity)=(1 + x)^(y) |
Sum[Sum[StirlingS1[n, k]*Divide[(x)^(n),(n)!]*(y)^(k), {k, 0, Infinity}], {n, 0, Infinity}]=(1 + x)^(y) |
Failure | Failure | Skip | Skip | |
26.8.E10 | sum(Stirling2(n, k)*x - k + 1[k], k = 1..n)= (x)^(n) |
Sum[StirlingS2[n, k]*Subscript[x - k + 1, k], {k, 1, n}]= (x)^(n) |
Failure | Failure | Skip | Successful | |
26.8.E12 | sum(Stirling2(n, k)*((x)^(n))/(factorial(n)), n = 0..infinity)=((exp(x)- 1)^(k))/(factorial(k)) |
Sum[StirlingS2[n, k]*Divide[(x)^(n),(n)!], {n, 0, Infinity}]=Divide[(Exp[x]- 1)^(k),(k)!] |
Failure | Failure | Skip | Skip | |
26.8.E13 | sum(sum(Stirling2(n, k)*((x)^(n))/(factorial(n))*(y)^(k), k = 0..infinity), n = 0..infinity)= exp(y*(exp(x)- 1)) |
Sum[Sum[StirlingS2[n, k]*Divide[(x)^(n),(n)!]*(y)^(k), {k, 0, Infinity}], {n, 0, Infinity}]= Exp[y*(Exp[x]- 1)] |
Failure | Failure | Skip | Skip | |
26.8#Ex1 | Stirling1(n, 0)= 0 |
StirlingS1[n, 0]= 0 |
Failure | Failure | Successful | Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[StirlingS1[n, 0], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[StirlingS1[n, 0], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[StirlingS1[n, 0], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[StirlingS1[n, 0], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
26.8#Ex2 | Stirling1(n, 1)=(- 1)^(n - 1)*factorial(n - 1) |
StirlingS1[n, 1]=(- 1)^(n - 1)*(n - 1)! |
Failure | Failure | Successful | Successful | |
26.8.E16 | - Stirling1(n, n - 1)= Stirling2(n, n - 1) |
- StirlingS1[n, n - 1]= StirlingS2[n, n - 1] |
Successful | Failure | - | Fail
Complex[-2.8284271247461903, -2.8284271247461903] <- {Rule[StirlingS1[n, Plus[-1, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[StirlingS2[n, Plus[-1, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} -2.8284271247461903 <- {Rule[StirlingS1[n, Plus[-1, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[StirlingS2[n, Plus[-1, n]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -2.8284271247461903] <- {Rule[StirlingS1[n, Plus[-1, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[StirlingS2[n, Plus[-1, n]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} -2.8284271247461903 <- {Rule[StirlingS1[n, Plus[-1, n]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[StirlingS2[n, Plus[-1, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.8.E16 | Stirling2(n, n - 1)=binomial(n,2) |
StirlingS2[n, n - 1]=Binomial[n,2] |
Successful | Failure | - | Successful | |
26.8#Ex3 | Stirling2(n, 0)= 0 |
StirlingS2[n, 0]= 0 |
Failure | Failure | Successful | Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[StirlingS2[n, 0], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[StirlingS2[n, 0], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[StirlingS2[n, 0], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[StirlingS2[n, 0], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
26.8#Ex4 | Stirling2(n, 1)= 1 |
StirlingS2[n, 1]= 1 |
Failure | Failure | Successful | Fail
Complex[0.41421356237309515, 1.4142135623730951] <- {Rule[StirlingS2[n, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.41421356237309515, -1.4142135623730951] <- {Rule[StirlingS2[n, 1], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.414213562373095, -1.4142135623730951] <- {Rule[StirlingS2[n, 1], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.414213562373095, 1.4142135623730951] <- {Rule[StirlingS2[n, 1], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
26.8#Ex5 | Stirling2(n, 2)= (2)^(n - 1)- 1 |
StirlingS2[n, 2]= (2)^(n - 1)- 1 |
Failure | Failure | Successful | Successful | |
26.8.E18 | Stirling1(n, k)= Stirling1(n - 1, k - 1)-(n - 1)* Stirling1(n - 1, k) |
StirlingS1[n, k]= StirlingS1[n - 1, k - 1]-(n - 1)* StirlingS1[n - 1, k] |
