Results of Confluent Hypergeometric Functions

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
13.2.E1 z ⁒ d 2 w d z 2 + ( b - z ) ⁒ d w d z - a ⁒ w = 0 𝑧 derivative 𝑀 𝑧 2 𝑏 𝑧 derivative 𝑀 𝑧 π‘Ž 𝑀 0 {\displaystyle{\displaystyle z\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+(b-z% )\frac{\mathrm{d}w}{\mathrm{d}z}-aw=0}} z*diff(w, [z$(2)])+(b - z)* diff(w, z)- a*w = 0 z*D[w, {z, 2}]+(b - z)* D[w, z]- a*w = 0 Failure Failure
Fail
-0.-3.999999998*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
-3.999999998-0.*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
-0.+3.999999998*I <- {a = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
3.999999998-0.*I <- {a = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[0.0, -4.0] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
-4.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 4.0] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
4.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.2.E2 M ⁑ ( a , b , z ) = βˆ‘ s = 0 ∞ ( a ) s ( b ) s ⁒ s ! ⁒ z s Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 superscript subscript 𝑠 0 Pochhammer π‘Ž 𝑠 Pochhammer 𝑏 𝑠 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle M\left(a,b,z\right)=\sum_{s=0}^{\infty}\frac{{% \left(a\right)_{s}}}{{\left(b\right)_{s}}s!}z^{s}}} KummerM(a, b, z)= sum((pochhammer(a, s))/(pochhammer(b, s)*factorial(s))*(z)^(s), s = 0..infinity) Hypergeometric1F1[a, b, z]= Sum[Divide[Pochhammer[a, s],Pochhammer[b, s]*(s)!]*(z)^(s), {s, 0, Infinity}] Successful Successful - -
13.2.E3 𝐌 ⁑ ( a , b , z ) = βˆ‘ s = 0 ∞ ( a ) s Ξ“ ⁑ ( b + s ) ⁒ s ! ⁒ z s Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 superscript subscript 𝑠 0 Pochhammer π‘Ž 𝑠 Euler-Gamma 𝑏 𝑠 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle{\mathbf{M}}\left(a,b,z\right)=\sum_{s=0}^{\infty}% \frac{{\left(a\right)_{s}}}{\Gamma\left(b+s\right)s!}z^{s}}} KummerM(a, b, z)/GAMMA(b)= sum((pochhammer(a, s))/(GAMMA(b + s)*factorial(s))*(z)^(s), s = 0..infinity) Hypergeometric1F1Regularized[a, b, z]= Sum[Divide[Pochhammer[a, s],Gamma[b + s]*(s)!]*(z)^(s), {s, 0, Infinity}] Successful Successful - -
13.2.E4 M ⁑ ( a , b , z ) = Ξ“ ⁑ ( b ) ⁒ 𝐌 ⁑ ( a , b , z ) Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 Euler-Gamma 𝑏 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 {\displaystyle{\displaystyle M\left(a,b,z\right)=\Gamma\left(b\right){\mathbf{% M}}\left(a,b,z\right)}} KummerM(a, b, z)= GAMMA(b)*KummerM(a, b, z)/GAMMA(b) Hypergeometric1F1[a, b, z]= Gamma[b]*Hypergeometric1F1Regularized[a, b, z] Successful Successful - -
13.2.E5 lim b β†’ - n ⁑ M ⁑ ( a , b , z ) Ξ“ ⁑ ( b ) = 𝐌 ⁑ ( a , - n , z ) subscript β†’ 𝑏 𝑛 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 Euler-Gamma 𝑏 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑛 𝑧 {\displaystyle{\displaystyle\lim_{b\to-n}\frac{M\left(a,b,z\right)}{\Gamma% \left(b\right)}={\mathbf{M}}\left(a,-n,z\right)}} limit((KummerM(a, b, z))/(GAMMA(b)), b = - n)= KummerM(a, - n, z)/GAMMA(- n) Limit[Divide[Hypergeometric1F1[a, b, z],Gamma[b]], b -> - n]= Hypergeometric1F1Regularized[a, - n, z] Successful Successful - -
13.2.E5 𝐌 ⁑ ( a , - n , z ) = ( a ) n + 1 ( n + 1 ) ! ⁒ z n + 1 ⁒ M ⁑ ( a + n + 1 , n + 2 , z ) Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑛 𝑧 Pochhammer π‘Ž 𝑛 1 𝑛 1 superscript 𝑧 𝑛 1 Kummer-confluent-hypergeometric-M π‘Ž 𝑛 1 𝑛 2 𝑧 {\displaystyle{\displaystyle{\mathbf{M}}\left(a,-n,z\right)=\frac{{\left(a% \right)_{n+1}}}{(n+1)!}z^{n+1}M\left(a+n+1,n+2,z\right)}} KummerM(a, - n, z)/GAMMA(- n)=(pochhammer(a, n + 1))/(factorial(n + 1))*(z)^(n + 1)* KummerM(a + n + 1, n + 2, z) Hypergeometric1F1Regularized[a, - n, z]=Divide[Pochhammer[a, n + 1],(n + 1)!]*(z)^(n + 1)* Hypergeometric1F1[a + n + 1, n + 2, z] Failure Failure
Fail
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Successful
13.2.E7 U ⁑ ( - m , b , z ) = ( - 1 ) m ⁒ ( b ) m ⁒ M ⁑ ( - m , b , z ) Kummer-confluent-hypergeometric-U π‘š 𝑏 𝑧 superscript 1 π‘š Pochhammer 𝑏 π‘š Kummer-confluent-hypergeometric-M π‘š 𝑏 𝑧 {\displaystyle{\displaystyle U\left(-m,b,z\right)=(-1)^{m}{\left(b\right)_{m}}% M\left(-m,b,z\right)}} KummerU(- m, b, z)=(- 1)^(m)* pochhammer(b, m)*KummerM(- m, b, z) HypergeometricU[- m, b, z]=(- 1)^(m)* Pochhammer[b, m]*Hypergeometric1F1[- m, b, z] Failure Failure Skip Successful
13.2.E7 ( - 1 ) m ⁒ ( b ) m ⁒ M ⁑ ( - m , b , z ) = ( - 1 ) m ⁒ βˆ‘ s = 0 m ( m s ) ⁒ ( b + s ) m - s ⁒ ( - z ) s superscript 1 π‘š Pochhammer 𝑏 π‘š Kummer-confluent-hypergeometric-M π‘š 𝑏 𝑧 superscript 1 π‘š superscript subscript 𝑠 0 π‘š binomial π‘š 𝑠 Pochhammer 𝑏 𝑠 π‘š 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle(-1)^{m}{\left(b\right)_{m}}M\left(-m,b,z\right)=(% -1)^{m}\sum_{s=0}^{m}\genfrac{(}{)}{0.0pt}{}{m}{s}{\left(b+s\right)_{m-s}}(-z)% ^{s}}} (- 1)^(m)* pochhammer(b, m)*KummerM(- m, b, z)=(- 1)^(m)* sum(binomial(m,s)*pochhammer(b + s, m - s)*(- z)^(s), s = 0..m) (- 1)^(m)* Pochhammer[b, m]*Hypergeometric1F1[- m, b, z]=(- 1)^(m)* Sum[Binomial[m,s]*Pochhammer[b + s, m - s]*(- z)^(s), {s, 0, m}] Successful Successful - -
13.2.E8 U ⁑ ( a , a + n + 1 , z ) = ( - 1 ) n ⁒ ( 1 - a - n ) n z a + n ⁒ M ⁑ ( - n , 1 - a - n , z ) Kummer-confluent-hypergeometric-U π‘Ž π‘Ž 𝑛 1 𝑧 superscript 1 𝑛 Pochhammer 1 π‘Ž 𝑛 𝑛 superscript 𝑧 π‘Ž 𝑛 Kummer-confluent-hypergeometric-M 𝑛 1 π‘Ž 𝑛 𝑧 {\displaystyle{\displaystyle U\left(a,a+n+1,z\right)=\frac{(-1)^{n}{\left(1-a-% n\right)_{n}}}{z^{a+n}}M\left(-n,1-a-n,z\right)}} KummerU(a, a + n + 1, z)=((- 1)^(n)* pochhammer(1 - a - n, n))/((z)^(a + n))*KummerM(- n, 1 - a - n, z) HypergeometricU[a, a + n + 1, z]=Divide[(- 1)^(n)* Pochhammer[1 - a - n, n],(z)^(a + n)]*Hypergeometric1F1[- n, 1 - a - n, z] Failure Failure Skip Successful
13.2.E8 ( - 1 ) n ⁒ ( 1 - a - n ) n z a + n ⁒ M ⁑ ( - n , 1 - a - n , z ) = z - a ⁒ βˆ‘ s = 0 n ( n s ) ⁒ ( a ) s ⁒ z - s superscript 1 𝑛 Pochhammer 1 π‘Ž 𝑛 𝑛 superscript 𝑧 π‘Ž 𝑛 Kummer-confluent-hypergeometric-M 𝑛 1 π‘Ž 𝑛 𝑧 superscript 𝑧 π‘Ž superscript subscript 𝑠 0 𝑛 binomial 𝑛 𝑠 Pochhammer π‘Ž 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle\frac{(-1)^{n}{\left(1-a-n\right)_{n}}}{z^{a+n}}M% \left(-n,1-a-n,z\right)=z^{-a}\sum_{s=0}^{n}\genfrac{(}{)}{0.0pt}{}{n}{s}{% \left(a\right)_{s}}z^{-s}}} ((- 1)^(n)* pochhammer(1 - a - n, n))/((z)^(a + n))*KummerM(- n, 1 - a - n, z)= (z)^(- a)* sum(binomial(n,s)*pochhammer(a, s)*(z)^(- s), s = 0..n) Divide[(- 1)^(n)* Pochhammer[1 - a - n, n],(z)^(a + n)]*Hypergeometric1F1[- n, 1 - a - n, z]= (z)^(- a)* Sum[Binomial[n,s]*Pochhammer[a, s]*(z)^(- s), {s, 0, n}] Failure Failure Skip Successful
13.2.E9 U ⁑ ( a , n + 1 , z ) = ( - 1 ) n + 1 n ! ⁒ Ξ“ ⁑ ( a - n ) ⁒ βˆ‘ k = 0 ∞ ( a ) k ( n + 1 ) k ⁒ k ! ⁒ z k ⁒ ( ln ⁑ z + ψ ⁑ ( a + k ) - ψ ⁑ ( 1 + k ) - ψ ⁑ ( n + k + 1 ) ) + 1 Ξ“ ⁑ ( a ) ⁒ βˆ‘ k = 1 n ( k - 1 ) ! ⁒ ( 1 - a + k ) n - k ( n - k ) ! ⁒ z - k Kummer-confluent-hypergeometric-U π‘Ž 𝑛 1 𝑧 superscript 1 𝑛 1 𝑛 Euler-Gamma π‘Ž 𝑛 superscript subscript π‘˜ 0 Pochhammer π‘Ž π‘˜ Pochhammer 𝑛 1 π‘˜ π‘˜ superscript 𝑧 π‘˜ 𝑧 digamma π‘Ž π‘˜ digamma 1 π‘˜ digamma 𝑛 π‘˜ 1 1 Euler-Gamma π‘Ž superscript subscript π‘˜ 1 𝑛 π‘˜ 1 Pochhammer 1 π‘Ž π‘˜ 𝑛 π‘˜ 𝑛 π‘˜ superscript 𝑧 π‘˜ {\displaystyle{\displaystyle U\left(a,n+1,z\right)=\frac{(-1)^{n+1}}{n!\Gamma% \left(a-n\right)}\sum_{k=0}^{\infty}\frac{{\left(a\right)_{k}}}{{\left(n+1% \right)_{k}}k!}z^{k}\left(\ln z+\psi\left(a+k\right)-\psi\left(1+k\right)-\psi% \left(n+k+1\right)\right)+\frac{1}{\Gamma\left(a\right)}\sum_{k=1}^{n}\frac{(k% -1)!{\left(1-a+k\right)_{n-k}}}{(n-k)!}z^{-k}}} KummerU(a, n + 1, z)=((- 1)^(n + 1))/(factorial(n)*GAMMA(a - n))*sum((pochhammer(a, k))/(pochhammer(n + 1, k)*factorial(k))*(z)^(k)*(ln(z)+ Psi(a + k)- Psi(1 + k)- Psi(n + k + 1)), k = 0..infinity)+(1)/(GAMMA(a))*sum((factorial(k - 1)*pochhammer(1 - a + k, n - k))/(factorial(n - k))*(z)^(- k), k = 1..n) HypergeometricU[a, n + 1, z]=Divide[(- 1)^(n + 1),(n)!*Gamma[a - n]]*Sum[Divide[Pochhammer[a, k],Pochhammer[n + 1, k]*(k)!]*(z)^(k)*(Log[z]+ PolyGamma[a + k]- PolyGamma[1 + k]- PolyGamma[n + k + 1]), {k, 0, Infinity}]+Divide[1,Gamma[a]]*Sum[Divide[(k - 1)!*Pochhammer[1 - a + k, n - k],(n - k)!]*(z)^(- k), {k, 1, n}] Error Failure - Error
13.2.E10 U ⁑ ( - m , n + 1 , z ) = ( - 1 ) m ⁒ ( n + 1 ) m ⁒ M ⁑ ( - m , n + 1 , z ) Kummer-confluent-hypergeometric-U π‘š 𝑛 1 𝑧 superscript 1 π‘š Pochhammer 𝑛 1 π‘š Kummer-confluent-hypergeometric-M π‘š 𝑛 1 𝑧 {\displaystyle{\displaystyle U\left(-m,n+1,z\right)=(-1)^{m}{\left(n+1\right)_% {m}}M\left(-m,n+1,z\right)}} KummerU(- m, n + 1, z)=(- 1)^(m)* pochhammer(n + 1, m)*KummerM(- m, n + 1, z) HypergeometricU[- m, n + 1, z]=(- 1)^(m)* Pochhammer[n + 1, m]*Hypergeometric1F1[- m, n + 1, z] Failure Failure Successful Successful
13.2.E10 ( - 1 ) m ⁒ ( n + 1 ) m ⁒ M ⁑ ( - m , n + 1 , z ) = ( - 1 ) m ⁒ βˆ‘ s = 0 m ( m s ) ⁒ ( n + s + 1 ) m - s ⁒ ( - z ) s superscript 1 π‘š Pochhammer 𝑛 1 π‘š Kummer-confluent-hypergeometric-M π‘š 𝑛 1 𝑧 superscript 1 π‘š superscript subscript 𝑠 0 π‘š binomial π‘š 𝑠 Pochhammer 𝑛 𝑠 1 π‘š 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle(-1)^{m}{\left(n+1\right)_{m}}M\left(-m,n+1,z% \right)=(-1)^{m}\sum_{s=0}^{m}\genfrac{(}{)}{0.0pt}{}{m}{s}{\left(n+s+1\right)% _{m-s}}(-z)^{s}}} (- 1)^(m)* pochhammer(n + 1, m)*KummerM(- m, n + 1, z)=(- 1)^(m)* sum(binomial(m,s)*pochhammer(n + s + 1, m - s)*(- z)^(s), s = 0..m) (- 1)^(m)* Pochhammer[n + 1, m]*Hypergeometric1F1[- m, n + 1, z]=(- 1)^(m)* Sum[Binomial[m,s]*Pochhammer[n + s + 1, m - s]*(- z)^(s), {s, 0, m}] Successful Successful - -
13.2.E11 U ⁑ ( a , - n , z ) = z n + 1 ⁒ U ⁑ ( a + n + 1 , n + 2 , z ) Kummer-confluent-hypergeometric-U π‘Ž 𝑛 𝑧 superscript 𝑧 𝑛 1 Kummer-confluent-hypergeometric-U π‘Ž 𝑛 1 𝑛 2 𝑧 {\displaystyle{\displaystyle U\left(a,-n,z\right)=z^{n+1}U\left(a+n+1,n+2,z% \right)}} KummerU(a, - n, z)= (z)^(n + 1)* KummerU(a + n + 1, n + 2, z) HypergeometricU[a, - n, z]= (z)^(n + 1)* HypergeometricU[a + n + 1, n + 2, z] Successful Successful - -
13.2.E12 U ⁑ ( a , b , z ⁒ e 2 ⁒ Ο€ ⁒ i ⁒ m ) = 2 ⁒ Ο€ ⁒ i ⁒ e - Ο€ ⁒ i ⁒ b ⁒ m ⁒ sin ⁑ ( Ο€ ⁒ b ⁒ m ) Ξ“ ⁑ ( 1 + a - b ) ⁒ sin ⁑ ( Ο€ ⁒ b ) ⁒ 𝐌 ⁑ ( a , b , z ) + e - 2 ⁒ Ο€ ⁒ i ⁒ b ⁒ m ⁒ U ⁑ ( a , b , z ) Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑒 2 πœ‹ imaginary-unit π‘š 2 πœ‹ imaginary-unit superscript 𝑒 πœ‹ imaginary-unit 𝑏 π‘š πœ‹ 𝑏 π‘š Euler-Gamma 1 π‘Ž 𝑏 πœ‹ 𝑏 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 superscript 𝑒 2 πœ‹ imaginary-unit 𝑏 π‘š Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 {\displaystyle{\displaystyle U\left(a,b,ze^{2\pi\mathrm{i}m}\right)=\frac{2\pi% \mathrm{i}e^{-\pi\mathrm{i}bm}\sin\left(\pi bm\right)}{\Gamma\left(1+a-b\right% )\sin\left(\pi b\right)}{\mathbf{M}}\left(a,b,z\right)+e^{-2\pi\mathrm{i}bm}U% \left(a,b,z\right)}} KummerU(a, b, z*exp(2*Pi*I*m))=(2*Pi*I*exp(- Pi*I*b*m)*sin(Pi*b*m))/(GAMMA(1 + a - b)*sin(Pi*b))*KummerM(a, b, z)/GAMMA(b)+ exp(- 2*Pi*I*b*m)*KummerU(a, b, z) HypergeometricU[a, b, z*Exp[2*Pi*I*m]]=Divide[2*Pi*I*Exp[- Pi*I*b*m]*Sin[Pi*b*m],Gamma[1 + a - b]*Sin[Pi*b]]*Hypergeometric1F1Regularized[a, b, z]+ Exp[- 2*Pi*I*b*m]*HypergeometricU[a, b, z] Failure Failure
Fail
584.8702437+1098.665595*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 1}
448650.07-8984458.84*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 2}
-.361175805e11+.540703722e11*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 3}
1655.171849-5530.515123*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), m = 1}
... skip entries to safe data
Skip
13.2.E33 𝒲 ⁑ { 𝐌 ⁑ ( a , b , z ) , z 1 - b ⁒ 𝐌 ⁑ ( a - b + 1 , 2 - b , z ) } = sin ⁑ ( Ο€ ⁒ b ) ⁒ z - b ⁒ e z / Ο€ Wronskian Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 superscript 𝑧 1 𝑏 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 1 2 𝑏 𝑧 πœ‹ 𝑏 superscript 𝑧 𝑏 superscript 𝑒 𝑧 πœ‹ {\displaystyle{\displaystyle\mathscr{W}\left\{{\mathbf{M}}\left(a,b,z\right),z% ^{1-b}{\mathbf{M}}\left(a-b+1,2-b,z\right)\right\}=\sin\left(\pi b\right)z^{-b% }e^{z}/\pi}} (KummerM(a, b, z)/GAMMA(b))*diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b))= sin(Pi*b)*(z)^(- b)* exp(z)/ Pi Wronskian[{Hypergeometric1F1Regularized[a, b, z], (z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z]}, z]= Sin[Pi*b]*(z)^(- b)* Exp[z]/ Pi Failure Failure Successful Skip
13.2.E34 𝒲 ⁑ { 𝐌 ⁑ ( a , b , z ) , U ⁑ ( a , b , z ) } = - z - b ⁒ e z / Ξ“ ⁑ ( a ) Wronskian Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑧 𝑏 superscript 𝑒 𝑧 Euler-Gamma π‘Ž {\displaystyle{\displaystyle\mathscr{W}\left\{{\mathbf{M}}\left(a,b,z\right),U% \left(a,b,z\right)\right\}=-\ifrac{z^{-b}e^{z}}{\Gamma\left(a\right)}}} (KummerM(a, b, z)/GAMMA(b))*diff(KummerU(a, b, z), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*(KummerU(a, b, z))= -((z)^(- b)* exp(z))/(GAMMA(a)) Wronskian[{Hypergeometric1F1Regularized[a, b, z], HypergeometricU[a, b, z]}, z]= -Divide[(z)^(- b)* Exp[z],Gamma[a]] Failure Failure Successful Skip
13.2.E35 𝒲 ⁑ { 𝐌 ⁑ ( a , b , z ) , e z ⁒ U ⁑ ( b - a , b , e + Ο€ ⁒ i ⁒ z ) } = e - b ⁒ Ο€ ⁒ i ⁒ z - b ⁒ e z / Ξ“ ⁑ ( b - a ) Wronskian Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 𝑏 π‘Ž 𝑏 superscript 𝑒 πœ‹ imaginary-unit 𝑧 superscript 𝑒 𝑏 πœ‹ imaginary-unit superscript 𝑧 𝑏 superscript 𝑒 𝑧 Euler-Gamma 𝑏 π‘Ž {\displaystyle{\displaystyle\mathscr{W}\left\{{\mathbf{M}}\left(a,b,z\right),e% ^{z}U\left(b-a,b,e^{+\pi\mathrm{i}}z\right)\right\}=\ifrac{e^{-b\pi\mathrm{i}}% z^{-b}e^{z}}{\Gamma\left(b-a\right)}}} (KummerM(a, b, z)/GAMMA(b))*diff(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z))=(exp(- b*Pi*I)*(z)^(- b)* exp(z))/(GAMMA(b - a)) Wronskian[{Hypergeometric1F1Regularized[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z]}, z]=Divide[Exp[- b*Pi*I]*(z)^(- b)* Exp[z],Gamma[b - a]] Failure Failure Skip Skip
13.2.E35 𝒲 ⁑ { 𝐌 ⁑ ( a , b , z ) , e z ⁒ U ⁑ ( b - a , b , e - Ο€ ⁒ i ⁒ z ) } = e + b ⁒ Ο€ ⁒ i ⁒ z - b ⁒ e z / Ξ“ ⁑ ( b - a ) Wronskian Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 𝑏 π‘Ž 𝑏 superscript 𝑒 πœ‹ imaginary-unit 𝑧 superscript 𝑒 𝑏 πœ‹ imaginary-unit superscript 𝑧 𝑏 superscript 𝑒 𝑧 Euler-Gamma 𝑏 π‘Ž {\displaystyle{\displaystyle\mathscr{W}\left\{{\mathbf{M}}\left(a,b,z\right),e% ^{z}U\left(b-a,b,e^{-\pi\mathrm{i}}z\right)\right\}=\ifrac{e^{+b\pi\mathrm{i}}% z^{-b}e^{z}}{\Gamma\left(b-a\right)}}} (KummerM(a, b, z)/GAMMA(b))*diff(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z))=(exp(+ b*Pi*I)*(z)^(- b)* exp(z))/(GAMMA(b - a)) Wronskian[{Hypergeometric1F1Regularized[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z]}, z]=Divide[Exp[+ b*Pi*I]*(z)^(- b)* Exp[z],Gamma[b - a]] Failure Failure Skip Skip
13.2.E36 𝒲 ⁑ { z 1 - b ⁒ 𝐌 ⁑ ( a - b + 1 , 2 - b , z ) , U ⁑ ( a , b , z ) } = - z - b ⁒ e z / Ξ“ ⁑ ( a - b + 1 ) Wronskian superscript 𝑧 1 𝑏 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 1 2 𝑏 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑧 𝑏 superscript 𝑒 𝑧 Euler-Gamma π‘Ž 𝑏 1 {\displaystyle{\displaystyle\mathscr{W}\left\{z^{1-b}{\mathbf{M}}\left(a-b+1,2% -b,z\right),U\left(a,b,z\right)\right\}=-\ifrac{z^{-b}e^{z}}{\Gamma\left(a-b+1% \right)}}} ((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b))*diff(KummerU(a, b, z), z)-diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)*(KummerU(a, b, z))= -((z)^(- b)* exp(z))/(GAMMA(a - b + 1)) Wronskian[{(z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z], HypergeometricU[a, b, z]}, z]= -Divide[(z)^(- b)* Exp[z],Gamma[a - b + 1]] Failure Failure Skip Skip
13.2.E37 𝒲 ⁑ { z 1 - b ⁒ 𝐌 ⁑ ( a - b + 1 , 2 - b , z ) , e z ⁒ U ⁑ ( b - a , b , e + Ο€ ⁒ i ⁒ z ) } = - z - b ⁒ e z / Ξ“ ⁑ ( 1 - a ) Wronskian superscript 𝑧 1 𝑏 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 1 2 𝑏 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 𝑏 π‘Ž 𝑏 superscript 𝑒 πœ‹ imaginary-unit 𝑧 superscript 𝑧 𝑏 superscript 𝑒 𝑧 Euler-Gamma 1 π‘Ž {\displaystyle{\displaystyle\mathscr{W}\left\{z^{1-b}{\mathbf{M}}\left(a-b+1,2% -b,z\right),e^{z}U\left(b-a,b,e^{+\pi\mathrm{i}}z\right)\right\}=-\ifrac{z^{-b% }e^{z}}{\Gamma\left(1-a\right)}}} ((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b))*diff(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z), z)-diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)*(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z))= -((z)^(- b)* exp(z))/(GAMMA(1 - a)) Wronskian[{(z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z], Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z]}, z]= -Divide[(z)^(- b)* Exp[z],Gamma[1 - a]] Failure Failure Skip Successful
13.2.E37 𝒲 ⁑ { z 1 - b ⁒ 𝐌 ⁑ ( a - b + 1 , 2 - b , z ) , e z ⁒ U ⁑ ( b - a , b , e - Ο€ ⁒ i ⁒ z ) } = - z - b ⁒ e z / Ξ“ ⁑ ( 1 - a ) Wronskian superscript 𝑧 1 𝑏 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 1 2 𝑏 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 𝑏 π‘Ž 𝑏 superscript 𝑒 πœ‹ imaginary-unit 𝑧 superscript 𝑧 𝑏 superscript 𝑒 𝑧 Euler-Gamma 1 π‘Ž {\displaystyle{\displaystyle\mathscr{W}\left\{z^{1-b}{\mathbf{M}}\left(a-b+1,2% -b,z\right),e^{z}U\left(b-a,b,e^{-\pi\mathrm{i}}z\right)\right\}=-\ifrac{z^{-b% }e^{z}}{\Gamma\left(1-a\right)}}} ((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b))*diff(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z), z)-diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)*(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z))= -((z)^(- b)* exp(z))/(GAMMA(1 - a)) Wronskian[{(z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z], Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z]}, z]= -Divide[(z)^(- b)* Exp[z],Gamma[1 - a]] Failure Failure Skip Skip
13.2.E38 𝒲 ⁑ { U ⁑ ( a , b , z ) , e z ⁒ U ⁑ ( b - a , b , e + Ο€ ⁒ i ⁒ z ) } = e + ( a - b ) ⁒ Ο€ ⁒ i ⁒ z - b ⁒ e z Wronskian Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 𝑏 π‘Ž 𝑏 superscript 𝑒 πœ‹ imaginary-unit 𝑧 superscript 𝑒 π‘Ž 𝑏 πœ‹ imaginary-unit superscript 𝑧 𝑏 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{U\left(a,b,z\right),e^{z}U\left(% b-a,b,e^{+\pi\mathrm{i}}z\right)\right\}=e^{+(a-b)\pi\mathrm{i}}z^{-b}e^{z}}} (KummerU(a, b, z))*diff(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z), z)-diff(KummerU(a, b, z), z)*(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z))= exp(+(a - b)* Pi*I)*(z)^(- b)* exp(z) Wronskian[{HypergeometricU[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z]}, z]= Exp[+(a - b)* Pi*I]*(z)^(- b)* Exp[z] Failure Failure Skip
Fail
Complex[1040.14465936905, 3523.550863963589] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[13.933478379950422, -18.985981055998398] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[16167.755810004226, 20483.57845334895] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-167.2507901552425, 2.9337620233109254] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.2.E38 𝒲 ⁑ { U ⁑ ( a , b , z ) , e z ⁒ U ⁑ ( b - a , b , e - Ο€ ⁒ i ⁒ z ) } = e - ( a - b ) ⁒ Ο€ ⁒ i ⁒ z - b ⁒ e z Wronskian Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 𝑏 π‘Ž 𝑏 superscript 𝑒 πœ‹ imaginary-unit 𝑧 superscript 𝑒 π‘Ž 𝑏 πœ‹ imaginary-unit superscript 𝑧 𝑏 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\mathscr{W}\left\{U\left(a,b,z\right),e^{z}U\left(% b-a,b,e^{-\pi\mathrm{i}}z\right)\right\}=e^{-(a-b)\pi\mathrm{i}}z^{-b}e^{z}}} (KummerU(a, b, z))*diff(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z), z)-diff(KummerU(a, b, z), z)*(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z))= exp(-(a - b)* Pi*I)*(z)^(- b)* exp(z) Wronskian[{HypergeometricU[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z]}, z]= Exp[-(a - b)* Pi*I]*(z)^(- b)* Exp[z] Failure Failure Skip
Fail
Complex[-26409.287510504182, -21215.250458979182] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[17917.63845480152, -4449.098851771366] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[128856.58558615872, -203204.6357206061] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-130654.53246573739, 11199.95676626326] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.2.E39 M ⁑ ( a , b , z ) = e z ⁒ M ⁑ ( b - a , b , - z ) Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M 𝑏 π‘Ž 𝑏 𝑧 {\displaystyle{\displaystyle M\left(a,b,z\right)=e^{z}M\left(b-a,b,-z\right)}} KummerM(a, b, z)= exp(z)*KummerM(b - a, b, - z) Hypergeometric1F1[a, b, z]= Exp[z]*Hypergeometric1F1[b - a, b, - z] Failure Successful Successful -
13.2.E40 U ⁑ ( a , b , z ) = z 1 - b ⁒ U ⁑ ( a - b + 1 , 2 - b , z ) Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑧 1 𝑏 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 1 2 𝑏 𝑧 {\displaystyle{\displaystyle U\left(a,b,z\right)=z^{1-b}U\left(a-b+1,2-b,z% \right)}} KummerU(a, b, z)= (z)^(1 - b)* KummerU(a - b + 1, 2 - b, z) HypergeometricU[a, b, z]= (z)^(1 - b)* HypergeometricU[a - b + 1, 2 - b, z] Successful Successful - -
13.2.E41 1 Ξ“ ⁑ ( b ) ⁒ M ⁑ ( a , b , z ) = e - a ⁒ Ο€ ⁒ i Ξ“ ⁑ ( b - a ) ⁒ U ⁑ ( a , b , z ) + e + ( b - a ) ⁒ Ο€ ⁒ i Ξ“ ⁑ ( a ) ⁒ e z ⁒ U ⁑ ( b - a , b , e + Ο€ ⁒ i ⁒ z ) 1 Euler-Gamma 𝑏 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 superscript 𝑒 π‘Ž πœ‹ imaginary-unit Euler-Gamma 𝑏 π‘Ž Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑒 𝑏 π‘Ž πœ‹ imaginary-unit Euler-Gamma π‘Ž superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 𝑏 π‘Ž 𝑏 superscript 𝑒 πœ‹ imaginary-unit 𝑧 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(b\right)}M\left(a,b,z\right)=% \frac{e^{-a\pi\mathrm{i}}}{\Gamma\left(b-a\right)}U\left(a,b,z\right)+\frac{e^% {+(b-a)\pi\mathrm{i}}}{\Gamma\left(a\right)}e^{z}U\left(b-a,b,e^{+\pi\mathrm{i% }}z\right)}} (1)/(GAMMA(b))*KummerM(a, b, z)=(exp(- a*Pi*I))/(GAMMA(b - a))*KummerU(a, b, z)+(exp(+(b - a)* Pi*I))/(GAMMA(a))*exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z) Divide[1,Gamma[b]]*Hypergeometric1F1[a, b, z]=Divide[Exp[- a*Pi*I],Gamma[b - a]]*HypergeometricU[a, b, z]+Divide[Exp[+(b - a)* Pi*I],Gamma[a]]*Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z] Failure Failure
Fail
17637856.16+44349536.15*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
78404.04567+70170.88583*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
23503366.51-739194412.4*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-413147.5251+1810381.777*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.2.E41 1 Ξ“ ⁑ ( b ) ⁒ M ⁑ ( a , b , z ) = e + a ⁒ Ο€ ⁒ i Ξ“ ⁑ ( b - a ) ⁒ U ⁑ ( a , b , z ) + e - ( b - a ) ⁒ Ο€ ⁒ i Ξ“ ⁑ ( a ) ⁒ e z ⁒ U ⁑ ( b - a , b , e - Ο€ ⁒ i ⁒ z ) 1 Euler-Gamma 𝑏 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 superscript 𝑒 π‘Ž πœ‹ imaginary-unit Euler-Gamma 𝑏 π‘Ž Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑒 𝑏 π‘Ž πœ‹ imaginary-unit Euler-Gamma π‘Ž superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 𝑏 π‘Ž 𝑏 superscript 𝑒 πœ‹ imaginary-unit 𝑧 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(b\right)}M\left(a,b,z\right)=% \frac{e^{+a\pi\mathrm{i}}}{\Gamma\left(b-a\right)}U\left(a,b,z\right)+\frac{e^% {-(b-a)\pi\mathrm{i}}}{\Gamma\left(a\right)}e^{z}U\left(b-a,b,e^{-\pi\mathrm{i% }}z\right)}} (1)/(GAMMA(b))*KummerM(a, b, z)=(exp(+ a*Pi*I))/(GAMMA(b - a))*KummerU(a, b, z)+(exp(-(b - a)* Pi*I))/(GAMMA(a))*exp(z)*KummerU(b - a, b, exp(- Pi*I)*z) Divide[1,Gamma[b]]*Hypergeometric1F1[a, b, z]=Divide[Exp[+ a*Pi*I],Gamma[b - a]]*HypergeometricU[a, b, z]+Divide[Exp[-(b - a)* Pi*I],Gamma[a]]*Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z] Failure Failure
Fail
8.816149469+15.35727015*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
3.036467728-4.734652938*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
237.2244957-69.52948040*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
40.35920508+88.71475163*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Skip
13.2.E42 U ⁑ ( a , b , z ) = Ξ“ ⁑ ( 1 - b ) Ξ“ ⁑ ( a - b + 1 ) ⁒ M ⁑ ( a , b , z ) + Ξ“ ⁑ ( b - 1 ) Ξ“ ⁑ ( a ) ⁒ z 1 - b ⁒ M ⁑ ( a - b + 1 , 2 - b , z ) Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 Euler-Gamma 1 𝑏 Euler-Gamma π‘Ž 𝑏 1 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 Euler-Gamma 𝑏 1 Euler-Gamma π‘Ž superscript 𝑧 1 𝑏 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 1 2 𝑏 𝑧 {\displaystyle{\displaystyle U\left(a,b,z\right)=\frac{\Gamma\left(1-b\right)}% {\Gamma\left(a-b+1\right)}M\left(a,b,z\right)+\frac{\Gamma\left(b-1\right)}{% \Gamma\left(a\right)}z^{1-b}M\left(a-b+1,2-b,z\right)}} KummerU(a, b, z)=(GAMMA(1 - b))/(GAMMA(a - b + 1))*KummerM(a, b, z)+(GAMMA(b - 1))/(GAMMA(a))*(z)^(1 - b)* KummerM(a - b + 1, 2 - b, z) HypergeometricU[a, b, z]=Divide[Gamma[1 - b],Gamma[a - b + 1]]*Hypergeometric1F1[a, b, z]+Divide[Gamma[b - 1],Gamma[a]]*(z)^(1 - b)* Hypergeometric1F1[a - b + 1, 2 - b, z] Successful Successful - -
13.3.E1 ( b - a ) ⁒ M ⁑ ( a - 1 , b , z ) + ( 2 ⁒ a - b + z ) ⁒ M ⁑ ( a , b , z ) - a ⁒ M ⁑ ( a + 1 , b , z ) = 0 𝑏 π‘Ž Kummer-confluent-hypergeometric-M π‘Ž 1 𝑏 𝑧 2 π‘Ž 𝑏 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 π‘Ž Kummer-confluent-hypergeometric-M π‘Ž 1 𝑏 𝑧 0 {\displaystyle{\displaystyle(b-a)M\left(a-1,b,z\right)+(2a-b+z)M\left(a,b,z% \right)-aM\left(a+1,b,z\right)=0}} (b - a)* KummerM(a - 1, b, z)+(2*a - b + z)* KummerM(a, b, z)- a*KummerM(a + 1, b, z)= 0 (b - a)* Hypergeometric1F1[a - 1, b, z]+(2*a - b + z)* Hypergeometric1F1[a, b, z]- a*Hypergeometric1F1[a + 1, b, z]= 0 Successful Successful - -