Failure | Failure | Successful | Successful | |
26.8.E19 | binomial(k,h)*Stirling1(n, k)= sum(binomial(n,j)*Stirling1(n - j, h)*Stirling1(j, k - h), j = k - h..n - h) |
Binomial[k,h]*StirlingS1[n, k]= Sum[Binomial[n,j]*StirlingS1[n - j, h]*StirlingS1[j, k - h], {j, k - h, n - h}] |
Failure | Failure | Skip | Successful | |
26.8.E20 | Stirling1(n + 1, k + 1)= factorial(n)*sum(((- 1)^(n - j))/(factorial(j))*Stirling1(j, k), j = k..n) |
StirlingS1[n + 1, k + 1]= (n)!*Sum[Divide[(- 1)^(n - j),(j)!]*StirlingS1[j, k], {j, k, n}] |
Failure | Failure | Skip | Successful | |
26.8.E21 | Stirling1(n + k + 1, k)= - sum((n + j)* Stirling1(n + j, j), j = 0..k) |
StirlingS1[n + k + 1, k]= - Sum[(n + j)* StirlingS1[n + j, j], {j, 0, k}] |
Failure | Failure | Skip | Fail
Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[StirlingS1[Plus[1, k, n], k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Plus[j, n], StirlingS1[Plus[j, n], j]], {j, 0, k}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} 2.8284271247461903 <- {Rule[StirlingS1[Plus[1, k, n], k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Plus[j, n], StirlingS1[Plus[j, n], j]], {j, 0, k}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 2.8284271247461903] <- {Rule[StirlingS1[Plus[1, k, n], k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Plus[j, n], StirlingS1[Plus[j, n], j]], {j, 0, k}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} 2.8284271247461903 <- {Rule[StirlingS1[Plus[1, k, n], k], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Plus[j, n], StirlingS1[Plus[j, n], j]], {j, 0, k}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.8.E22 | Stirling2(n, k)= k*Stirling2(n - 1, k)+ Stirling2(n - 1, k - 1) |
StirlingS2[n, k]= k*StirlingS2[n - 1, k]+ StirlingS2[n - 1, k - 1] |
Failure | Failure | Successful | Successful | |
26.8.E23 | binomial(k,h)*Stirling2(n, k)= sum(binomial(n,j)*Stirling2(n - j, h)*Stirling2(j, k - h), j = k - h..n - h) |
Binomial[k,h]*StirlingS2[n, k]= Sum[Binomial[n,j]*StirlingS2[n - j, h]*StirlingS2[j, k - h], {j, k - h, n - h}] |
Failure | Failure | Skip | Successful | |
26.8.E24 | Stirling2(n, k)= sum(Stirling2(j - 1, k - 1)*(k)^(n - j), j = k..n) |
StirlingS2[n, k]= Sum[StirlingS2[j - 1, k - 1]*(k)^(n - j), {j, k, n}] |
Failure | Failure | Skip | Fail
Complex[0.0, 2.8284271247461903] <- {Rule[StirlingS2[n, k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, Plus[Times[-1, j], n]], StirlingS2[Plus[-1, j], Plus[-1, k]]], {j, k, n}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[StirlingS2[n, k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, Plus[Times[-1, j], n]], StirlingS2[Plus[-1, j], Plus[-1, k]]], {j, k, n}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} 2.8284271247461903 <- {Rule[StirlingS2[n, k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, Plus[Times[-1, j], n]], StirlingS2[Plus[-1, j], Plus[-1, k]]], {j, k, n}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -2.8284271247461903] <- {Rule[StirlingS2[n, k], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[k, Plus[Times[-1, j], n]], StirlingS2[Plus[-1, j], Plus[-1, k]]], {j, k, n}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.8.E25 | Stirling2(n + 1, k + 1)= sum(binomial(n,j)*Stirling2(j, k), j = k..n) |
StirlingS2[n + 1, k + 1]= Sum[Binomial[n,j]*StirlingS2[j, k], {j, k, n}] |
Failure | Failure | Skip | Fail