13.3.E2 b ⁒ ( b - 1 ) ⁒ M ⁑ ( a , b - 1 , z ) + b ⁒ ( 1 - b - z ) ⁒ M ⁑ ( a , b , z ) + z ⁒ ( b - a ) ⁒ M ⁑ ( a , b + 1 , z ) = 0 𝑏 𝑏 1 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 1 𝑧 𝑏 1 𝑏 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 𝑧 𝑏 π‘Ž Kummer-confluent-hypergeometric-M π‘Ž 𝑏 1 𝑧 0 {\displaystyle{\displaystyle b(b-1)M\left(a,b-1,z\right)+b(1-b-z)M\left(a,b,z% \right)+z(b-a)M\left(a,b+1,z\right)=0}} b*(b - 1)* KummerM(a, b - 1, z)+ b*(1 - b - z)* KummerM(a, b, z)+ z*(b - a)* KummerM(a, b + 1, z)= 0 b*(b - 1)* Hypergeometric1F1[a, b - 1, z]+ b*(1 - b - z)* Hypergeometric1F1[a, b, z]+ z*(b - a)* Hypergeometric1F1[a, b + 1, z]= 0 Successful Successful - -
13.3.E3 ( a - b + 1 ) ⁒ M ⁑ ( a , b , z ) - a ⁒ M ⁑ ( a + 1 , b , z ) + ( b - 1 ) ⁒ M ⁑ ( a , b - 1 , z ) = 0 π‘Ž 𝑏 1 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 π‘Ž Kummer-confluent-hypergeometric-M π‘Ž 1 𝑏 𝑧 𝑏 1 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 1 𝑧 0 {\displaystyle{\displaystyle(a-b+1)M\left(a,b,z\right)-aM\left(a+1,b,z\right)+% (b-1)M\left(a,b-1,z\right)=0}} (a - b + 1)* KummerM(a, b, z)- a*KummerM(a + 1, b, z)+(b - 1)* KummerM(a, b - 1, z)= 0 (a - b + 1)* Hypergeometric1F1[a, b, z]- a*Hypergeometric1F1[a + 1, b, z]+(b - 1)* Hypergeometric1F1[a, b - 1, z]= 0 Successful Successful - -
13.3.E4 b ⁒ M ⁑ ( a , b , z ) - b ⁒ M ⁑ ( a - 1 , b , z ) - z ⁒ M ⁑ ( a , b + 1 , z ) = 0 𝑏 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 𝑏 Kummer-confluent-hypergeometric-M π‘Ž 1 𝑏 𝑧 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 1 𝑧 0 {\displaystyle{\displaystyle bM\left(a,b,z\right)-bM\left(a-1,b,z\right)-zM% \left(a,b+1,z\right)=0}} b*KummerM(a, b, z)- b*KummerM(a - 1, b, z)- z*KummerM(a, b + 1, z)= 0 b*Hypergeometric1F1[a, b, z]- b*Hypergeometric1F1[a - 1, b, z]- z*Hypergeometric1F1[a, b + 1, z]= 0 Successful Successful - -
13.3.E5 b ⁒ ( a + z ) ⁒ M ⁑ ( a , b , z ) + z ⁒ ( a - b ) ⁒ M ⁑ ( a , b + 1 , z ) - a ⁒ b ⁒ M ⁑ ( a + 1 , b , z ) = 0 𝑏 π‘Ž 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 𝑧 π‘Ž 𝑏 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 1 𝑧 π‘Ž 𝑏 Kummer-confluent-hypergeometric-M π‘Ž 1 𝑏 𝑧 0 {\displaystyle{\displaystyle b(a+z)M\left(a,b,z\right)+z(a-b)M\left(a,b+1,z% \right)-abM\left(a+1,b,z\right)=0}} b*(a + z)* KummerM(a, b, z)+ z*(a - b)* KummerM(a, b + 1, z)- a*b*KummerM(a + 1, b, z)= 0 b*(a + z)* Hypergeometric1F1[a, b, z]+ z*(a - b)* Hypergeometric1F1[a, b + 1, z]- a*b*Hypergeometric1F1[a + 1, b, z]= 0 Successful Successful - -
13.3.E6 ( a - 1 + z ) ⁒ M ⁑ ( a , b , z ) + ( b - a ) ⁒ M ⁑ ( a - 1 , b , z ) + ( 1 - b ) ⁒ M ⁑ ( a , b - 1 , z ) = 0 π‘Ž 1 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 𝑏 π‘Ž Kummer-confluent-hypergeometric-M π‘Ž 1 𝑏 𝑧 1 𝑏 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 1 𝑧 0 {\displaystyle{\displaystyle(a-1+z)M\left(a,b,z\right)+(b-a)M\left(a-1,b,z% \right)+(1-b)M\left(a,b-1,z\right)=0}} (a - 1 + z)* KummerM(a, b, z)+(b - a)* KummerM(a - 1, b, z)+(1 - b)* KummerM(a, b - 1, z)= 0 (a - 1 + z)* Hypergeometric1F1[a, b, z]+(b - a)* Hypergeometric1F1[a - 1, b, z]+(1 - b)* Hypergeometric1F1[a, b - 1, z]= 0 Successful Successful - -
13.3.E7 U ⁑ ( a - 1 , b , z ) + ( b - 2 ⁒ a - z ) ⁒ U ⁑ ( a , b , z ) + a ⁒ ( a - b + 1 ) ⁒ U ⁑ ( a + 1 , b , z ) = 0 Kummer-confluent-hypergeometric-U π‘Ž 1 𝑏 𝑧 𝑏 2 π‘Ž 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 π‘Ž π‘Ž 𝑏 1 Kummer-confluent-hypergeometric-U π‘Ž 1 𝑏 𝑧 0 {\displaystyle{\displaystyle U\left(a-1,b,z\right)+(b-2a-z)U\left(a,b,z\right)% +a(a-b+1)U\left(a+1,b,z\right)=0}} KummerU(a - 1, b, z)+(b - 2*a - z)* KummerU(a, b, z)+ a*(a - b + 1)* KummerU(a + 1, b, z)= 0 HypergeometricU[a - 1, b, z]+(b - 2*a - z)* HypergeometricU[a, b, z]+ a*(a - b + 1)* HypergeometricU[a + 1, b, z]= 0 Successful Successful - -
13.3.E8 ( b - a - 1 ) ⁒ U ⁑ ( a , b - 1 , z ) + ( 1 - b - z ) ⁒ U ⁑ ( a , b , z ) + z ⁒ U ⁑ ( a , b + 1 , z ) = 0 𝑏 π‘Ž 1 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 1 𝑧 1 𝑏 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 1 𝑧 0 {\displaystyle{\displaystyle(b-a-1)U\left(a,b-1,z\right)+(1-b-z)U\left(a,b,z% \right)+zU\left(a,b+1,z\right)=0}} (b - a - 1)* KummerU(a, b - 1, z)+(1 - b - z)* KummerU(a, b, z)+ z*KummerU(a, b + 1, z)= 0 (b - a - 1)* HypergeometricU[a, b - 1, z]+(1 - b - z)* HypergeometricU[a, b, z]+ z*HypergeometricU[a, b + 1, z]= 0 Successful Successful - -
13.3.E9 U ⁑ ( a , b , z ) - a ⁒ U ⁑ ( a + 1 , b , z ) - U ⁑ ( a , b - 1 , z ) = 0 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 π‘Ž Kummer-confluent-hypergeometric-U π‘Ž 1 𝑏 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 1 𝑧 0 {\displaystyle{\displaystyle U\left(a,b,z\right)-aU\left(a+1,b,z\right)-U\left% (a,b-1,z\right)=0}} KummerU(a, b, z)- a*KummerU(a + 1, b, z)- KummerU(a, b - 1, z)= 0 HypergeometricU[a, b, z]- a*HypergeometricU[a + 1, b, z]- HypergeometricU[a, b - 1, z]= 0 Successful Successful - -
13.3.E10 ( b - a ) ⁒ U ⁑ ( a , b , z ) + U ⁑ ( a - 1 , b , z ) - z ⁒ U ⁑ ( a , b + 1 , z ) = 0 𝑏 π‘Ž Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 1 𝑏 𝑧 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 1 𝑧 0 {\displaystyle{\displaystyle(b-a)U\left(a,b,z\right)+U\left(a-1,b,z\right)-zU% \left(a,b+1,z\right)=0}} (b - a)* KummerU(a, b, z)+ KummerU(a - 1, b, z)- z*KummerU(a, b + 1, z)= 0 (b - a)* HypergeometricU[a, b, z]+ HypergeometricU[a - 1, b, z]- z*HypergeometricU[a, b + 1, z]= 0 Successful Successful - -
13.3.E11 ( a + z ) ⁒ U ⁑ ( a , b , z ) - z ⁒ U ⁑ ( a , b + 1 , z ) + a ⁒ ( b - a - 1 ) ⁒ U ⁑ ( a + 1 , b , z ) = 0 π‘Ž 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 1 𝑧 π‘Ž 𝑏 π‘Ž 1 Kummer-confluent-hypergeometric-U π‘Ž 1 𝑏 𝑧 0 {\displaystyle{\displaystyle(a+z)U\left(a,b,z\right)-zU\left(a,b+1,z\right)+a(% b-a-1)U\left(a+1,b,z\right)=0}} (a + z)* KummerU(a, b, z)- z*KummerU(a, b + 1, z)+ a*(b - a - 1)* KummerU(a + 1, b, z)= 0 (a + z)* HypergeometricU[a, b, z]- z*HypergeometricU[a, b + 1, z]+ a*(b - a - 1)* HypergeometricU[a + 1, b, z]= 0 Successful Successful - -
13.3.E12 ( a - 1 + z ) ⁒ U ⁑ ( a , b , z ) - U ⁑ ( a - 1 , b , z ) + ( a - b + 1 ) ⁒ U ⁑ ( a , b - 1 , z ) = 0 π‘Ž 1 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 1 𝑏 𝑧 π‘Ž 𝑏 1 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 1 𝑧 0 {\displaystyle{\displaystyle(a-1+z)U\left(a,b,z\right)-U\left(a-1,b,z\right)+(% a-b+1)U\left(a,b-1,z\right)=0}} (a - 1 + z)* KummerU(a, b, z)- KummerU(a - 1, b, z)+(a - b + 1)* KummerU(a, b - 1, z)= 0 (a - 1 + z)* HypergeometricU[a, b, z]- HypergeometricU[a - 1, b, z]+(a - b + 1)* HypergeometricU[a, b - 1, z]= 0 Successful Successful - -
13.3.E13 ( a + 1 ) ⁒ z ⁒ M ⁑ ( a + 2 , b + 2 , z ) + ( b + 1 ) ⁒ ( b - z ) ⁒ M ⁑ ( a + 1 , b + 1 , z ) - b ⁒ ( b + 1 ) ⁒ M ⁑ ( a , b , z ) = 0 π‘Ž 1 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 2 𝑏 2 𝑧 𝑏 1 𝑏 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 1 𝑏 1 𝑧 𝑏 𝑏 1 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 0 {\displaystyle{\displaystyle(a+1)zM\left(a+2,b+2,z\right)+(b+1)(b-z)M\left(a+1% ,b+1,z\right)-b(b+1)M\left(a,b,z\right)=0}} (a + 1)* z*KummerM(a + 2, b + 2, z)+(b + 1)*(b - z)* KummerM(a + 1, b + 1, z)- b*(b + 1)* KummerM(a, b, z)= 0 (a + 1)* z*Hypergeometric1F1[a + 2, b + 2, z]+(b + 1)*(b - z)* Hypergeometric1F1[a + 1, b + 1, z]- b*(b + 1)* Hypergeometric1F1[a, b, z]= 0 Successful Successful - -
13.3.E14 ( a + 1 ) ⁒ z ⁒ U ⁑ ( a + 2 , b + 2 , z ) + ( z - b ) ⁒ U ⁑ ( a + 1 , b + 1 , z ) - U ⁑ ( a , b , z ) = 0 π‘Ž 1 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 2 𝑏 2 𝑧 𝑧 𝑏 Kummer-confluent-hypergeometric-U π‘Ž 1 𝑏 1 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 0 {\displaystyle{\displaystyle(a+1)zU\left(a+2,b+2,z\right)+(z-b)U\left(a+1,b+1,% z\right)-U\left(a,b,z\right)=0}} (a + 1)* z*KummerU(a + 2, b + 2, z)+(z - b)* KummerU(a + 1, b + 1, z)- KummerU(a, b, z)= 0 (a + 1)* z*HypergeometricU[a + 2, b + 2, z]+(z - b)* HypergeometricU[a + 1, b + 1, z]- HypergeometricU[a, b, z]= 0 Successful Successful - -
13.3.E15 d d z ⁑ M ⁑ ( a , b , z ) = a b ⁒ M ⁑ ( a + 1 , b + 1 , z ) derivative 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 π‘Ž 𝑏 Kummer-confluent-hypergeometric-M π‘Ž 1 𝑏 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}M\left(a,b,z\right)=% \frac{a}{b}M\left(a+1,b+1,z\right)}} diff(KummerM(a, b, z), z)=(a)/(b)*KummerM(a + 1, b + 1, z) D[Hypergeometric1F1[a, b, z], z]=Divide[a,b]*Hypergeometric1F1[a + 1, b + 1, z] Successful Successful - -
13.3.E16 d n d z n ⁑ M ⁑ ( a , b , z ) = ( a ) n ( b ) n ⁒ M ⁑ ( a + n , b + n , z ) derivative 𝑧 𝑛 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 Pochhammer π‘Ž 𝑛 Pochhammer 𝑏 𝑛 Kummer-confluent-hypergeometric-M π‘Ž 𝑛 𝑏 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}M\left(a% ,b,z\right)=\frac{{\left(a\right)_{n}}}{{\left(b\right)_{n}}}M\left(a+n,b+n,z% \right)}} diff(KummerM(a, b, z), [z$(n)])=(pochhammer(a, n))/(pochhammer(b, n))*KummerM(a + n, b + n, z) D[Hypergeometric1F1[a, b, z], {z, n}]=Divide[Pochhammer[a, n],Pochhammer[b, n]]*Hypergeometric1F1[a + n, b + n, z] Successful Failure - Skip
13.3.E17 ( z ⁒ d d z ⁑ z ) n ⁒ ( z a - 1 ⁒ M ⁑ ( a , b , z ) ) = ( a ) n ⁒ z a + n - 1 ⁒ M ⁑ ( a + n , b , z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑧 π‘Ž 1 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 Pochhammer π‘Ž 𝑛 superscript 𝑧 π‘Ž 𝑛 1 Kummer-confluent-hypergeometric-M π‘Ž 𝑛 𝑏 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(z^{a-1}M\left(a,b,z\right)\right)={\left(a\right)_{n}}z^{a+n-1}M\left(a+% n,b,z\right)}} (z*diff(z, z))^(n)*((z)^(a - 1)* KummerM(a, b, z))= pochhammer(a, n)*(z)^(a + n - 1)* KummerM(a + n, b, z) (z*D[z, z])^(n)*((z)^(a - 1)* Hypergeometric1F1[a, b, z])= Pochhammer[a, n]*(z)^(a + n - 1)* Hypergeometric1F1[a + n, b, z] Failure Failure
Fail
2.537884887+11.89104377*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
-123.7627467+81.19826795*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
-1555.783365-1131.870657*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
-1.589608076+60.84364464*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.3.E18 d n d z n ⁑ ( z b - 1 ⁒ M ⁑ ( a , b , z ) ) = ( b - n ) n ⁒ z b - n - 1 ⁒ M ⁑ ( a , b - n , z ) derivative 𝑧 𝑛 superscript 𝑧 𝑏 1 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 Pochhammer 𝑏 𝑛 𝑛 superscript 𝑧 𝑏 𝑛 1 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(z^% {b-1}M\left(a,b,z\right)\right)={\left(b-n\right)_{n}}z^{b-n-1}M\left(a,b-n,z% \right)}} diff((z)^(b - 1)* KummerM(a, b, z), [z$(n)])= pochhammer(b - n, n)*(z)^(b - n - 1)* KummerM(a, b - n, z) D[(z)^(b - 1)* Hypergeometric1F1[a, b, z], {z, n}]= Pochhammer[b - n, n]*(z)^(b - n - 1)* Hypergeometric1F1[a, b - n, z] Failure Failure Successful Skip
13.3.E19 ( z ⁒ d d z ⁑ z ) n ⁒ ( z b - a - 1 ⁒ e - z ⁒ M ⁑ ( a , b , z ) ) = ( b - a ) n ⁒ z b - a + n - 1 ⁒ e - z ⁒ M ⁑ ( a - n , b , z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑧 𝑏 π‘Ž 1 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 Pochhammer 𝑏 π‘Ž 𝑛 superscript 𝑧 𝑏 π‘Ž 𝑛 1 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑛 𝑏 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(z^{b-a-1}e^{-z}M\left(a,b,z\right)\right)={\left(b-a\right)_{n}}z^{b-a+n% -1}e^{-z}M\left(a-n,b,z\right)}} (z*diff(z, z))^(n)*((z)^(b - a - 1)* exp(- z)*KummerM(a, b, z))= pochhammer(b - a, n)*(z)^(b - a + n - 1)* exp(- z)*KummerM(a - n, b, z) (z*D[z, z])^(n)*((z)^(b - a - 1)* Exp[- z]*Hypergeometric1F1[a, b, z])= Pochhammer[b - a, n]*(z)^(b - a + n - 1)* Exp[- z]*Hypergeometric1F1[a - n, b, z] Failure Failure
Fail
1.000000000+0.*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
0.+3.999999998*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
1.000000000+0.*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.3.E20 d n d z n ⁑ ( e - z ⁒ M ⁑ ( a , b , z ) ) = ( - 1 ) n ⁒ ( b - a ) n ( b ) n ⁒ e - z ⁒ M ⁑ ( a , b + n , z ) derivative 𝑧 𝑛 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 superscript 1 𝑛 Pochhammer 𝑏 π‘Ž 𝑛 Pochhammer 𝑏 𝑛 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(e^% {-z}M\left(a,b,z\right)\right)=(-1)^{n}\frac{{\left(b-a\right)_{n}}}{{\left(b% \right)_{n}}}e^{-z}M\left(a,b+n,z\right)}} diff(exp(- z)*KummerM(a, b, z), [z$(n)])=(- 1)^(n)*(pochhammer(b - a, n))/(pochhammer(b, n))*exp(- z)*KummerM(a, b + n, z) D[Exp[- z]*Hypergeometric1F1[a, b, z], {z, n}]=(- 1)^(n)*Divide[Pochhammer[b - a, n],Pochhammer[b, n]]*Exp[- z]*Hypergeometric1F1[a, b + n, z] Failure Failure Successful Skip
13.3.E21 d n d z n ⁑ ( z b - 1 ⁒ e - z ⁒ M ⁑ ( a , b , z ) ) = ( b - n ) n ⁒ z b - n - 1 ⁒ e - z ⁒ M ⁑ ( a - n , b - n , z ) derivative 𝑧 𝑛 superscript 𝑧 𝑏 1 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 Pochhammer 𝑏 𝑛 𝑛 superscript 𝑧 𝑏 𝑛 1 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑛 𝑏 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(z^% {b-1}e^{-z}M\left(a,b,z\right)\right)={\left(b-n\right)_{n}}z^{b-n-1}e^{-z}M% \left(a-n,b-n,z\right)}} diff((z)^(b - 1)* exp(- z)*KummerM(a, b, z), [z$(n)])= pochhammer(b - n, n)*(z)^(b - n - 1)* exp(- z)*KummerM(a - n, b - n, z) D[(z)^(b - 1)* Exp[- z]*Hypergeometric1F1[a, b, z], {z, n}]= Pochhammer[b - n, n]*(z)^(b - n - 1)* Exp[- z]*Hypergeometric1F1[a - n, b - n, z] Failure Failure Skip Error
13.3.E22 d d z ⁑ U ⁑ ( a , b , z ) = - a ⁒ U ⁑ ( a + 1 , b + 1 , z ) derivative 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 π‘Ž Kummer-confluent-hypergeometric-U π‘Ž 1 𝑏 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}U\left(a,b,z\right)=% -aU\left(a+1,b+1,z\right)}} diff(KummerU(a, b, z), z)= - a*KummerU(a + 1, b + 1, z) D[HypergeometricU[a, b, z], z]= - a*HypergeometricU[a + 1, b + 1, z] Successful Successful - -
13.3.E23 d n d z n ⁑ U ⁑ ( a , b , z ) = ( - 1 ) n ⁒ ( a ) n ⁒ U ⁑ ( a + n , b + n , z ) derivative 𝑧 𝑛 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 1 𝑛 Pochhammer π‘Ž 𝑛 Kummer-confluent-hypergeometric-U π‘Ž 𝑛 𝑏 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}U\left(a% ,b,z\right)=(-1)^{n}{\left(a\right)_{n}}U\left(a+n,b+n,z\right)}} diff(KummerU(a, b, z), [z$(n)])=(- 1)^(n)* pochhammer(a, n)*KummerU(a + n, b + n, z) D[HypergeometricU[a, b, z], {z, n}]=(- 1)^(n)* Pochhammer[a, n]*HypergeometricU[a + n, b + n, z] Failure Successful Skip -
13.3.E24 ( z ⁒ d d z ⁑ z ) n ⁒ ( z a - 1 ⁒ U ⁑ ( a , b , z ) ) = ( a ) n ⁒ ( a - b + 1 ) n ⁒ z a + n - 1 ⁒ U ⁑ ( a + n , b , z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑧 π‘Ž 1 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 Pochhammer π‘Ž 𝑛 Pochhammer π‘Ž 𝑏 1 𝑛 superscript 𝑧 π‘Ž 𝑛 1 Kummer-confluent-hypergeometric-U π‘Ž 𝑛 𝑏 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(z^{a-1}U\left(a,b,z\right)\right)={\left(a\right)_{n}}{\left(a-b+1\right% )_{n}}z^{a+n-1}U\left(a+n,b,z\right)}} (z*diff(z, z))^(n)*((z)^(a - 1)* KummerU(a, b, z))= pochhammer(a, n)*pochhammer(a - b + 1, n)*(z)^(a + n - 1)* KummerU(a + n, b, z) (z*D[z, z])^(n)*((z)^(a - 1)* HypergeometricU[a, b, z])= Pochhammer[a, n]*Pochhammer[a - b + 1, n]*(z)^(a + n - 1)* HypergeometricU[a + n, b, z] Failure Failure
Fail
.3178044521-.5812355890e-1*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
.5638915996+.3833395878*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
.2833587160+.898459259*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
.2659178351-.5754539144*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.3.E25 d n d z n ⁑ ( z b - 1 ⁒ U ⁑ ( a , b , z ) ) = ( - 1 ) n ⁒ ( a - b + 1 ) n ⁒ z b - n - 1 ⁒ U ⁑ ( a , b - n , z ) derivative 𝑧 𝑛 superscript 𝑧 𝑏 1 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 1 𝑛 Pochhammer π‘Ž 𝑏 1 𝑛 superscript 𝑧 𝑏 𝑛 1 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(z^% {b-1}U\left(a,b,z\right)\right)=(-1)^{n}{\left(a-b+1\right)_{n}}z^{b-n-1}U% \left(a,b-n,z\right)}} diff((z)^(b - 1)* KummerU(a, b, z), [z$(n)])=(- 1)^(n)* pochhammer(a - b + 1, n)*(z)^(b - n - 1)* KummerU(a, b - n, z) D[(z)^(b - 1)* HypergeometricU[a, b, z], {z, n}]=(- 1)^(n)* Pochhammer[a - b + 1, n]*(z)^(b - n - 1)* HypergeometricU[a, b - n, z] Failure Failure Skip Skip
13.3.E26 ( z ⁒ d d z ⁑ z ) n ⁒ ( z b - a - 1 ⁒ e - z ⁒ U ⁑ ( a , b , z ) ) = ( - 1 ) n ⁒ z b - a + n - 1 ⁒ e - z ⁒ U ⁑ ( a - n , b , z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑧 𝑏 π‘Ž 1 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 1 𝑛 superscript 𝑧 𝑏 π‘Ž 𝑛 1 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑛 𝑏 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(z^{b-a-1}e^{-z}U\left(a,b,z\right)\right)=(-1)^{n}z^{b-a+n-1}e^{-z}U% \left(a-n,b,z\right)}} (z*diff(z, z))^(n)*((z)^(b - a - 1)* exp(- z)*KummerU(a, b, z))=(- 1)^(n)* (z)^(b - a + n - 1)* exp(- z)*KummerU(a - n, b, z) (z*D[z, z])^(n)*((z)^(b - a - 1)* Exp[- z]*HypergeometricU[a, b, z])=(- 1)^(n)* (z)^(b - a + n - 1)* Exp[- z]*HypergeometricU[a - n, b, z] Failure Failure
Fail
-.6426838098-.1638932643*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
-2.885602225+1.867279788*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
-8.024434137+19.17405510*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
.5784828818e-1+.5986041895e-1*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.3.E27 d n d z n ⁑ ( e - z ⁒ U ⁑ ( a , b , z ) ) = ( - 1 ) n ⁒ e - z ⁒ U ⁑ ( a , b + n , z ) derivative 𝑧 𝑛 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 1 𝑛 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(e^% {-z}U\left(a,b,z\right)\right)=(-1)^{n}e^{-z}U\left(a,b+n,z\right)}} diff(exp(- z)*KummerU(a, b, z), [z$(n)])=(- 1)^(n)* exp(- z)*KummerU(a, b + n, z) D[Exp[- z]*HypergeometricU[a, b, z], {z, n}]=(- 1)^(n)* Exp[- z]*HypergeometricU[a, b + n, z] Failure Failure Skip Skip
13.3.E28 d n d z n ⁑ ( z b - 1 ⁒ e - z ⁒ U ⁑ ( a , b , z ) ) = ( - 1 ) n ⁒ z b - n - 1 ⁒ e - z ⁒ U ⁑ ( a - n , b - n , z ) derivative 𝑧 𝑛 superscript 𝑧 𝑏 1 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 1 𝑛 superscript 𝑧 𝑏 𝑛 1 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U π‘Ž 𝑛 𝑏 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(z^% {b-1}e^{-z}U\left(a,b,z\right)\right)=(-1)^{n}z^{b-n-1}e^{-z}U\left(a-n,b-n,z% \right)}} diff((z)^(b - 1)* exp(- z)*KummerU(a, b, z), [z$(n)])=(- 1)^(n)* (z)^(b - n - 1)* exp(- z)*KummerU(a - n, b - n, z) D[(z)^(b - 1)* Exp[- z]*HypergeometricU[a, b, z], {z, n}]=(- 1)^(n)* (z)^(b - n - 1)* Exp[- z]*HypergeometricU[a - n, b - n, z] Error Failure - Error
13.3.E29 ( z ⁒ d d z ⁑ z ) n = z n ⁒ d n d z n ⁑ z n superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑧 𝑛 derivative 𝑧 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}=% z^{n}\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}z^{n}}} (z*diff(z, z))^(n)= (z)^(n)* diff((z)^(n), [z$(n)]) (z*D[z, z])^(n)= (z)^(n)* D[(z)^(n), {z, n}] Failure Failure
Fail
28.28427122-28.28427122*I <- {z = 2^(1/2)+I*2^(1/2), n = 3}
28.28427122+28.28427122*I <- {z = 2^(1/2)-I*2^(1/2), n = 3}
-28.28427122+28.28427122*I <- {z = -2^(1/2)-I*2^(1/2), n = 3}
-28.28427122-28.28427122*I <- {z = -2^(1/2)+I*2^(1/2), n = 3}
Fail
Complex[28.284271247461902, -28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[28.284271247461902, 28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-28.284271247461902, 28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-28.284271247461902, -28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.4.E1 𝐌 ⁑ ( a , b , z ) = 1 Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b - a ) ⁒ ∫ 0 1 e z ⁒ t ⁒ t a - 1 ⁒ ( 1 - t ) b - a - 1 ⁒ d t Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 1 Euler-Gamma π‘Ž Euler-Gamma 𝑏 π‘Ž superscript subscript 0 1 superscript 𝑒 𝑧 𝑑 superscript 𝑑 π‘Ž 1 superscript 1 𝑑 𝑏 π‘Ž 1 𝑑 {\displaystyle{\displaystyle{\mathbf{M}}\left(a,b,z\right)=\frac{1}{\Gamma% \left(a\right)\Gamma\left(b-a\right)}\int_{0}^{1}e^{zt}t^{a-1}(1-t)^{b-a-1}% \mathrm{d}t}} KummerM(a, b, z)/GAMMA(b)=(1)/(GAMMA(a)*GAMMA(b - a))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = 0..1) Hypergeometric1F1Regularized[a, b, z]=Divide[1,Gamma[a]*Gamma[b - a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, 0, 1}] Successful Failure - Skip
13.4.E2 𝐌 ⁑ ( a , b , z ) = 1 Ξ“ ⁑ ( b - c ) ⁒ ∫ 0 1 𝐌 ⁑ ( a , c , z ⁒ t ) ⁒ t c - 1 ⁒ ( 1 - t ) b - c - 1 ⁒ d t Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 1 Euler-Gamma 𝑏 𝑐 superscript subscript 0 1 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑐 𝑧 𝑑 superscript 𝑑 𝑐 1 superscript 1 𝑑 𝑏 𝑐 1 𝑑 {\displaystyle{\displaystyle{\mathbf{M}}\left(a,b,z\right)=\frac{1}{\Gamma% \left(b-c\right)}\int_{0}^{1}{\mathbf{M}}\left(a,c,zt\right)t^{c-1}(1-t)^{b-c-% 1}\mathrm{d}t}} KummerM(a, b, z)/GAMMA(b)=(1)/(GAMMA(b - c))*int(KummerM(a, c, z*t)/GAMMA(c)*(t)^(c - 1)*(1 - t)^(b - c - 1), t = 0..1) Hypergeometric1F1Regularized[a, b, z]=Divide[1,Gamma[b - c]]*Integrate[Hypergeometric1F1Regularized[a, c, z*t]*(t)^(c - 1)*(1 - t)^(b - c - 1), {t, 0, 1}] Successful Failure - Skip
13.4.E3 𝐌 ⁑ ( a , b , - z ) = z 1 2 - 1 2 ⁒ b Ξ“ ⁑ ( a ) ⁒ ∫ 0 ∞ e - t ⁒ t a - 1 2 ⁒ b - 1 2 ⁒ J b - 1 ⁑ ( 2 ⁒ z ⁒ t ) ⁒ d t Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 superscript 𝑧 1 2 1 2 𝑏 Euler-Gamma π‘Ž superscript subscript 0 superscript 𝑒 𝑑 superscript 𝑑 π‘Ž 1 2 𝑏 1 2 Bessel-J 𝑏 1 2 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle{\mathbf{M}}\left(a,b,-z\right)=\frac{z^{\frac{1}{% 2}-\frac{1}{2}b}}{\Gamma\left(a\right)}\int_{0}^{\infty}e^{-t}t^{a-\frac{1}{2}% b-\frac{1}{2}}J_{b-1}\left(2\sqrt{zt}\right)\mathrm{d}t}} KummerM(a, b, - z)/GAMMA(b)=((z)^((1)/(2)-(1)/(2)*b))/(GAMMA(a))*int(exp(- t)*(t)^(a -(1)/(2)*b -(1)/(2))* BesselJ(b - 1, 2*sqrt(z*t)), t = 0..infinity) Hypergeometric1F1Regularized[a, b, - z]=Divide[(z)^(Divide[1,2]-Divide[1,2]*b),Gamma[a]]*Integrate[Exp[- t]*(t)^(a -Divide[1,2]*b -Divide[1,2])* BesselJ[b - 1, 2*Sqrt[z*t]], {t, 0, Infinity}] Failure Failure Skip Error
13.4.E4 U ⁑ ( a , b , z ) = 1 Ξ“ ⁑ ( a ) ⁒ ∫ 0 ∞ e - z ⁒ t ⁒ t a - 1 ⁒ ( 1 + t ) b - a - 1 ⁒ d t Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 1 Euler-Gamma π‘Ž superscript subscript 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 π‘Ž 1 superscript 1 𝑑 𝑏 π‘Ž 1 𝑑 {\displaystyle{\displaystyle U\left(a,b,z\right)=\frac{1}{\Gamma\left(a\right)% }\int_{0}^{\infty}e^{-zt}t^{a-1}(1+t)^{b-a-1}\mathrm{d}t}} KummerU(a, b, z)=(1)/(GAMMA(a))*int(exp(- z*t)*(t)^(a - 1)*(1 + t)^(b - a - 1), t = 0..infinity) HypergeometricU[a, b, z]=Divide[1,Gamma[a]]*Integrate[Exp[- z*t]*(t)^(a - 1)*(1 + t)^(b - a - 1), {t, 0, Infinity}] Successful Failure - Error
13.4.E5 U ⁑ ( a , b , z ) = z 1 - a Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( 1 + a - b ) ⁒ ∫ 0 ∞ U ⁑ ( b - a , b , t ) ⁒ e - t ⁒ t a - 1 t + z ⁒ d t Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑧 1 π‘Ž Euler-Gamma π‘Ž Euler-Gamma 1 π‘Ž 𝑏 superscript subscript 0 Kummer-confluent-hypergeometric-U 𝑏 π‘Ž 𝑏 𝑑 superscript 𝑒 𝑑 superscript 𝑑 π‘Ž 1 𝑑 𝑧 𝑑 {\displaystyle{\displaystyle U\left(a,b,z\right)=\frac{z^{1-a}}{\Gamma\left(a% \right)\Gamma\left(1+a-b\right)}\int_{0}^{\infty}\frac{U\left(b-a,b,t\right)e^% {-t}t^{a-1}}{t+z}\mathrm{d}t}} KummerU(a, b, z)=((z)^(1 - a))/(GAMMA(a)*GAMMA(1 + a - b))*int((KummerU(b - a, b, t)*exp(- t)*(t)^(a - 1))/(t + z), t = 0..infinity) HypergeometricU[a, b, z]=Divide[(z)^(1 - a),Gamma[a]*Gamma[1 + a - b]]*Integrate[Divide[HypergeometricU[b - a, b, t]*Exp[- t]*(t)^(a - 1),t + z], {t, 0, Infinity}] Failure Failure Skip Error
13.4.E6 U ⁑ ( a , b , z ) = ( - 1 ) n ⁒ z 1 - b - n Ξ“ ⁑ ( 1 + a - b ) ⁒ ∫ 0 ∞ 𝐌 ⁑ ( b - a , b , t ) ⁒ e - t ⁒ t b + n - 1 t + z ⁒ d t Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 1 𝑛 superscript 𝑧 1 𝑏 𝑛 Euler-Gamma 1 π‘Ž 𝑏 superscript subscript 0 Kummer-confluent-hypergeometric-bold-M 𝑏 π‘Ž 𝑏 𝑑 superscript 𝑒 𝑑 superscript 𝑑 𝑏 𝑛 1 𝑑 𝑧 𝑑 {\displaystyle{\displaystyle U\left(a,b,z\right)=\frac{(-1)^{n}z^{1-b-n}}{% \Gamma\left(1+a-b\right)}\int_{0}^{\infty}\frac{{\mathbf{M}}\left(b-a,b,t% \right)e^{-t}t^{b+n-1}}{t+z}\mathrm{d}t}} KummerU(a, b, z)=((- 1)^(n)* (z)^(1 - b - n))/(GAMMA(1 + a - b))*int((KummerM(b - a, b, t)/GAMMA(b)*exp(- t)*(t)^(b + n - 1))/(t + z), t = 0..infinity) HypergeometricU[a, b, z]=Divide[(- 1)^(n)* (z)^(1 - b - n),Gamma[1 + a - b]]*Integrate[Divide[Hypergeometric1F1Regularized[b - a, b, t]*Exp[- t]*(t)^(b + n - 1),t + z], {t, 0, Infinity}] Failure Failure Skip Error
13.4.E7 U ⁑ ( a , b , z ) = 2 ⁒ z 1 2 - 1 2 ⁒ b Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( a - b + 1 ) ⁒ ∫ 0 ∞ e - t ⁒ t a - 1 2 ⁒ b - 1 2 ⁒ K b - 1 ⁑ ( 2 ⁒ z ⁒ t ) ⁒ d t Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 2 superscript 𝑧 1 2 1 2 𝑏 Euler-Gamma π‘Ž Euler-Gamma π‘Ž 𝑏 1 superscript subscript 0 superscript 𝑒 𝑑 superscript 𝑑 π‘Ž 1 2 𝑏 1 2 modified-Bessel-second-kind 𝑏 1 2 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle U\left(a,b,z\right)=\frac{2z^{\frac{1}{2}-\frac{1% }{2}b}}{\Gamma\left(a\right)\Gamma\left(a-b+1\right)}\*\int_{0}^{\infty}e^{-t}% t^{a-\frac{1}{2}b-\frac{1}{2}}K_{b-1}\left(2\sqrt{zt}\right)\mathrm{d}t}} KummerU(a, b, z)=(2*(z)^((1)/(2)-(1)/(2)*b))/(GAMMA(a)*GAMMA(a - b + 1))* int(exp(- t)*(t)^(a -(1)/(2)*b -(1)/(2))* BesselK(b - 1, 2*sqrt(z*t)), t = 0..infinity) HypergeometricU[a, b, z]=Divide[2*(z)^(Divide[1,2]-Divide[1,2]*b),Gamma[a]*Gamma[a - b + 1]]* Integrate[Exp[- t]*(t)^(a -Divide[1,2]*b -Divide[1,2])* BesselK[b - 1, 2*Sqrt[z*t]], {t, 0, Infinity}] Successful Failure - Error