Complex[0.0, 2.8284271247461903] <- {Rule[StirlingS2[Plus[1, n], Plus[1, k]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Binomial[n, j], StirlingS2[j, k]], {j, k, n}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[StirlingS2[Plus[1, n], Plus[1, k]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Binomial[n, j], StirlingS2[j, k]], {j, k, n}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} 2.8284271247461903 <- {Rule[StirlingS2[Plus[1, n], Plus[1, k]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Binomial[n, j], StirlingS2[j, k]], {j, k, n}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -2.8284271247461903] <- {Rule[StirlingS2[Plus[1, n], Plus[1, k]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Binomial[n, j], StirlingS2[j, k]], {j, k, n}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.8.E26 | Stirling2(n + k + 1, k)= sum(j*Stirling2(n + j, j), j = 0..k) |
StirlingS2[n + k + 1, k]= Sum[j*StirlingS2[n + j, j], {j, 0, k}] |
Failure | Successful | Skip | - | |
26.8.E27 | Stirling1(n, n - k)= sum((- 1)^(j)*binomial(n - 1 + j,k + j)*binomial(n + k,k - j)* Stirling2(k + j, j), j = 0..k) |
StirlingS1[n, n - k]= Sum[(- 1)^(j)*Binomial[n - 1 + j,k + j]*Binomial[n + k,k - j]* StirlingS2[k + j, j], {j, 0, k}] |
Failure | Failure | Skip | Fail
Complex[0.0, 2.8284271247461903] <- {Rule[StirlingS1[n, Plus[Times[-1, k], n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, j], Binomial[Plus[-1, j, n], Plus[j, k]], Binomial[Plus[k, n], Plus[Times[-1, j], k]], StirlingS2[Plus[j, k], j]], {j, 0, k}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[StirlingS1[n, Plus[Times[-1, k], n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, j], Binomial[Plus[-1, j, n], Plus[j, k]], Binomial[Plus[k, n], Plus[Times[-1, j], k]], StirlingS2[Plus[j, k], j]], {j, 0, k}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} 2.8284271247461903 <- {Rule[StirlingS1[n, Plus[Times[-1, k], n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, j], Binomial[Plus[-1, j, n], Plus[j, k]], Binomial[Plus[k, n], Plus[Times[-1, j], k]], StirlingS2[Plus[j, k], j]], {j, 0, k}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -2.8284271247461903] <- {Rule[StirlingS1[n, Plus[Times[-1, k], n]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, j], Binomial[Plus[-1, j, n], Plus[j, k]], Binomial[Plus[k, n], Plus[Times[-1, j], k]], StirlingS2[Plus[j, k], j]], {j, 0, k}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.8.E28 | sum(Stirling1(n, k), k = 1..n)= 0 |
Sum[StirlingS1[n, k], {k, 1, n}]= 0 |
Failure | Failure | Skip | Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[n, Rational[3, 2]], Rule[Sum[StirlingS1[n, k], {k, 1, n}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[n, Rational[3, 2]], Rule[Sum[StirlingS1[n, k], {k, 1, n}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[n, Rational[3, 2]], Rule[Sum[StirlingS1[n, k], {k, 1, n}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[n, Rational[3, 2]], Rule[Sum[StirlingS1[n, k], {k, 1, n}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
26.8.E29 | sum((- 1)^(n - k)* Stirling1(n, k), k = 1..n)= factorial(n) |
Sum[(- 1)^(n - k)* StirlingS1[n, k], {k, 1, n}]= (n)! |
Failure | Failure | Skip | Fail
-2.0 <- {Rule[n, 2]} -7.0 <- {Rule[n, 3]} | |
26.8.E30 | sum(Stirling1(n + 1, j + 1)*(n)^(j - k), j = k..n)= Stirling1(n, k) |
Sum[StirlingS1[n + 1, j + 1]*(n)^(j - k), {j, k, n}]= StirlingS1[n, k] |
Failure | Successful | Skip | - | |
26.8.E33 | Stirling2(n, n - k)= sum((- 1)^(j)*binomial(n - 1 + j,k + j)*binomial(n + k,k - j)* Stirling1(k + j, j), j = 0..k) |
StirlingS2[n, n - k]= Sum[(- 1)^(j)*Binomial[n - 1 + j,k + j]*Binomial[n + k,k - j]* StirlingS1[k + j, j], {j, 0, k}] |
Failure | Failure | Skip | Fail