13.4.E8 U ⁑ ( a , b , z ) = z c - a ⁒ ∫ 0 ∞ e - z ⁒ t ⁒ t c - 1 ⁒ 𝐅 1 2 ⁑ ( a , a - b + 1 ; c ; - t ) ⁒ d t Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑧 𝑐 π‘Ž superscript subscript 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 𝑐 1 hypergeometric-bold-pFq 2 1 π‘Ž π‘Ž 𝑏 1 𝑐 𝑑 𝑑 {\displaystyle{\displaystyle U\left(a,b,z\right)=z^{c-a}\*\int_{0}^{\infty}e^{% -zt}t^{c-1}{{}_{2}{\mathbf{F}}_{1}}\left(a,a-b+1;c;-t\right)\mathrm{d}t}} KummerU(a, b, z)= (z)^(c - a)* int(exp(- z*t)*(t)^(c - 1)* hypergeom([a , a - b + 1], [c], - t), t = 0..infinity) HypergeometricU[a, b, z]= (z)^(c - a)* Integrate[Exp[- z*t]*(t)^(c - 1)* HypergeometricPFQRegularized[{a , a - b + 1}, {c}, - t], {t, 0, Infinity}] Failure Failure Skip Error
13.4.E9 𝐌 ⁑ ( a , b , z ) = Ξ“ ⁑ ( 1 + a - b ) 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a ) ⁒ ∫ 0 ( 1 + ) e z ⁒ t ⁒ t a - 1 ⁒ ( t - 1 ) b - a - 1 ⁒ d t Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 Euler-Gamma 1 π‘Ž 𝑏 2 πœ‹ imaginary-unit Euler-Gamma π‘Ž superscript subscript 0 limit-from 1 superscript 𝑒 𝑧 𝑑 superscript 𝑑 π‘Ž 1 superscript 𝑑 1 𝑏 π‘Ž 1 𝑑 {\displaystyle{\displaystyle{\mathbf{M}}\left(a,b,z\right)=\frac{\Gamma\left(1% +a-b\right)}{2\pi\mathrm{i}\Gamma\left(a\right)}\int_{0}^{(1+)}e^{zt}t^{a-1}{(% t-1)^{b-a-1}}\mathrm{d}t}} KummerM(a, b, z)/GAMMA(b)=(GAMMA(1 + a - b))/(2*Pi*I*GAMMA(a))*int(exp(z*t)*(t)^(a - 1)*(t - 1)^(b - a - 1), t = 0..(1 +)) Hypergeometric1F1Regularized[a, b, z]=Divide[Gamma[1 + a - b],2*Pi*I*Gamma[a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(t - 1)^(b - a - 1), {t, 0, (1 +)}] Error Failure - Error
13.4.E10 𝐌 ⁑ ( a , b , z ) = e - a ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 1 - a ) 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( b - a ) ⁒ ∫ 1 ( 0 + ) e z ⁒ t ⁒ t a - 1 ⁒ ( 1 - t ) b - a - 1 ⁒ d t Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 superscript 𝑒 π‘Ž πœ‹ imaginary-unit Euler-Gamma 1 π‘Ž 2 πœ‹ imaginary-unit Euler-Gamma 𝑏 π‘Ž superscript subscript 1 limit-from 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 π‘Ž 1 superscript 1 𝑑 𝑏 π‘Ž 1 𝑑 {\displaystyle{\displaystyle{\mathbf{M}}\left(a,b,z\right)=e^{-a\pi\mathrm{i}}% \frac{\Gamma\left(1-a\right)}{2\pi\mathrm{i}\Gamma\left(b-a\right)}\int_{1}^{(% 0+)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\mathrm{d}t}} KummerM(a, b, z)/GAMMA(b)= exp(- a*Pi*I)*(GAMMA(1 - a))/(2*Pi*I*GAMMA(b - a))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = 1..(0 +)) Hypergeometric1F1Regularized[a, b, z]= Exp[- a*Pi*I]*Divide[Gamma[1 - a],2*Pi*I*Gamma[b - a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, 1, (0 +)}] Error Failure - Error
13.4.E11 𝐌 ⁑ ( a , b , z ) = e - b ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 1 - a ) ⁒ Ξ“ ⁑ ( 1 + a - b ) ⁒ 1 4 ⁒ Ο€ 2 ⁒ ∫ Ξ± ( 0 + , 1 + , 0 - , 1 - ) e z ⁒ t ⁒ t a - 1 ⁒ ( 1 - t ) b - a - 1 ⁒ d t Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 superscript 𝑒 𝑏 πœ‹ imaginary-unit Euler-Gamma 1 π‘Ž Euler-Gamma 1 π‘Ž 𝑏 1 4 superscript πœ‹ 2 superscript subscript 𝛼 limit-from 0 limit-from 1 limit-from 0 limit-from 1 superscript 𝑒 𝑧 𝑑 superscript 𝑑 π‘Ž 1 superscript 1 𝑑 𝑏 π‘Ž 1 𝑑 {\displaystyle{\displaystyle{\mathbf{M}}\left(a,b,z\right)=e^{-b\pi\mathrm{i}}% \Gamma\left(1-a\right)\Gamma\left(1+a-b\right)\*\frac{1}{4\pi^{2}}\int_{\alpha% }^{(0+,1+,0-,1-)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\mathrm{d}t}} KummerM(a, b, z)/GAMMA(b)= exp(- b*Pi*I)*GAMMA(1 - a)*GAMMA(1 + a - b)*(1)/(4*(Pi)^(2))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = alpha..(0 + , 1 + , 0 - , 1 -)) Hypergeometric1F1Regularized[a, b, z]= Exp[- b*Pi*I]*Gamma[1 - a]*Gamma[1 + a - b]*Divide[1,4*(Pi)^(2)]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, \[Alpha], (0 + , 1 + , 0 - , 1 -)}] Error Failure - Error
13.4.E12 𝐌 ⁑ ( a , c , z ) = Ξ“ ⁑ ( b ) 2 ⁒ Ο€ ⁒ i ⁒ z 1 - b ⁒ ∫ - ∞ ( 0 + , 1 + ) e z ⁒ t ⁒ t - b ⁒ 𝐅 1 2 ⁑ ( a , b ; c ; 1 / t ) ⁒ d t Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑐 𝑧 Euler-Gamma 𝑏 2 πœ‹ imaginary-unit superscript 𝑧 1 𝑏 superscript subscript limit-from 0 limit-from 1 superscript 𝑒 𝑧 𝑑 superscript 𝑑 𝑏 hypergeometric-bold-pFq 2 1 π‘Ž 𝑏 𝑐 1 𝑑 𝑑 {\displaystyle{\displaystyle{\mathbf{M}}\left(a,c,z\right)=\frac{\Gamma\left(b% \right)}{2\pi\mathrm{i}}z^{1-b}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}{{}_{2}{% \mathbf{F}}_{1}}\left(a,b;c;\ifrac{1}{t}\right)\mathrm{d}t}} KummerM(a, c, z)/GAMMA(c)=(GAMMA(b))/(2*Pi*I)*(z)^(1 - b)* int(exp(z*t)*(t)^(- b)* hypergeom([a , b], [c], (1)/(t)), t = - infinity..(0 + , 1 +)) Hypergeometric1F1Regularized[a, c, z]=Divide[Gamma[b],2*Pi*I]*(z)^(1 - b)* Integrate[Exp[z*t]*(t)^(- b)* HypergeometricPFQRegularized[{a , b}, {c}, Divide[1,t]], {t, - Infinity, (0 + , 1 +)}] Error Failure - Error
13.4.E13 𝐌 ⁑ ( a , b , z ) = z 1 - b 2 ⁒ Ο€ ⁒ i ⁒ ∫ - ∞ ( 0 + , 1 + ) e z ⁒ t ⁒ t - b ⁒ ( 1 - 1 t ) - a ⁒ d t Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 superscript 𝑧 1 𝑏 2 πœ‹ imaginary-unit superscript subscript limit-from 0 limit-from 1 superscript 𝑒 𝑧 𝑑 superscript 𝑑 𝑏 superscript 1 1 𝑑 π‘Ž 𝑑 {\displaystyle{\displaystyle{\mathbf{M}}\left(a,b,z\right)=\frac{z^{1-b}}{2\pi% \mathrm{i}}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}\!\left(1-\frac{1}{t}\right)^{-% a}\mathrm{d}t}} KummerM(a, b, z)/GAMMA(b)=((z)^(1 - b))/(2*Pi*I)*int(exp(z*t)*(t)^(- b)*(1 -(1)/(t))^(- a), t = - infinity..(0 + , 1 +)) Hypergeometric1F1Regularized[a, b, z]=Divide[(z)^(1 - b),2*Pi*I]*Integrate[Exp[z*t]*(t)^(- b)*(1 -Divide[1,t])^(- a), {t, - Infinity, (0 + , 1 +)}] Error Failure - Error
13.4.E14 U ⁑ ( a , b , z ) = e - a ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 1 - a ) 2 ⁒ Ο€ ⁒ i ⁒ ∫ ∞ ( 0 + ) e - z ⁒ t ⁒ t a - 1 ⁒ ( 1 + t ) b - a - 1 ⁒ d t Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑒 π‘Ž πœ‹ imaginary-unit Euler-Gamma 1 π‘Ž 2 πœ‹ imaginary-unit superscript subscript limit-from 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 π‘Ž 1 superscript 1 𝑑 𝑏 π‘Ž 1 𝑑 {\displaystyle{\displaystyle U\left(a,b,z\right)=e^{-a\pi\mathrm{i}}\frac{% \Gamma\left(1-a\right)}{2\pi\mathrm{i}}\int_{\infty}^{(0+)}e^{-zt}t^{a-1}{(1+t% )^{b-a-1}}\mathrm{d}t}} KummerU(a, b, z)= exp(- a*Pi*I)*(GAMMA(1 - a))/(2*Pi*I)*int(exp(- z*t)*(t)^(a - 1)*(1 + t)^(b - a - 1), t = infinity..(0 +)) HypergeometricU[a, b, z]= Exp[- a*Pi*I]*Divide[Gamma[1 - a],2*Pi*I]*Integrate[Exp[- z*t]*(t)^(a - 1)*(1 + t)^(b - a - 1), {t, Infinity, (0 +)}] Error Failure - Error
13.4.E15 U ⁑ ( a , b , z ) Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( c - b + 1 ) = z 1 - c 2 ⁒ Ο€ ⁒ i ⁒ ∫ - ∞ ( 0 + ) e z ⁒ t ⁒ t - c ⁒ 𝐅 1 2 ⁑ ( a , c ; a + c - b + 1 ; 1 - 1 t ) ⁒ d t Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 Euler-Gamma 𝑐 Euler-Gamma 𝑐 𝑏 1 superscript 𝑧 1 𝑐 2 πœ‹ imaginary-unit superscript subscript limit-from 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 𝑐 hypergeometric-bold-pFq 2 1 π‘Ž 𝑐 π‘Ž 𝑐 𝑏 1 1 1 𝑑 𝑑 {\displaystyle{\displaystyle\frac{U\left(a,b,z\right)}{\Gamma\left(c\right)% \Gamma\left(c-b+1\right)}=\frac{z^{1-c}}{2\pi\mathrm{i}}\int_{-\infty}^{(0+)}e% ^{zt}t^{-c}{{}_{2}{\mathbf{F}}_{1}}\left(a,c;a+c-b+1;1-\frac{1}{t}\right)% \mathrm{d}t}} (KummerU(a, b, z))/(GAMMA(c)*GAMMA(c - b + 1))=((z)^(1 - c))/(2*Pi*I)*int(exp(z*t)*(t)^(- c)* hypergeom([a , c], [a + c - b + 1], 1 -(1)/(t)), t = - infinity..(0 +)) Divide[HypergeometricU[a, b, z],Gamma[c]*Gamma[c - b + 1]]=Divide[(z)^(1 - c),2*Pi*I]*Integrate[Exp[z*t]*(t)^(- c)* HypergeometricPFQRegularized[{a , c}, {a + c - b + 1}, 1 -Divide[1,t]], {t, - Infinity, (0 +)}] Error Failure - Error
13.4.E16 𝐌 ⁑ ( a , b , - z ) = 1 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a ) ⁒ ∫ - i ⁒ ∞ i ⁒ ∞ Ξ“ ⁑ ( a + t ) ⁒ Ξ“ ⁑ ( - t ) Ξ“ ⁑ ( b + t ) ⁒ z t ⁒ d t Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 1 2 πœ‹ imaginary-unit Euler-Gamma π‘Ž superscript subscript imaginary-unit imaginary-unit Euler-Gamma π‘Ž 𝑑 Euler-Gamma 𝑑 Euler-Gamma 𝑏 𝑑 superscript 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle{\mathbf{M}}\left(a,b,-z\right)=\frac{1}{2\pi% \mathrm{i}\Gamma\left(a\right)}\int_{-\mathrm{i}\infty}^{\mathrm{i}\infty}% \frac{\Gamma\left(a+t\right)\Gamma\left(-t\right)}{\Gamma\left(b+t\right)}z^{t% }\mathrm{d}t}} KummerM(a, b, - z)/GAMMA(b)=(1)/(2*Pi*I*GAMMA(a))*int((GAMMA(a + t)*GAMMA(- t))/(GAMMA(b + t))*(z)^(t), t = - I*infinity..I*infinity) Hypergeometric1F1Regularized[a, b, - z]=Divide[1,2*Pi*I*Gamma[a]]*Integrate[Divide[Gamma[a + t]*Gamma[- t],Gamma[b + t]]*(z)^(t), {t, - I*Infinity, I*Infinity}] Failure Failure Skip Error
13.4.E17 U ⁑ ( a , b , z ) = z - a 2 ⁒ Ο€ ⁒ i ⁒ ∫ - i ⁒ ∞ i ⁒ ∞ Ξ“ ⁑ ( a + t ) ⁒ Ξ“ ⁑ ( 1 + a - b + t ) ⁒ Ξ“ ⁑ ( - t ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( 1 + a - b ) ⁒ z - t ⁒ d t Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑧 π‘Ž 2 πœ‹ imaginary-unit superscript subscript imaginary-unit imaginary-unit Euler-Gamma π‘Ž 𝑑 Euler-Gamma 1 π‘Ž 𝑏 𝑑 Euler-Gamma 𝑑 Euler-Gamma π‘Ž Euler-Gamma 1 π‘Ž 𝑏 superscript 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle U\left(a,b,z\right)=\frac{z^{-a}}{2\pi\mathrm{i}}% \int_{-\mathrm{i}\infty}^{\mathrm{i}\infty}\frac{\Gamma\left(a+t\right)\Gamma% \left(1+a-b+t\right)\Gamma\left(-t\right)}{\Gamma\left(a\right)\Gamma\left(1+a% -b\right)}z^{-t}\mathrm{d}t}} KummerU(a, b, z)=((z)^(- a))/(2*Pi*I)*int((GAMMA(a + t)*GAMMA(1 + a - b + t)*GAMMA(- t))/(GAMMA(a)*GAMMA(1 + a - b))*(z)^(- t), t = - I*infinity..I*infinity) HypergeometricU[a, b, z]=Divide[(z)^(- a),2*Pi*I]*Integrate[Divide[Gamma[a + t]*Gamma[1 + a - b + t]*Gamma[- t],Gamma[a]*Gamma[1 + a - b]]*(z)^(- t), {t, - I*Infinity, I*Infinity}] Failure Failure Skip Error
13.4.E18 U ⁑ ( a , b , z ) = z 1 - b ⁒ e z 2 ⁒ Ο€ ⁒ i ⁒ ∫ - i ⁒ ∞ i ⁒ ∞ Ξ“ ⁑ ( b - 1 + t ) ⁒ Ξ“ ⁑ ( t ) Ξ“ ⁑ ( a + t ) ⁒ z - t ⁒ d t Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑧 1 𝑏 superscript 𝑒 𝑧 2 πœ‹ imaginary-unit superscript subscript imaginary-unit imaginary-unit Euler-Gamma 𝑏 1 𝑑 Euler-Gamma 𝑑 Euler-Gamma π‘Ž 𝑑 superscript 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle U\left(a,b,z\right)=\frac{z^{1-b}e^{z}}{2\pi% \mathrm{i}}\int_{-\mathrm{i}\infty}^{\mathrm{i}\infty}\frac{\Gamma\left(b-1+t% \right)\Gamma\left(t\right)}{\Gamma\left(a+t\right)}z^{-t}\mathrm{d}t}} KummerU(a, b, z)=((z)^(1 - b)* exp(z))/(2*Pi*I)*int((GAMMA(b - 1 + t)*GAMMA(t))/(GAMMA(a + t))*(z)^(- t), t = - I*infinity..I*infinity) HypergeometricU[a, b, z]=Divide[(z)^(1 - b)* Exp[z],2*Pi*I]*Integrate[Divide[Gamma[b - 1 + t]*Gamma[t],Gamma[a + t]]*(z)^(- t), {t, - I*Infinity, I*Infinity}] Failure Failure Skip Error
13.6.E1 M ⁑ ( a , a , z ) = e z Kummer-confluent-hypergeometric-M π‘Ž π‘Ž 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle M\left(a,a,z\right)=e^{z}}} KummerM(a, a, z)= exp(z) Hypergeometric1F1[a, a, z]= Exp[z] Successful Successful - -
13.6.E2 M ⁑ ( 1 , 2 , 2 ⁒ z ) = e z z ⁒ sinh ⁑ z Kummer-confluent-hypergeometric-M 1 2 2 𝑧 superscript 𝑒 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle M\left(1,2,2z\right)=\frac{e^{z}}{z}\sinh z}} KummerM(1, 2, 2*z)=(exp(z))/(z)*sinh(z) Hypergeometric1F1[1, 2, 2*z]=Divide[Exp[z],z]*Sinh[z] Successful Successful - -
13.6.E3 M ⁑ ( 0 , b , z ) = U ⁑ ( 0 , b , z ) Kummer-confluent-hypergeometric-M 0 𝑏 𝑧 Kummer-confluent-hypergeometric-U 0 𝑏 𝑧 {\displaystyle{\displaystyle M\left(0,b,z\right)=U\left(0,b,z\right)}} KummerM(0, b, z)= KummerU(0, b, z) Hypergeometric1F1[0, b, z]= HypergeometricU[0, b, z] Successful Successful - -
13.6.E3 U ⁑ ( 0 , b , z ) = 1 Kummer-confluent-hypergeometric-U 0 𝑏 𝑧 1 {\displaystyle{\displaystyle U\left(0,b,z\right)=1}} KummerU(0, b, z)= 1 HypergeometricU[0, b, z]= 1 Successful Successful - -
13.6.E4 U ⁑ ( a , a + 1 , z ) = z - a Kummer-confluent-hypergeometric-U π‘Ž π‘Ž 1 𝑧 superscript 𝑧 π‘Ž {\displaystyle{\displaystyle U\left(a,a+1,z\right)=z^{-a}}} KummerU(a, a + 1, z)= (z)^(- a) HypergeometricU[a, a + 1, z]= (z)^(- a) Failure Successful Successful -
13.6.E5 M ⁑ ( a , a + 1 , - z ) = e - z ⁒ M ⁑ ( 1 , a + 1 , z ) Kummer-confluent-hypergeometric-M π‘Ž π‘Ž 1 𝑧 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M 1 π‘Ž 1 𝑧 {\displaystyle{\displaystyle M\left(a,a+1,-z\right)=e^{-z}M\left(1,a+1,z\right% )}} KummerM(a, a + 1, - z)= exp(- z)*KummerM(1, a + 1, z) Hypergeometric1F1[a, a + 1, - z]= Exp[- z]*Hypergeometric1F1[1, a + 1, z] Successful Successful - -
13.6.E5 e - z ⁒ M ⁑ ( 1 , a + 1 , z ) = a ⁒ z - a ⁒ Ξ³ ⁑ ( a , z ) superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-M 1 π‘Ž 1 𝑧 π‘Ž superscript 𝑧 π‘Ž incomplete-gamma π‘Ž 𝑧 {\displaystyle{\displaystyle e^{-z}M\left(1,a+1,z\right)=az^{-a}\gamma\left(a,% z\right)}} exp(- z)*KummerM(1, a + 1, z)= a*(z)^(- a)* GAMMA(a)-GAMMA(a, z) Exp[- z]*Hypergeometric1F1[1, a + 1, z]= a*(z)^(- a)* Gamma[a, 0, z] Failure Successful
Fail
-.577162386e-1+.3563618752*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.4492199205+.4890257481*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
21.39901789+84.08885044*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