Complex[0.0, 2.8284271247461903] <- {Rule[StirlingS2[n, Plus[Times[-1, k], n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, j], Binomial[Plus[-1, j, n], Plus[j, k]], Binomial[Plus[k, n], Plus[Times[-1, j], k]], StirlingS1[Plus[j, k], j]], {j, 0, k}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[StirlingS2[n, Plus[Times[-1, k], n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, j], Binomial[Plus[-1, j, n], Plus[j, k]], Binomial[Plus[k, n], Plus[Times[-1, j], k]], StirlingS1[Plus[j, k], j]], {j, 0, k}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} 2.8284271247461903 <- {Rule[StirlingS2[n, Plus[Times[-1, k], n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, j], Binomial[Plus[-1, j, n], Plus[j, k]], Binomial[Plus[k, n], Plus[Times[-1, j], k]], StirlingS1[Plus[j, k], j]], {j, 0, k}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -2.8284271247461903] <- {Rule[StirlingS2[n, Plus[Times[-1, k], n]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, j], Binomial[Plus[-1, j, n], Plus[j, k]], Binomial[Plus[k, n], Plus[Times[-1, j], k]], StirlingS1[Plus[j, k], j]], {j, 0, k}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.8.E34 | sum((j)^(k)* (x)^(j), j = 0..n)= sum(Stirling2(k, j)*(x)^(j)* diff((1 - (x)^(n + 1))/(1 - x), [x$(j)]), j = 0..k) |
Sum[(j)^(k)* (x)^(j), {j, 0, n}]= Sum[StirlingS2[k, j]*(x)^(j)* D[Divide[1 - (x)^(n + 1),1 - x], {x, j}], {j, 0, k}] |
Failure | Failure | Skip | Successful | |
26.8.E35 | sum((j)^(k), j = 0..n)= sum(factorial(j)*Stirling2(k, j)*binomial(n + 1,j + 1), j = 0..k) |
Sum[(j)^(k), {j, 0, n}]= Sum[(j)!*StirlingS2[k, j]*Binomial[n + 1,j + 1], {j, 0, k}] |
Failure | Failure | Skip | Successful | |
26.8.E36 | sum((- 1)^(n - k)* factorial(k)*Stirling2(n, k), k = 0..n)= 1 |
Sum[(- 1)^(n - k)* (k)!*StirlingS2[n, k], {k, 0, n}]= 1 |
Failure | Failure | Skip | Successful | |
26.8.E39 | sum(Stirling1(j, k)*Stirling2(n, j), j = k..n)= sum(Stirling1(n, j)*Stirling2(j, k), j = k..n) |
Sum[StirlingS1[j, k]*StirlingS2[n, j], {j, k, n}]= Sum[StirlingS1[n, j]*StirlingS2[j, k], {j, k, n}] |
Failure | Failure | Skip | Fail
Complex[0.0, -2.8284271247461903] <- {Rule[Sum[Times[StirlingS1[n, j], StirlingS2[j, k]], {j, k, n}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[StirlingS1[j, k], StirlingS2[n, j]], {j, k, n}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.8284271247461903, -2.8284271247461903] <- {Rule[Sum[Times[StirlingS1[n, j], StirlingS2[j, k]], {j, k, n}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[StirlingS1[j, k], StirlingS2[n, j]], {j, k, n}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} -2.8284271247461903 <- {Rule[Sum[Times[StirlingS1[n, j], StirlingS2[j, k]], {j, k, n}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[StirlingS1[j, k], StirlingS2[n, j]], {j, k, n}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, 2.8284271247461903] <- {Rule[Sum[Times[StirlingS1[n, j], StirlingS2[j, k]], {j, k, n}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[StirlingS1[j, k], StirlingS2[n, j]], {j, k, n}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data | |
26.8.E39 | sum(Stirling1(n, j)*Stirling2(j, k), j = k..n)= KroneckerDelta[n, k] |
Sum[StirlingS1[n, j]*StirlingS2[j, k], {j, k, n}]= KroneckerDelta[n, k] |
Failure | Failure | Skip | Successful | |
26.10.E2 | product(1 + (q)^(j), j = 1..infinity)= product((1)/(1 - (q)^(2*j - 1)), j = 1..infinity) |
Product[1 + (q)^(j), {j, 1, Infinity}]= Product[Divide[1,1 - (q)^(2*j - 1)], {j, 1, Infinity}] |
Failure | Failure | Skip | Successful | |
26.12.E23 | product((1 - (q)^(3*h - 1))/(1 - (q)^(3*h - 2)), h = 1..r)*product(product((1 - (q)^(3*(h + 2*j - 1)))/(1 - (q)^(3*(h + j - 1))), j = h + 1..r), h = 1..j - 1)= product((1 - (q)^(3*h - 1))/(1 - (q)^(3*h - 2))*product((1 - (q)^(3*(r + h + j - 1)))/(1 - (q)^(3*(2*h + j - 1))), j = h..r), h = 1..r) |