10.80783636-3.379514632*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
-
13.6.E6 U ⁑ ( a , a , z ) = z 1 - a ⁒ U ⁑ ( 1 , 2 - a , z ) Kummer-confluent-hypergeometric-U π‘Ž π‘Ž 𝑧 superscript 𝑧 1 π‘Ž Kummer-confluent-hypergeometric-U 1 2 π‘Ž 𝑧 {\displaystyle{\displaystyle U\left(a,a,z\right)=z^{1-a}U\left(1,2-a,z\right)}} KummerU(a, a, z)= (z)^(1 - a)* KummerU(1, 2 - a, z) HypergeometricU[a, a, z]= (z)^(1 - a)* HypergeometricU[1, 2 - a, z] Successful Successful - -
13.6.E6 z 1 - a ⁒ U ⁑ ( 1 , 2 - a , z ) = z 1 - a ⁒ e z ⁒ E a ⁑ ( z ) superscript 𝑧 1 π‘Ž Kummer-confluent-hypergeometric-U 1 2 π‘Ž 𝑧 superscript 𝑧 1 π‘Ž superscript 𝑒 𝑧 exponential-integral-En π‘Ž 𝑧 {\displaystyle{\displaystyle z^{1-a}U\left(1,2-a,z\right)=z^{1-a}e^{z}E_{a}% \left(z\right)}} (z)^(1 - a)* KummerU(1, 2 - a, z)= (z)^(1 - a)* exp(z)*Ei(a, z) (z)^(1 - a)* HypergeometricU[1, 2 - a, z]= (z)^(1 - a)* Exp[z]*ExpIntegralE[a, z] Successful Successful - -
13.6.E6 z 1 - a ⁒ e z ⁒ E a ⁑ ( z ) = e z ⁒ Ξ“ ⁑ ( 1 - a , z ) superscript 𝑧 1 π‘Ž superscript 𝑒 𝑧 exponential-integral-En π‘Ž 𝑧 superscript 𝑒 𝑧 incomplete-Gamma 1 π‘Ž 𝑧 {\displaystyle{\displaystyle z^{1-a}e^{z}E_{a}\left(z\right)=e^{z}\Gamma\left(% 1-a,z\right)}} (z)^(1 - a)* exp(z)*Ei(a, z)= exp(z)*GAMMA(1 - a, z) (z)^(1 - a)* Exp[z]*ExpIntegralE[a, z]= Exp[z]*Gamma[1 - a, z] Successful Successful - -
13.6.E7 M ⁑ ( 1 2 , 3 2 , - z 2 ) = Ο€ 2 ⁒ z ⁒ erf ⁑ ( z ) Kummer-confluent-hypergeometric-M 1 2 3 2 superscript 𝑧 2 πœ‹ 2 𝑧 error-function 𝑧 {\displaystyle{\displaystyle M\left(\tfrac{1}{2},\tfrac{3}{2},-z^{2}\right)=% \frac{\sqrt{\pi}}{2z}\operatorname{erf}\left(z\right)}} KummerM((1)/(2), (3)/(2), - (z)^(2))=(sqrt(Pi))/(2*z)*erf(z) Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)]=Divide[Sqrt[Pi],2*z]*Erf[z] Successful Successful - -
13.6.E8 U ⁑ ( 1 2 , 1 2 , z 2 ) = Ο€ ⁒ e z 2 ⁒ erfc ⁑ ( z ) Kummer-confluent-hypergeometric-U 1 2 1 2 superscript 𝑧 2 πœ‹ superscript 𝑒 superscript 𝑧 2 complementary-error-function 𝑧 {\displaystyle{\displaystyle U\left(\tfrac{1}{2},\tfrac{1}{2},z^{2}\right)=% \sqrt{\pi}e^{z^{2}}\operatorname{erfc}\left(z\right)}} KummerU((1)/(2), (1)/(2), (z)^(2))=sqrt(Pi)*exp((z)^(2))*erfc(z) HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)]=Sqrt[Pi]*Exp[(z)^(2)]*Erfc[z] Failure Failure
Fail
3.075886301+2.075744094*I <- {z = -2^(1/2)-I*2^(1/2)}
3.075886301-2.075744094*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[3.0758862951142576, 2.0757440991874905] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.0758862951142576, -2.0757440991874905] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.6.E9 M ⁑ ( Ξ½ + 1 2 , 2 ⁒ Ξ½ + 1 , 2 ⁒ z ) = Ξ“ ⁑ ( 1 + Ξ½ ) ⁒ e z ⁒ ( z / 2 ) - Ξ½ ⁒ I Ξ½ ⁑ ( z ) Kummer-confluent-hypergeometric-M 𝜈 1 2 2 𝜈 1 2 𝑧 Euler-Gamma 1 𝜈 superscript 𝑒 𝑧 superscript 𝑧 2 𝜈 modified-Bessel-first-kind 𝜈 𝑧 {\displaystyle{\displaystyle M\left(\nu+\tfrac{1}{2},2\nu+1,2z\right)=\Gamma% \left(1+\nu\right)e^{z}\left(\ifrac{z}{2}\right)^{-\nu}I_{\nu}\left(z\right)}} KummerM(nu +(1)/(2), 2*nu + 1, 2*z)= GAMMA(1 + nu)*exp(z)*((z)/(2))^(- nu)* BesselI(nu, z) Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z]= Gamma[1 + \[Nu]]*Exp[z]*(Divide[z,2])^(- \[Nu])* BesselI[\[Nu], z] Successful Successful - -
13.6.E10 U ⁑ ( Ξ½ + 1 2 , 2 ⁒ Ξ½ + 1 , 2 ⁒ z ) = 1 Ο€ ⁒ e z ⁒ ( 2 ⁒ z ) - Ξ½ ⁒ K Ξ½ ⁑ ( z ) Kummer-confluent-hypergeometric-U 𝜈 1 2 2 𝜈 1 2 𝑧 1 πœ‹ superscript 𝑒 𝑧 superscript 2 𝑧 𝜈 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle U\left(\nu+\tfrac{1}{2},2\nu+1,2z\right)=\frac{1}% {\sqrt{\pi}}e^{z}\left(2z\right)^{-\nu}K_{\nu}\left(z\right)}} KummerU(nu +(1)/(2), 2*nu + 1, 2*z)=(1)/(sqrt(Pi))*exp(z)*(2*z)^(- nu)* BesselK(nu, z) HypergeometricU[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z]=Divide[1,Sqrt[Pi]]*Exp[z]*(2*z)^(- \[Nu])* BesselK[\[Nu], z] Successful Successful - -
13.6.E11 U ⁑ ( 5 6 , 5 3 , 4 3 ⁒ z 3 / 2 ) = Ο€ ⁒ 3 5 / 6 ⁒ exp ⁑ ( 2 3 ⁒ z 3 / 2 ) 2 2 / 3 ⁒ z ⁒ Ai ⁑ ( z ) Kummer-confluent-hypergeometric-U 5 6 5 3 4 3 superscript 𝑧 3 2 πœ‹ superscript 3 5 6 2 3 superscript 𝑧 3 2 superscript 2 2 3 𝑧 Airy-Ai 𝑧 {\displaystyle{\displaystyle U\left(\tfrac{5}{6},\tfrac{5}{3},\tfrac{4}{3}z^{3% /2}\right)=\sqrt{\pi}\frac{3^{5/6}\exp\left(\tfrac{2}{3}z^{3/2}\right)}{2^{2/3% }z}\mathrm{Ai}\left(z\right)}} KummerU((5)/(6), (5)/(3), (4)/(3)*(z)^(3/ 2))=sqrt(Pi)*((3)^(5/ 6)* exp((2)/(3)*(z)^(3/ 2)))/((2)^(2/ 3)* z)*AiryAi(z) HypergeometricU[Divide[5,6], Divide[5,3], Divide[4,3]*(z)^(3/ 2)]=Sqrt[Pi]*Divide[(3)^(5/ 6)* Exp[Divide[2,3]*(z)^(3/ 2)],(2)^(2/ 3)* z]*AiryAi[z] Failure Failure
Fail
.1287113381-.3250284300*I <- {z = -2^(1/2)-I*2^(1/2)}
.1287113381+.3250284300*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.12871133806471044, -0.32502842978110724] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.12871133806471044, 0.32502842978110724] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.6.E12 U ⁑ ( 1 2 ⁒ a + 1 4 , 1 2 , 1 2 ⁒ z 2 ) = 2 1 2 ⁒ a + 1 4 ⁒ e 1 4 ⁒ z 2 ⁒ U ⁑ ( a , z ) Kummer-confluent-hypergeometric-U 1 2 π‘Ž 1 4 1 2 1 2 superscript 𝑧 2 superscript 2 1 2 π‘Ž 1 4 superscript 𝑒 1 4 superscript 𝑧 2 parabolic-U π‘Ž 𝑧 {\displaystyle{\displaystyle U\left(\tfrac{1}{2}a+\tfrac{1}{4},\tfrac{1}{2},% \tfrac{1}{2}z^{2}\right)=2^{\frac{1}{2}a+\frac{1}{4}}e^{\frac{1}{4}z^{2}}U% \left(a,z\right)}} KummerU((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a +(1)/(4))* exp((1)/(4)*(z)^(2))*CylinderU(a, z) HypergeometricU[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a +Divide[1,4])* Exp[Divide[1,4]*(z)^(2)]*ParabolicCylinderD[-a - 1/2, z] Failure Failure
Fail
5.265954080+2.598925556*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
16.95026320+24.47160682*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
16.95026320-24.47160682*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
5.265954080-2.598925556*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[5.265954078844872, 2.598925568096585] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[16.95026324285485, 24.471606828175403] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[16.95026324285485, -24.471606828175403] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[5.265954078844872, -2.598925568096585] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.6.E13 U ⁑ ( 1 2 ⁒ a + 3 4 , 3 2 , 1 2 ⁒ z 2 ) = 2 1 2 ⁒ a + 3 4 ⁒ e 1 4 ⁒ z 2 z ⁒ U ⁑ ( a , z ) Kummer-confluent-hypergeometric-U 1 2 π‘Ž 3 4 3 2 1 2 superscript 𝑧 2 superscript 2 1 2 π‘Ž 3 4 superscript 𝑒 1 4 superscript 𝑧 2 𝑧 parabolic-U π‘Ž 𝑧 {\displaystyle{\displaystyle U\left(\tfrac{1}{2}a+\tfrac{3}{4},\tfrac{3}{2},% \tfrac{1}{2}z^{2}\right)=2^{\frac{1}{2}a+\frac{3}{4}}\frac{e^{\frac{1}{4}z^{2}% }}{z}U\left(a,z\right)}} KummerU((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a +(3)/(4))*(exp((1)/(4)*(z)^(2)))/(z)*CylinderU(a, z) HypergeometricU[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a +Divide[3,4])*Divide[Exp[Divide[1,4]*(z)^(2)],z]*ParabolicCylinderD[-a - 1/2, z] Failure Failure
Fail
-4.996298330+.8383991143*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
3.915433252-20.40791018*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
3.915433252+20.40791018*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-4.996298330-.8383991143*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-4.996298332347829, 0.8383991090064162] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.9154332288113323, -20.407910193592727] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.9154332288113323, 20.407910193592727] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.996298332347829, -0.8383991090064162] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.6.E14 M ⁑ ( 1 2 ⁒ a + 1 4 , 1 2 , 1 2 ⁒ z 2 ) = 2 1 2 ⁒ a - 3 4 ⁒ Ξ“ ⁑ ( 1 2 ⁒ a + 3 4 ) ⁒ e 1 4 ⁒ z 2 Ο€ ⁒ ( U ⁑ ( a , z ) + U ⁑ ( a , - z ) ) Kummer-confluent-hypergeometric-M 1 2 π‘Ž 1 4 1 2 1 2 superscript 𝑧 2 superscript 2 1 2 π‘Ž 3 4 Euler-Gamma 1 2 π‘Ž 3 4 superscript 𝑒 1 4 superscript 𝑧 2 πœ‹ parabolic-U π‘Ž 𝑧 parabolic-U π‘Ž 𝑧 {\displaystyle{\displaystyle M\left(\tfrac{1}{2}a+\tfrac{1}{4},\tfrac{1}{2},% \tfrac{1}{2}z^{2}\right)=\frac{2^{\frac{1}{2}a-\frac{3}{4}}\Gamma\left(\tfrac{% 1}{2}a+\tfrac{3}{4}\right)e^{\frac{1}{4}z^{2}}}{\sqrt{\pi}}\*\left(U\left(a,z% \right)+U\left(a,-z\right)\right)}} KummerM((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2))=((2)^((1)/(2)*a -(3)/(4))* GAMMA((1)/(2)*a +(3)/(4))*exp((1)/(4)*(z)^(2)))/(sqrt(Pi))*(CylinderU(a, z)+ CylinderU(a, - z)) Hypergeometric1F1[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)]=Divide[(2)^(Divide[1,2]*a -Divide[3,4])* Gamma[Divide[1,2]*a +Divide[3,4]]*Exp[Divide[1,4]*(z)^(2)],Sqrt[Pi]]*(ParabolicCylinderD[-a - 1/2, z]+ ParabolicCylinderD[-a - 1/2, - z]) Successful Successful - -
13.6.E15 M ⁑ ( 1 2 ⁒ a + 3 4 , 3 2 , 1 2 ⁒ z 2 ) = 2 1 2 ⁒ a - 5 4 ⁒ Ξ“ ⁑ ( 1 2 ⁒ a + 1 4 ) ⁒ e 1 4 ⁒ z 2 z ⁒ Ο€ ⁒ ( U ⁑ ( a , - z ) - U ⁑ ( a , z ) ) Kummer-confluent-hypergeometric-M 1 2 π‘Ž 3 4 3 2 1 2 superscript 𝑧 2 superscript 2 1 2 π‘Ž 5 4 Euler-Gamma 1 2 π‘Ž 1 4 superscript 𝑒 1 4 superscript 𝑧 2 𝑧 πœ‹ parabolic-U π‘Ž 𝑧 parabolic-U π‘Ž 𝑧 {\displaystyle{\displaystyle M\left(\tfrac{1}{2}a+\tfrac{3}{4},\tfrac{3}{2},% \tfrac{1}{2}z^{2}\right)=\frac{2^{\frac{1}{2}a-\frac{5}{4}}\Gamma\left(\tfrac{% 1}{2}a+\tfrac{1}{4}\right)e^{\frac{1}{4}z^{2}}}{z\sqrt{\pi}}\*\left(U\left(a,-% z\right)-U\left(a,z\right)\right)}} KummerM((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2))=((2)^((1)/(2)*a -(5)/(4))* GAMMA((1)/(2)*a +(1)/(4))*exp((1)/(4)*(z)^(2)))/(z*sqrt(Pi))*(CylinderU(a, - z)- CylinderU(a, z)) Hypergeometric1F1[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)]=Divide[(2)^(Divide[1,2]*a -Divide[5,4])* Gamma[Divide[1,2]*a +Divide[1,4]]*Exp[Divide[1,4]*(z)^(2)],z*Sqrt[Pi]]*(ParabolicCylinderD[-a - 1/2, - z]- ParabolicCylinderD[-a - 1/2, z]) Successful Successful - -
13.6.E16 M ⁑ ( - n , 1 2 , z 2 ) = ( - 1 ) n ⁒ n ! ( 2 ⁒ n ) ! ⁒ H 2 ⁒ n ⁑ ( z ) Kummer-confluent-hypergeometric-M 𝑛 1 2 superscript 𝑧 2 superscript 1 𝑛 𝑛 2 𝑛 Hermite-polynomial-H 2 𝑛 𝑧 {\displaystyle{\displaystyle M\left(-n,\tfrac{1}{2},z^{2}\right)=(-1)^{n}\frac% {n!}{(2n)!}H_{2n}\left(z\right)}} KummerM(- n, (1)/(2), (z)^(2))=(- 1)^(n)*(factorial(n))/(factorial(2*n))*HermiteH(2*n, z) Hypergeometric1F1[- n, Divide[1,2], (z)^(2)]=(- 1)^(n)*Divide[(n)!,(2*n)!]*HermiteH[2*n, z] Failure Failure Successful Successful
13.6.E17 M ⁑ ( - n , 3 2 , z 2 ) = ( - 1 ) n ⁒ n ! ( 2 ⁒ n + 1 ) ! ⁒ 2 ⁒ z ⁒ H 2 ⁒ n + 1 ⁑ ( z ) Kummer-confluent-hypergeometric-M 𝑛 3 2 superscript 𝑧 2 superscript 1 𝑛 𝑛 2 𝑛 1 2 𝑧 Hermite-polynomial-H 2 𝑛 1 𝑧 {\displaystyle{\displaystyle M\left(-n,\tfrac{3}{2},z^{2}\right)=(-1)^{n}\frac% {n!}{(2n+1)!2z}H_{2n+1}\left(z\right)}} KummerM(- n, (3)/(2), (z)^(2))=(- 1)^(n)*(factorial(n))/(factorial(2*n + 1)*2*z)*HermiteH(2*n + 1, z) Hypergeometric1F1[- n, Divide[3,2], (z)^(2)]=(- 1)^(n)*Divide[(n)!,(2*n + 1)!*2*z]*HermiteH[2*n + 1, z] Failure Failure Successful Successful
13.6.E18 U ⁑ ( 1 2 - 1 2 ⁒ n , 3 2 , z 2 ) = 2 - n ⁒ z - 1 ⁒ H n ⁑ ( z ) Kummer-confluent-hypergeometric-U 1 2 1 2 𝑛 3 2 superscript 𝑧 2 superscript 2 𝑛 superscript 𝑧 1 Hermite-polynomial-H 𝑛 𝑧 {\displaystyle{\displaystyle U\left(\tfrac{1}{2}-\tfrac{1}{2}n,\tfrac{3}{2},z^% {2}\right)=2^{-n}z^{-1}H_{n}\left(z\right)}} KummerU((1)/(2)-(1)/(2)*n, (3)/(2), (z)^(2))= (2)^(- n)* (z)^(- 1)* HermiteH(n, z) HypergeometricU[Divide[1,2]-Divide[1,2]*n, Divide[3,2], (z)^(2)]= (2)^(- n)* (z)^(- 1)* HermiteH[n, z] Failure Failure
Fail
2.474873733+3.181980514*I <- {z = -2^(1/2)-I*2^(1/2), n = 2}
2.474873733-3.181980514*I <- {z = -2^(1/2)+I*2^(1/2), n = 2}
Fail
Complex[2.4748737341529163, 3.181980515339464] <- {Rule[n, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.474873734152916, -3.181980515339464] <- {Rule[n, 2], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.6.E19 U ⁑ ( - n , Ξ± + 1 , z ) = ( - 1 ) n ⁒ ( Ξ± + 1 ) n ⁒ M ⁑ ( - n , Ξ± + 1 , z ) Kummer-confluent-hypergeometric-U 𝑛 𝛼 1 𝑧 superscript 1 𝑛 Pochhammer 𝛼 1 𝑛 Kummer-confluent-hypergeometric-M 𝑛 𝛼 1 𝑧 {\displaystyle{\displaystyle U\left(-n,\alpha+1,z\right)=(-1)^{n}{\left(\alpha% +1\right)_{n}}M\left(-n,\alpha+1,z\right)}} KummerU(- n, alpha + 1, z)=(- 1)^(n)* pochhammer(alpha + 1, n)*KummerM(- n, alpha + 1, z) HypergeometricU[- n, \[Alpha]+ 1, z]=(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*Hypergeometric1F1[- n, \[Alpha]+ 1, z] Failure Failure Successful Successful
13.6.E20 U ⁑ ( - n , z - n + 1 , a ) = ( - z ) n ⁒ M ⁑ ( - n , z - n + 1 , a ) Kummer-confluent-hypergeometric-U 𝑛 𝑧 𝑛 1 π‘Ž Pochhammer 𝑧 𝑛 Kummer-confluent-hypergeometric-M 𝑛 𝑧 𝑛 1 π‘Ž {\displaystyle{\displaystyle U\left(-n,z-n+1,a\right)={\left(-z\right)_{n}}M% \left(-n,z-n+1,a\right)}} KummerU(- n, z - n + 1, a)= pochhammer(- z, n)*KummerM(- n, z - n + 1, a) HypergeometricU[- n, z - n + 1, a]= Pochhammer[- z, n]*Hypergeometric1F1[- n, z - n + 1, a] Failure Failure Skip Successful
13.6.E21 U ⁑ ( a , b , z ) = z - a ⁒ F 0 2 ⁑ ( a , a - b + 1 ; - ; - z - 1 ) Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑧 π‘Ž Gauss-hypergeometric-pFq 2 0 π‘Ž π‘Ž 𝑏 1 superscript 𝑧 1 {\displaystyle{\displaystyle U\left(a,b,z\right)=z^{-a}{{}_{2}F_{0}}\left(a,a-% b+1;-;-z^{-1}\right)}} KummerU(a, b, z)= (z)^(- a)* hypergeom([a , a - b + 1], [-], - (z)^(- 1)) HypergeometricU[a, b, z]= (z)^(- a)* HypergeometricPFQ[{a , a - b + 1}, {-}, - (z)^(- 1)] Error Failure - Error
13.7.E4 U ⁑ ( a , b , z ) = z - a ⁒ βˆ‘ s = 0 n - 1 ( a ) s ⁒ ( a - b + 1 ) s s ! ⁒ ( - z ) - s + Ξ΅ n ⁒ ( z ) Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑧 π‘Ž superscript subscript 𝑠 0 𝑛 1 Pochhammer π‘Ž 𝑠 Pochhammer π‘Ž 𝑏 1 𝑠 𝑠 superscript 𝑧 𝑠 subscript πœ€ 𝑛 𝑧 {\displaystyle{\displaystyle U\left(a,b,z\right)=z^{-a}\sum_{s=0}^{n-1}\frac{{% \left(a\right)_{s}}{\left(a-b+1\right)_{s}}}{s!}(-z)^{-s}+\varepsilon_{n}(z)}} KummerU(a, b, z)= (z)^(- a)* sum((pochhammer(a, s)*pochhammer(a - b + 1, s))/(factorial(s))*(- z)^(- s), s = 0..n - 1)+ varepsilon[n]*(z) HypergeometricU[a, b, z]= (z)^(- a)* Sum[Divide[Pochhammer[a, s]*Pochhammer[a - b + 1, s],(s)!]*(- z)^(- s), {s, 0, n - 1}]+ Subscript[\[CurlyEpsilon], n]*(z) Failure Failure Skip Skip
13.7#Ex3 Ο‡ ⁒ ( n ) = Ο€ ⁒ Ξ“ ⁑ ( 1 2 ⁒ n + 1 ) / Ξ“ ⁑ ( 1 2 ⁒ n + 1 2 ) πœ’ 𝑛 πœ‹ Euler-Gamma 1 2 𝑛 1 Euler-Gamma 1 2 𝑛 1 2 {\displaystyle{\displaystyle\chi(n)=\sqrt{\pi}\Gamma\left(\tfrac{1}{2}n+1% \right)/\Gamma\left(\tfrac{1}{2}n+\tfrac{1}{2}\right)}} chi*(n)=sqrt(Pi)*GAMMA((1)/(2)*n + 1)/ GAMMA((1)/(2)*n +(1)/(2)) \[Chi]*(n)=Sqrt[Pi]*Gamma[Divide[1,2]*n + 1]/ Gamma[Divide[1,2]*n +Divide[1,2]] Failure Failure
Fail
-.156582765+1.414213562*I <- {chi = 2^(1/2)+I*2^(1/2), n = 1}
.828427124+2.828427124*I <- {chi = 2^(1/2)+I*2^(1/2), n = 2}
1.886446196+4.242640686*I <- {chi = 2^(1/2)+I*2^(1/2), n = 3}
-.156582765-1.414213562*I <- {chi = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Fail
Complex[-0.1565827644218014, 1.4142135623730951] <- {Rule[n, 1], Rule[Ο‡, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.8284271247461903, 2.8284271247461903] <- {Rule[n, 2], Rule[Ο‡, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.8864461969269408, 4.242640687119286] <- {Rule[n, 3], Rule[Ο‡, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.1565827644218014, -1.4142135623730951] <- {Rule[n, 1], Rule[Ο‡, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.7.E10 U ⁑ ( a , b , z ) = z - a ⁒ βˆ‘ s = 0 n - 1 ( a ) s ⁒ ( a - b + 1 ) s s ! ⁒ ( - z ) - s + R n ⁒ ( a , b , z ) Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑧 π‘Ž superscript subscript 𝑠 0 𝑛 1 Pochhammer π‘Ž 𝑠 Pochhammer π‘Ž 𝑏 1 𝑠 𝑠 superscript 𝑧 𝑠 subscript 𝑅 𝑛 π‘Ž 𝑏 𝑧 {\displaystyle{\displaystyle U\left(a,b,z\right)=z^{-a}\sum_{s=0}^{n-1}\frac{{% \left(a\right)_{s}}{\left(a-b+1\right)_{s}}}{s!}(-z)^{-s}+R_{n}(a,b,z)}} KummerU(a, b, z)= (z)^(- a)* sum((pochhammer(a, s)*pochhammer(a - b + 1, s))/(factorial(s))*(- z)^(- s), s = 0..n - 1)+ R[n]*(a , b , z) HypergeometricU[a, b, z]= (z)^(- a)* Sum[Divide[Pochhammer[a, s]*Pochhammer[a - b + 1, s],(s)!]*(- z)^(- s), {s, 0, n - 1}]+ Subscript[R, n]*(a , b , z) Failure Failure Skip Error
13.8.E3 ( e t - 1 ) a - 1 ⁒ exp ⁑ ( t + z ⁒ ( 1 - e - t ) ) = βˆ‘ s = 0 ∞ q s ⁒ ( z , a ) ⁒ t s + a - 1 superscript superscript 𝑒 𝑑 1 π‘Ž 1 𝑑 𝑧 1 superscript 𝑒 𝑑 superscript subscript 𝑠 0 subscript π‘ž 𝑠 𝑧 π‘Ž superscript 𝑑 𝑠 π‘Ž 1 {\displaystyle{\displaystyle\left(e^{t}-1\right)^{a-1}\exp\left(t+z(1-e^{-t})% \right)=\sum_{s=0}^{\infty}q_{s}(z,a)t^{s+a-1}}} (exp(t)- 1)^(a - 1)* exp(t + z*(1 - exp(- t)))= sum(q[s]*(z , a)* (t)^(s + a - 1), s = 0..infinity) (Exp[t]- 1)^(a - 1)* Exp[t + z*(1 - Exp[- t])]= Sum[Subscript[q, s]*(z , a)* (t)^(s + a - 1), {s, 0, Infinity}] Error Failure - Error
13.8#Ex1 p k ⁒ ( z ) = βˆ‘ s = 0 k ( k s ) ⁒ ( 1 - b + s ) k - s ⁒ z s ⁒ c k + s ⁒ ( z ) subscript 𝑝 π‘˜ 𝑧 superscript subscript 𝑠 0 π‘˜ binomial π‘˜ 𝑠 Pochhammer 1 𝑏 𝑠 π‘˜ 𝑠 superscript 𝑧 𝑠 subscript 𝑐 π‘˜ 𝑠 𝑧 {\displaystyle{\displaystyle p_{k}(z)=\sum_{s=0}^{k}\genfrac{(}{)}{0.0pt}{}{k}% {s}{\left(1-b+s\right)_{k-s}}z^{s}c_{k+s}(z)}} p[k]*(z)= sum(binomial(k,s)*pochhammer(1 - b + s, k - s)*(z)^(s)* c[k + s]*(z), s = 0..k) Subscript[p, k]*(z)= Sum[Binomial[k,s]*Pochhammer[1 - b + s, k - s]*(z)^(s)* Subscript[c, k + s]*(z), {s, 0, k}] Failure Failure Skip Skip
13.8#Ex2 q k ⁒ ( z ) = βˆ‘ s = 0 k ( k s ) ⁒ ( 2 - b + s ) k - s ⁒ z s ⁒ c k + s + 1 ⁒ ( z ) subscript π‘ž π‘˜ 𝑧 superscript subscript 𝑠 0 π‘˜ binomial π‘˜ 𝑠 Pochhammer 2 𝑏 𝑠 π‘˜ 𝑠 superscript 𝑧 𝑠 subscript 𝑐 π‘˜ 𝑠 1 𝑧 {\displaystyle{\displaystyle q_{k}(z)=\sum_{s=0}^{k}\genfrac{(}{)}{0.0pt}{}{k}% {s}{\left(2-b+s\right)_{k-s}}z^{s}c_{k+s+1}(z)}} q[k]*(z)= sum(binomial(k,s)*pochhammer(2 - b + s, k - s)*(z)^(s)* c[k + s + 1]*(z), s = 0..k) Subscript[q, k]*(z)= Sum[Binomial[k,s]*Pochhammer[2 - b + s, k - s]*(z)^(s)* Subscript[c, k + s + 1]*(z), {s, 0, k}] Failure Failure Skip Skip
13.8.E16 ( k + 1 ) ⁒ c k + 1 ⁒ ( z ) + βˆ‘ s = 0 k ( b ⁒ B s + 1 ( s + 1 ) ! + z ⁒ ( s + 1 ) ⁒ B s + 2 ( s + 2 ) ! ) ⁒ c k - s ⁒ ( z ) = 0 π‘˜ 1 subscript 𝑐 π‘˜ 1 𝑧 superscript subscript 𝑠 0 π‘˜ 𝑏 Bernoulli-number-B 𝑠 1 𝑠 1 𝑧 𝑠 1 Bernoulli-number-B 𝑠 2 𝑠 2 subscript 𝑐 π‘˜ 𝑠 𝑧 0 {\displaystyle{\displaystyle(k+1)c_{k+1}(z)+\sum_{s=0}^{k}\left(\frac{bB_{s+1}% }{(s+1)!}+\frac{z(s+1)B_{s+2}}{(s+2)!}\right)c_{k-s}(z)=0}} (k + 1)* c[k + 1]*(z)+ sum(((b*bernoulli(s + 1))/(factorial(s + 1))+(z*(s + 1)* bernoulli(s + 2))/(factorial(s + 2)))* c[k - s]*(z), s = 0..k)= 0 (k + 1)* Subscript[c, k + 1]*(z)+ Sum[(Divide[b*BernoulliB[s + 1],(s + 1)!]+Divide[z*(s + 1)* BernoulliB[s + 2],(s + 2)!])* Subscript[c, k - s]*(z), {s, 0, k}]= 0 Failure Failure Skip Successful
13.8#Ex3 βˆ‚ ⁑ f βˆ‚ ⁑ t = ( b ⁒ ( 1 t - 1 e t - 1 ) - z ⁒ ( 1 t 2 - e t ( e t - 1 ) 2 ) ) ⁒ f partial-derivative 𝑓 𝑑 𝑏 1 𝑑 1 superscript 𝑒 𝑑 1 𝑧 1 superscript 𝑑 2 superscript 𝑒 𝑑 superscript superscript 𝑒 𝑑 1 2 𝑓 {\displaystyle{\displaystyle\frac{\partial f}{\partial t}=\left(b\left(\frac{1% }{t}-\frac{1}{e^{t}-1}\right)-z\left(\frac{1}{t^{2}}-\frac{e^{t}}{\left(e^{t}-% 1\right)^{2}}\right)\right)f}} diff(f, t)=(b*((1)/(t)-(1)/(exp(t)- 1))- z*((1)/((t)^(2))-(exp(t))/((exp(t)- 1)^(2))))* f D[f, t]=(b*(Divide[1,t]-Divide[1,Exp[t]- 1])- z*(Divide[1,(t)^(2)]-Divide[Exp[t],(Exp[t]- 1)^(2)]))* f Failure Failure
Fail
-.3721020438-1.177486994*I <- {b = 2^(1/2)+I*2^(1/2), f = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.1143697985-1.565636569*I <- {b = 2^(1/2)+I*2^(1/2), f = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.5025193734-1.823368814*I <- {b = 2^(1/2)+I*2^(1/2), f = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.7602516187-1.435219239*I <- {b = 2^(1/2)+I*2^(1/2), f = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.9.E1 p ⁒ ( a , b ) = ⌈ - a βŒ‰ 𝑝 π‘Ž 𝑏 π‘Ž {\displaystyle{\displaystyle p(a,b)=\left\lceil-a\right\rceil}} p*(a , b)= ceil(- a) p*(a , b)= Ceiling[- a] Failure Failure Error Error
13.9.E4 p ⁒ ( a , b ) = ⌊ - 1 2 ⁒ b βŒ‹ - ⌊ - 1 2 ⁒ ( b + 1 ) βŒ‹ 𝑝 π‘Ž 𝑏 1 2 𝑏 1 2 𝑏 1 {\displaystyle{\displaystyle p(a,b)=\left\lfloor-\tfrac{1}{2}b\right\rfloor-% \left\lfloor-\tfrac{1}{2}(b+1)\right\rfloor}} p*(a , b)= floor(-(1)/(2)*b)- floor(-(1)/(2)*(b + 1)) p*(a , b)= Floor[-Divide[1,2]*b]- Floor[-Divide[1,2]*(b + 1)] Failure Failure Error Error
13.9.E5 p ⁒ ( a , b ) = ⌈ - a βŒ‰ - ⌈ - b βŒ‰ 𝑝 π‘Ž 𝑏 π‘Ž 𝑏 {\displaystyle{\displaystyle p(a,b)=\left\lceil-a\right\rceil-\left\lceil-b% \right\rceil}} p*(a , b)= ceil(- a)- ceil(- b) p*(a , b)= Ceiling[- a]- Ceiling[- b] Failure Failure Skip Error
13.9.E6 p ⁒ ( a , b ) = ⌊ 1 2 ⁒ ( ⌈ - b βŒ‰ - ⌈ - a βŒ‰ + 1 ) βŒ‹ - ⌊ 1 2 ⁒ ( ⌈ - b βŒ‰ - ⌈ - a βŒ‰ ) βŒ‹ 𝑝 π‘Ž 𝑏 1 2 𝑏 π‘Ž 1 1 2 𝑏 π‘Ž {\displaystyle{\displaystyle p(a,b)=\left\lfloor\tfrac{1}{2}\left(\left\lceil-% b\right\rceil-\left\lceil-a\right\rceil+1\right)\right\rfloor-\left\lfloor% \tfrac{1}{2}\left(\left\lceil-b\right\rceil-\left\lceil-a\right\rceil\right)% \right\rfloor}} p*(a , b)= floor((1)/(2)*(ceil(- b)- ceil(- a)+ 1))- floor((1)/(2)*(ceil(- b)- ceil(- a))) p*(a , b)= Floor[Divide[1,2]*(Ceiling[- b]- Ceiling[- a]+ 1)]- Floor[Divide[1,2]*(Ceiling[- b]- Ceiling[- a])] Failure Failure Skip Error
13.9.E11 T ⁒ ( a , b ) = ⌊ - a βŒ‹ + 1 𝑇 π‘Ž 𝑏 π‘Ž 1 {\displaystyle{\displaystyle T(a,b)=\left\lfloor-a\right\rfloor+1}} T*(a , b)= floor(- a)+ 1 T*(a , b)= Floor[- a]+ 1 Error Failure - Error
13.9.E12 T ⁒ ( a , b ) = ⌊ - a βŒ‹ 𝑇 π‘Ž 𝑏 π‘Ž {\displaystyle{\displaystyle T(a,b)=\left\lfloor-a\right\rfloor}} T*(a , b)= floor(- a) T*(a , b)= Floor[- a] Error Failure - Error
13.9.E14 P ⁒ ( a , b ) = ⌈ b - a - 1 βŒ‰ 𝑃 π‘Ž 𝑏 𝑏 π‘Ž 1 {\displaystyle{\displaystyle P(a,b)=\left\lceil b-a-1\right\rceil}} P*(a , b)= ceil(b - a - 1) P*(a , b)= Ceiling[b - a - 1] Failure Failure Skip Error
13.10.E1 ∫ 𝐌 ⁑ ( a , b , z ) ⁒ d z = 1 a - 1 ⁒ 𝐌 ⁑ ( a - 1 , b - 1 , z ) Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 𝑧 1 π‘Ž 1 Kummer-confluent-hypergeometric-bold-M π‘Ž 1 𝑏 1 𝑧 {\displaystyle{\displaystyle\int{\mathbf{M}}\left(a,b,z\right)\mathrm{d}z=% \frac{1}{a-1}{\mathbf{M}}\left(a-1,b-1,z\right)}} int(KummerM(a, b, z)/GAMMA(b), z)=(1)/(a - 1)*KummerM(a - 1, b - 1, z)/GAMMA(b - 1) Integrate[Hypergeometric1F1Regularized[a, b, z], z]=Divide[1,a - 1]*Hypergeometric1F1Regularized[a - 1, b - 1, z] Successful Failure - Skip
13.10.E2 ∫ U ⁑ ( a , b , z ) ⁒ d z = - 1 a - 1 ⁒ U ⁑ ( a - 1 , b - 1 , z ) Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 𝑧 1 π‘Ž 1 Kummer-confluent-hypergeometric-U π‘Ž 1 𝑏 1 𝑧 {\displaystyle{\displaystyle\int U\left(a,b,z\right)\mathrm{d}z=-\frac{1}{a-1}% U\left(a-1,b-1,z\right)}} int(KummerU(a, b, z), z)= -(1)/(a - 1)*KummerU(a - 1, b - 1, z) Integrate[HypergeometricU[a, b, z], z]= -Divide[1,a - 1]*HypergeometricU[a - 1, b - 1, z] Successful Successful - -
13.10.E3 ∫ 0 ∞ e - z ⁒ t ⁒ t b - 1 ⁒ 𝐌 ⁑ ( a , c , k ⁒ t ) ⁒ d t = Ξ“ ⁑ ( b ) ⁒ z - b ⁒ 𝐅 1 2 ⁑ ( a , b ; c ; k / z ) superscript subscript 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 𝑏 1 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑐 π‘˜ 𝑑 𝑑 Euler-Gamma 𝑏 superscript 𝑧 𝑏 hypergeometric-bold-pFq 2 1 π‘Ž 𝑏 𝑐 π‘˜ 𝑧 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-zt}t^{b-1}{\mathbf{M}}\left(a% ,c,kt\right)\mathrm{d}t=\Gamma\left(b\right)z^{-b}{{}_{2}{\mathbf{F}}_{1}}% \left(a,b;c;\ifrac{k}{z}\right)}} int(exp(- z*t)*(t)^(b - 1)* KummerM(a, c, k*t)/GAMMA(c), t = 0..infinity)= GAMMA(b)*(z)^(- b)* hypergeom([a , b], [c], (k)/(z)) Integrate[Exp[- z*t]*(t)^(b - 1)* Hypergeometric1F1Regularized[a, c, k*t], {t, 0, Infinity}]= Gamma[b]*(z)^(- b)* HypergeometricPFQRegularized[{a , b}, {c}, Divide[k,z]] Failure Failure Skip Error
13.10.E4 ∫ 0 ∞ e - z ⁒ t ⁒ t b - 1 ⁒ 𝐌 ⁑ ( a , b , t ) ⁒ d t = z - b ⁒ ( 1 - 1 z ) - a superscript subscript 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 𝑏 1 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑑 𝑑 superscript 𝑧 𝑏 superscript 1 1 𝑧 π‘Ž {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-zt}t^{b-1}{\mathbf{M}}\left(a% ,b,t\right)\mathrm{d}t=z^{-b}\left(1-\frac{1}{z}\right)^{-a}}} int(exp(- z*t)*(t)^(b - 1)* KummerM(a, b, t)/GAMMA(b), t = 0..infinity)= (z)^(- b)*(1 -(1)/(z))^(- a) Integrate[Exp[- z*t]*(t)^(b - 1)* Hypergeometric1F1Regularized[a, b, t], {t, 0, Infinity}]= (z)^(- b)*(1 -Divide[1,z])^(- a) Failure Failure Skip Error
13.10.E5 ∫ 0 ∞ e - t ⁒ t b - 1 ⁒ 𝐌 ⁑ ( a , c , t ) ⁒ d t = Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - a - b ) Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) superscript subscript 0 superscript 𝑒 𝑑 superscript 𝑑 𝑏 1 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑐 𝑑 𝑑 Euler-Gamma 𝑏 Euler-Gamma 𝑐 π‘Ž 𝑏 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-t}t^{b-1}{\mathbf{M}}\left(a,% c,t\right)\mathrm{d}t=\frac{\Gamma\left(b\right)\Gamma\left(c-a-b\right)}{% \Gamma\left(c-a\right)\Gamma\left(c-b\right)}}} int(exp(- t)*(t)^(b - 1)* KummerM(a, c, t)/GAMMA(c), t = 0..infinity)=(GAMMA(b)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b)) Integrate[Exp[- t]*(t)^(b - 1)* Hypergeometric1F1Regularized[a, c, t], {t, 0, Infinity}]=Divide[Gamma[b]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]] Failure Failure Skip Error