Product[Divide[1 - (q)^(3*h - 1),1 - (q)^(3*h - 2)], {h, 1, r}]*Product[Product[Divide[1 - (q)^(3*(h + 2*j - 1)),1 - (q)^(3*(h + j - 1))], {j, h + 1, r}], {h, 1, j - 1}]= Product[Divide[1 - (q)^(3*h - 1),1 - (q)^(3*h - 2)]*Product[Divide[1 - (q)^(3*(r + h + j - 1)),1 - (q)^(3*(2*h + j - 1))], {j, h, r}], {h, 1, r}] |
Failure | Failure | Skip | Error | |
26.12#Ex7 | Zeta(3)= 1.2020569032 |
Zeta[3]= 1.2020569032 |
Successful | Failure | - | Successful | |
26.12#Ex8 | subs( temp=- 1, diff( Zeta(temp), temp$(1) ) )= - 0.1654211437 |
(D[Zeta[temp], {temp, 1}]/.temp-> - 1)= - 0.1654211437 |
Successful | Failure | - | Successful | |
26.13.E4 | d*(n)= factorial(n)*sum((- 1)^(j)*(1)/(factorial(j)), j = 0..n) |
d*(n)= (n)!*Sum[(- 1)^(j)*Divide[1,(j)!], {j, 0, n}] |
Failure | Failure | Skip | Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1]} Complex[1.8284271247461903, 2.8284271247461903] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2]} Complex[2.2426406871192857, 4.242640687119286] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 3]} Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[d, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[n, 1]} ... skip entries to safe data | |
26.13.E4 | factorial(n)*sum((- 1)^(j)*(1)/(factorial(j)), j = 0..n)= floor((factorial(n)+ exp(1)- 2)/(exp(1))) |
(n)!*Sum[(- 1)^(j)*Divide[1,(j)!], {j, 0, n}]= Floor[Divide[(n)!+ E - 2,E]] |
Failure | Failure | Skip | Successful | |
26.15.E9 | r[k]*(B)=(2*n)/(2*n - k)*binomial(2*n - k,k) |
Subscript[r, k]*(B)=Divide[2*n,2*n - k]*Binomial[2*n - k,k] |
Failure | Failure | Fail -2.000000000+3.999999998*I <- {B = 2^(1/2)+I*2^(1/2), r[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 1} -4.000000000+3.999999998*I <- {B = 2^(1/2)+I*2^(1/2), r[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 2} -6.000000000+3.999999998*I <- {B = 2^(1/2)+I*2^(1/2), r[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 3} Float(-infinity)+3.999999998*I <- {B = 2^(1/2)+I*2^(1/2), r[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 1} ... skip entries to safe data |
Successful | |
26.15.E10 | 2*(factorial(n))* N[0]*(B)= 2*(factorial(n))* sum((- 1)^(k)*(2*n)/(2*n - k)*binomial(2*n - k,k)*factorial(n - k), k = 0..n) |
2*((n)!)* Subscript[N, 0]*(B)= 2*((n)!)* Sum[(- 1)^(k)*Divide[2*n,2*n - k]*Binomial[2*n - k,k]*(n - k)!, {k, 0, n}] |
Failure | Failure | Skip | Successful | |
26.15.E13 | r[n - k]*(B)= Stirling2(n, k) |
Subscript[r, n - k]*(B)= StirlingS2[n, k] |
Failure | Failure | Fail -1.+3.999999998*I <- {B = 2^(1/2)+I*2^(1/2), r[n-k] = 2^(1/2)+I*2^(1/2), k = 1, n = 1} -1.+3.999999998*I <- {B = 2^(1/2)+I*2^(1/2), r[n-k] = 2^(1/2)+I*2^(1/2), k = 1, n = 2} -1.+3.999999998*I <- {B = 2^(1/2)+I*2^(1/2), r[n-k] = 2^(1/2)+I*2^(1/2), k = 1, n = 3} 0.+3.999999998*I <- {B = 2^(1/2)+I*2^(1/2), r[n-k] = 2^(1/2)+I*2^(1/2), k = 2, n = 1} ... skip entries to safe data |
Fail
Complex[-1.4142135623730951, 2.585786437626905] <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[StirlingS2[n, k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[r, Plus[Times[-1, k], n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[2.585786437626905, -1.4142135623730951] <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[StirlingS2[n, k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[r, Plus[Times[-1, k], n]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.4142135623730951, -5.414213562373095] <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[StirlingS2[n, k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[r, Plus[Times[-1, k], n]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-5.414213562373095, -1.4142135623730951] <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[StirlingS2[n, k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[r, Plus[Times[-1, k], n]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data |