13.10.E6 ∫ 0 ∞ e - z ⁒ t - t 2 ⁒ t 2 ⁒ b - 2 ⁒ 𝐌 ⁑ ( a , b , t 2 ) ⁒ d t = 1 2 ⁒ Ο€ - 1 2 ⁒ Ξ“ ⁑ ( b - 1 2 ) ⁒ U ⁑ ( b - 1 2 , a + 1 2 , 1 4 ⁒ z 2 ) superscript subscript 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 2 superscript 𝑑 2 𝑏 2 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 superscript 𝑑 2 𝑑 1 2 superscript πœ‹ 1 2 Euler-Gamma 𝑏 1 2 Kummer-confluent-hypergeometric-U 𝑏 1 2 π‘Ž 1 2 1 4 superscript 𝑧 2 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-zt-t^{2}}t^{2b-2}{\mathbf{M}}% \left(a,b,t^{2}\right)\mathrm{d}t=\tfrac{1}{2}\pi^{-\frac{1}{2}}\Gamma\left(b-% \tfrac{1}{2}\right)U\left(b-\tfrac{1}{2},a+\tfrac{1}{2},\tfrac{1}{4}z^{2}% \right)}} int(exp(- z*t - (t)^(2))*(t)^(2*b - 2)* KummerM(a, b, (t)^(2))/GAMMA(b), t = 0..infinity)=(1)/(2)*(Pi)^(-(1)/(2))* GAMMA(b -(1)/(2))*KummerU(b -(1)/(2), a +(1)/(2), (1)/(4)*(z)^(2)) Integrate[Exp[- z*t - (t)^(2)]*(t)^(2*b - 2)* Hypergeometric1F1Regularized[a, b, (t)^(2)], {t, 0, Infinity}]=Divide[1,2]*(Pi)^(-Divide[1,2])* Gamma[b -Divide[1,2]]*HypergeometricU[b -Divide[1,2], a +Divide[1,2], Divide[1,4]*(z)^(2)] Failure Failure Skip Error
13.10.E7 ∫ 0 ∞ e - z ⁒ t ⁒ t b - 1 ⁒ U ⁑ ( a , c , t ) ⁒ d t = Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( b - c + 1 ) ⁒ z - b ⁒ 𝐅 1 2 ⁑ ( a , b ; a + b - c + 1 ; 1 - 1 z ) superscript subscript 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 𝑏 1 Kummer-confluent-hypergeometric-U π‘Ž 𝑐 𝑑 𝑑 Euler-Gamma 𝑏 Euler-Gamma 𝑏 𝑐 1 superscript 𝑧 𝑏 hypergeometric-bold-pFq 2 1 π‘Ž 𝑏 π‘Ž 𝑏 𝑐 1 1 1 𝑧 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-zt}t^{b-1}U\left(a,c,t\right)% \mathrm{d}t=\Gamma\left(b\right)\Gamma\left(b-c+1\right)\*z^{-b}{{}_{2}{% \mathbf{F}}_{1}}\left(a,b;a+b-c+1;1-\frac{1}{z}\right)}} int(exp(- z*t)*(t)^(b - 1)* KummerU(a, c, t), t = 0..infinity)= GAMMA(b)*GAMMA(b - c + 1)* (z)^(- b)* hypergeom([a , b], [a + b - c + 1], 1 -(1)/(z)) Integrate[Exp[- z*t]*(t)^(b - 1)* HypergeometricU[a, c, t], {t, 0, Infinity}]= Gamma[b]*Gamma[b - c + 1]* (z)^(- b)* HypergeometricPFQRegularized[{a , b}, {a + b - c + 1}, 1 -Divide[1,z]] Failure Failure Skip Error
13.10.E8 1 2 ⁒ Ο€ ⁒ i ⁒ ∫ - ∞ ( 0 + ) e t ⁒ z ⁒ t - a ⁒ 𝐌 ⁑ ( a , b , y / t ) ⁒ d t = 1 Ξ“ ⁑ ( a ) ⁒ z 1 2 ⁒ ( 2 ⁒ a - b - 1 ) ⁒ y 1 2 ⁒ ( 1 - b ) ⁒ I b - 1 ⁑ ( 2 ⁒ z ⁒ y ) 1 2 πœ‹ imaginary-unit superscript subscript limit-from 0 superscript 𝑒 𝑑 𝑧 superscript 𝑑 π‘Ž Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑦 𝑑 𝑑 1 Euler-Gamma π‘Ž superscript 𝑧 1 2 2 π‘Ž 𝑏 1 superscript 𝑦 1 2 1 𝑏 modified-Bessel-first-kind 𝑏 1 2 𝑧 𝑦 {\displaystyle{\displaystyle\frac{1}{2\pi\mathrm{i}}\int_{-\infty}^{(0+)}e^{tz% }t^{-a}{\mathbf{M}}\left(a,b,\ifrac{y}{t}\right)\mathrm{d}t=\frac{1}{\Gamma% \left(a\right)}z^{\frac{1}{2}(2a-b-1)}y^{\frac{1}{2}(1-b)}I_{b-1}\left(2\sqrt{% zy}\right)}} (1)/(2*Pi*I)*int(exp(t*z)*(t)^(- a)* KummerM(a, b, (y)/(t))/GAMMA(b), t = - infinity..(0 +))=(1)/(GAMMA(a))*(z)^((1)/(2)*(2*a - b - 1))* (y)^((1)/(2)*(1 - b))* BesselI(b - 1, 2*sqrt(z*y)) Divide[1,2*Pi*I]*Integrate[Exp[t*z]*(t)^(- a)* Hypergeometric1F1Regularized[a, b, Divide[y,t]], {t, - Infinity, (0 +)}]=Divide[1,Gamma[a]]*(z)^(Divide[1,2]*(2*a - b - 1))* (y)^(Divide[1,2]*(1 - b))* BesselI[b - 1, 2*Sqrt[z*y]] Error Failure - Error
13.10.E9 1 2 ⁒ Ο€ ⁒ i ⁒ ∫ - ∞ ( 0 + ) e t ⁒ z ⁒ t - a ⁒ U ⁑ ( a , b , y / t ) ⁒ d t = 2 ⁒ z 1 2 ⁒ ( 2 ⁒ a - b - 1 ) ⁒ y 1 2 ⁒ ( 1 - b ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( a - b + 1 ) ⁒ K b - 1 ⁑ ( 2 ⁒ z ⁒ y ) 1 2 πœ‹ imaginary-unit superscript subscript limit-from 0 superscript 𝑒 𝑑 𝑧 superscript 𝑑 π‘Ž Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑦 𝑑 𝑑 2 superscript 𝑧 1 2 2 π‘Ž 𝑏 1 superscript 𝑦 1 2 1 𝑏 Euler-Gamma π‘Ž Euler-Gamma π‘Ž 𝑏 1 modified-Bessel-second-kind 𝑏 1 2 𝑧 𝑦 {\displaystyle{\displaystyle\frac{1}{2\pi\mathrm{i}}\int_{-\infty}^{(0+)}e^{tz% }t^{-a}U\left(a,b,\ifrac{y}{t}\right)\mathrm{d}t=\frac{2z^{\frac{1}{2}(2a-b-1)% }y^{\frac{1}{2}(1-b)}}{\Gamma\left(a\right)\Gamma\left(a-b+1\right)}K_{b-1}% \left(2\sqrt{zy}\right)}} (1)/(2*Pi*I)*int(exp(t*z)*(t)^(- a)* KummerU(a, b, (y)/(t)), t = - infinity..(0 +))=(2*(z)^((1)/(2)*(2*a - b - 1))* (y)^((1)/(2)*(1 - b)))/(GAMMA(a)*GAMMA(a - b + 1))*BesselK(b - 1, 2*sqrt(z*y)) Divide[1,2*Pi*I]*Integrate[Exp[t*z]*(t)^(- a)* HypergeometricU[a, b, Divide[y,t]], {t, - Infinity, (0 +)}]=Divide[2*(z)^(Divide[1,2]*(2*a - b - 1))* (y)^(Divide[1,2]*(1 - b)),Gamma[a]*Gamma[a - b + 1]]*BesselK[b - 1, 2*Sqrt[z*y]] Error Failure - Error
13.10.E10 ∫ 0 ∞ t Ξ» - 1 ⁒ 𝐌 ⁑ ( a , b , - t ) ⁒ d t = Ξ“ ⁑ ( Ξ» ) ⁒ Ξ“ ⁑ ( a - Ξ» ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b - Ξ» ) superscript subscript 0 superscript 𝑑 πœ† 1 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑑 𝑑 Euler-Gamma πœ† Euler-Gamma π‘Ž πœ† Euler-Gamma π‘Ž Euler-Gamma 𝑏 πœ† {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\lambda-1}{\mathbf{M}}\left(a,% b,-t\right)\mathrm{d}t=\frac{\Gamma\left(\lambda\right)\Gamma\left(a-\lambda% \right)}{\Gamma\left(a\right)\Gamma\left(b-\lambda\right)}}} int((t)^(lambda - 1)* KummerM(a, b, - t)/GAMMA(b), t = 0..infinity)=(GAMMA(lambda)*GAMMA(a - lambda))/(GAMMA(a)*GAMMA(b - lambda)) Integrate[(t)^(\[Lambda]- 1)* Hypergeometric1F1Regularized[a, b, - t], {t, 0, Infinity}]=Divide[Gamma[\[Lambda]]*Gamma[a - \[Lambda]],Gamma[a]*Gamma[b - \[Lambda]]] Successful Failure - Error
13.10.E11 ∫ 0 ∞ t Ξ» - 1 ⁒ U ⁑ ( a , b , t ) ⁒ d t = Ξ“ ⁑ ( Ξ» ) ⁒ Ξ“ ⁑ ( a - Ξ» ) ⁒ Ξ“ ⁑ ( Ξ» - b + 1 ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( a - b + 1 ) superscript subscript 0 superscript 𝑑 πœ† 1 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑑 𝑑 Euler-Gamma πœ† Euler-Gamma π‘Ž πœ† Euler-Gamma πœ† 𝑏 1 Euler-Gamma π‘Ž Euler-Gamma π‘Ž 𝑏 1 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\lambda-1}U\left(a,b,t\right)% \mathrm{d}t=\frac{\Gamma\left(\lambda\right)\Gamma\left(a-\lambda\right)\Gamma% \left(\lambda-b+1\right)}{\Gamma\left(a\right)\Gamma\left(a-b+1\right)}}} int((t)^(lambda - 1)* KummerU(a, b, t), t = 0..infinity)=(GAMMA(lambda)*GAMMA(a - lambda)*GAMMA(lambda - b + 1))/(GAMMA(a)*GAMMA(a - b + 1)) Integrate[(t)^(\[Lambda]- 1)* HypergeometricU[a, b, t], {t, 0, Infinity}]=Divide[Gamma[\[Lambda]]*Gamma[a - \[Lambda]]*Gamma[\[Lambda]- b + 1],Gamma[a]*Gamma[a - b + 1]] Successful Failure - Error
13.10.E12 ∫ 0 ∞ cos ⁑ ( 2 ⁒ x ⁒ t ) ⁒ 𝐌 ⁑ ( a , b , - t 2 ) ⁒ d t = Ο€ 2 ⁒ Ξ“ ⁑ ( a ) ⁒ x 2 ⁒ a - 1 ⁒ e - x 2 ⁒ U ⁑ ( b - 1 2 , a + 1 2 , x 2 ) superscript subscript 0 2 π‘₯ 𝑑 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 superscript 𝑑 2 𝑑 πœ‹ 2 Euler-Gamma π‘Ž superscript π‘₯ 2 π‘Ž 1 superscript 𝑒 superscript π‘₯ 2 Kummer-confluent-hypergeometric-U 𝑏 1 2 π‘Ž 1 2 superscript π‘₯ 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\cos\left(2xt\right){\mathbf{M}}% \left(a,b,-t^{2}\right)\mathrm{d}t=\frac{\sqrt{\pi}}{2\Gamma\left(a\right)}x^{% 2a-1}e^{-x^{2}}U\left(b-\tfrac{1}{2},a+\tfrac{1}{2},x^{2}\right)}} int(cos(2*x*t)*KummerM(a, b, - (t)^(2))/GAMMA(b), t = 0..infinity)=(sqrt(Pi))/(2*GAMMA(a))*(x)^(2*a - 1)* exp(- (x)^(2))*KummerU(b -(1)/(2), a +(1)/(2), (x)^(2)) Integrate[Cos[2*x*t]*Hypergeometric1F1Regularized[a, b, - (t)^(2)], {t, 0, Infinity}]=Divide[Sqrt[Pi],2*Gamma[a]]*(x)^(2*a - 1)* Exp[- (x)^(2)]*HypergeometricU[b -Divide[1,2], a +Divide[1,2], (x)^(2)] Failure Failure Skip Error
13.10.E13 ∫ 0 ∞ e - t ⁒ t b - 1 - 1 2 ⁒ Ξ½ ⁒ 𝐌 ⁑ ( a , b , t ) ⁒ J Ξ½ ⁑ ( 2 ⁒ x ⁒ t ) ⁒ d t = x - a + 1 2 ⁒ Ξ½ ⁒ e - x ⁒ 𝐌 ⁑ ( Ξ½ - b + 1 , Ξ½ - a + 1 , x ) superscript subscript 0 superscript 𝑒 𝑑 superscript 𝑑 𝑏 1 1 2 𝜈 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑑 Bessel-J 𝜈 2 π‘₯ 𝑑 𝑑 superscript π‘₯ π‘Ž 1 2 𝜈 superscript 𝑒 π‘₯ Kummer-confluent-hypergeometric-bold-M 𝜈 𝑏 1 𝜈 π‘Ž 1 π‘₯ {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-t}t^{b-1-\frac{1}{2}\nu}{% \mathbf{M}}\left(a,b,t\right)J_{\nu}\left(2\sqrt{xt}\right)\mathrm{d}t=x^{-a+% \frac{1}{2}\nu}e^{-x}{\mathbf{M}}\left(\nu-b+1,\nu-a+1,x\right)}} int(exp(- t)*(t)^(b - 1 -(1)/(2)*nu)* KummerM(a, b, t)/GAMMA(b)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)= (x)^(- a +(1)/(2)*nu)* exp(- x)*KummerM(nu - b + 1, nu - a + 1, x)/GAMMA(nu - a + 1) Integrate[Exp[- t]*(t)^(b - 1 -Divide[1,2]*\[Nu])* Hypergeometric1F1Regularized[a, b, t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]= (x)^(- a +Divide[1,2]*\[Nu])* Exp[- x]*Hypergeometric1F1Regularized[\[Nu]- b + 1, \[Nu]- a + 1, x] Failure Failure Skip Error
13.10.E14 ∫ 0 ∞ e - t ⁒ t 1 2 ⁒ Ξ½ ⁒ 𝐌 ⁑ ( a , b , t ) ⁒ J Ξ½ ⁑ ( 2 ⁒ x ⁒ t ) ⁒ d t = x 1 2 ⁒ Ξ½ ⁒ e - x Ξ“ ⁑ ( b - a ) ⁒ U ⁑ ( a , a - b + Ξ½ + 2 , x ) superscript subscript 0 superscript 𝑒 𝑑 superscript 𝑑 1 2 𝜈 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑑 Bessel-J 𝜈 2 π‘₯ 𝑑 𝑑 superscript π‘₯ 1 2 𝜈 superscript 𝑒 π‘₯ Euler-Gamma 𝑏 π‘Ž Kummer-confluent-hypergeometric-U π‘Ž π‘Ž 𝑏 𝜈 2 π‘₯ {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-t}t^{\frac{1}{2}\nu}{\mathbf{% M}}\left(a,b,t\right)J_{\nu}\left(2\sqrt{xt}\right)\mathrm{d}t=\frac{x^{\frac{% 1}{2}\nu}e^{-x}}{\Gamma\left(b-a\right)}U\left(a,a-b+\nu+2,x\right)}} int(exp(- t)*(t)^((1)/(2)*nu)* KummerM(a, b, t)/GAMMA(b)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=((x)^((1)/(2)*nu)* exp(- x))/(GAMMA(b - a))*KummerU(a, a - b + nu + 2, x) Integrate[Exp[- t]*(t)^(Divide[1,2]*\[Nu])* Hypergeometric1F1Regularized[a, b, t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[(x)^(Divide[1,2]*\[Nu])* Exp[- x],Gamma[b - a]]*HypergeometricU[a, a - b + \[Nu]+ 2, x] Failure Failure Skip Error
13.10.E15 ∫ 0 ∞ t 1 2 ⁒ Ξ½ ⁒ U ⁑ ( a , b , t ) ⁒ J Ξ½ ⁑ ( 2 ⁒ x ⁒ t ) ⁒ d t = Ξ“ ⁑ ( Ξ½ - b + 2 ) Ξ“ ⁑ ( a ) ⁒ x 1 2 ⁒ Ξ½ ⁒ U ⁑ ( Ξ½ - b + 2 , Ξ½ - a + 2 , x ) superscript subscript 0 superscript 𝑑 1 2 𝜈 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑑 Bessel-J 𝜈 2 π‘₯ 𝑑 𝑑 Euler-Gamma 𝜈 𝑏 2 Euler-Gamma π‘Ž superscript π‘₯ 1 2 𝜈 Kummer-confluent-hypergeometric-U 𝜈 𝑏 2 𝜈 π‘Ž 2 π‘₯ {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\frac{1}{2}\nu}U\left(a,b,t% \right)J_{\nu}\left(2\sqrt{xt}\right)\mathrm{d}t=\frac{\Gamma\left(\nu-b+2% \right)}{\Gamma\left(a\right)}x^{\frac{1}{2}\nu}U\left(\nu-b+2,\nu-a+2,x\right% )}} int((t)^((1)/(2)*nu)* KummerU(a, b, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=(GAMMA(nu - b + 2))/(GAMMA(a))*(x)^((1)/(2)*nu)* KummerU(nu - b + 2, nu - a + 2, x) Integrate[(t)^(Divide[1,2]*\[Nu])* HypergeometricU[a, b, t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[Gamma[\[Nu]- b + 2],Gamma[a]]*(x)^(Divide[1,2]*\[Nu])* HypergeometricU[\[Nu]- b + 2, \[Nu]- a + 2, x] Failure Failure Skip Error
13.10.E16 ∫ 0 ∞ e - t ⁒ t 1 2 ⁒ Ξ½ ⁒ U ⁑ ( a , b , t ) ⁒ J Ξ½ ⁑ ( 2 ⁒ x ⁒ t ) ⁒ d t = Ξ“ ⁑ ( Ξ½ - b + 2 ) ⁒ x 1 2 ⁒ Ξ½ ⁒ e - x ⁒ 𝐌 ⁑ ( a , a - b + Ξ½ + 2 , x ) superscript subscript 0 superscript 𝑒 𝑑 superscript 𝑑 1 2 𝜈 Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑑 Bessel-J 𝜈 2 π‘₯ 𝑑 𝑑 Euler-Gamma 𝜈 𝑏 2 superscript π‘₯ 1 2 𝜈 superscript 𝑒 π‘₯ Kummer-confluent-hypergeometric-bold-M π‘Ž π‘Ž 𝑏 𝜈 2 π‘₯ {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-t}t^{\frac{1}{2}\nu}U\left(a,% b,t\right)J_{\nu}\left(2\sqrt{xt}\right)\mathrm{d}t=\Gamma\left(\nu-b+2\right)% x^{\frac{1}{2}\nu}e^{-x}{\mathbf{M}}\left(a,a-b+\nu+2,x\right)}} int(exp(- t)*(t)^((1)/(2)*nu)* KummerU(a, b, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)= GAMMA(nu - b + 2)*(x)^((1)/(2)*nu)* exp(- x)*KummerM(a, a - b + nu + 2, x)/GAMMA(a - b + nu + 2) Integrate[Exp[- t]*(t)^(Divide[1,2]*\[Nu])* HypergeometricU[a, b, t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]= Gamma[\[Nu]- b + 2]*(x)^(Divide[1,2]*\[Nu])* Exp[- x]*Hypergeometric1F1Regularized[a, a - b + \[Nu]+ 2, x] Failure Failure Skip Error
13.11.E1 M ⁑ ( a , b , z ) = Ξ“ ⁑ ( a - 1 2 ) ⁒ e 1 2 ⁒ z ⁒ ( 1 4 ⁒ z ) 1 2 - a ⁒ βˆ‘ s = 0 ∞ ( 2 ⁒ a - 1 ) s ⁒ ( 2 ⁒ a - b ) s ( b ) s ⁒ s ! ⁒ ( a - 1 2 + s ) ⁒ I a - 1 2 + s ⁑ ( 1 2 ⁒ z ) Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 Euler-Gamma π‘Ž 1 2 superscript 𝑒 1 2 𝑧 superscript 1 4 𝑧 1 2 π‘Ž superscript subscript 𝑠 0 Pochhammer 2 π‘Ž 1 𝑠 Pochhammer 2 π‘Ž 𝑏 𝑠 Pochhammer 𝑏 𝑠 𝑠 π‘Ž 1 2 𝑠 modified-Bessel-first-kind π‘Ž 1 2 𝑠 1 2 𝑧 {\displaystyle{\displaystyle M\left(a,b,z\right)=\Gamma\left(a-\tfrac{1}{2}% \right)e^{\frac{1}{2}z}\left(\tfrac{1}{4}z\right)^{\frac{1}{2}-a}\*\sum_{s=0}^% {\infty}\frac{{\left(2a-1\right)_{s}}{\left(2a-b\right)_{s}}}{{\left(b\right)_% {s}}s!}\*\left(a-\tfrac{1}{2}+s\right)\*I_{a-\frac{1}{2}+s}\left(\tfrac{1}{2}z% \right)}} KummerM(a, b, z)= GAMMA(a -(1)/(2))*exp((1)/(2)*z)*((1)/(4)*z)^((1)/(2)- a)* sum((pochhammer(2*a - 1, s)*pochhammer(2*a - b, s))/(pochhammer(b, s)*factorial(s))*(a -(1)/(2)+ s)* BesselI(a -(1)/(2)+ s, (1)/(2)*z), s = 0..infinity) Hypergeometric1F1[a, b, z]= Gamma[a -Divide[1,2]]*Exp[Divide[1,2]*z]*(Divide[1,4]*z)^(Divide[1,2]- a)* Sum[Divide[Pochhammer[2*a - 1, s]*Pochhammer[2*a - b, s],Pochhammer[b, s]*(s)!]*(a -Divide[1,2]+ s)* BesselI[a -Divide[1,2]+ s, Divide[1,2]*z], {s, 0, Infinity}] Error Failure - Skip
13.12.E1 M ⁑ ( a , b , z ) ⁒ M ⁑ ( - a , - b , - z ) + a ⁒ ( a - b ) ⁒ z 2 b 2 ⁒ ( 1 - b 2 ) ⁒ M ⁑ ( 1 + a , 2 + b , z ) ⁒ M ⁑ ( 1 - a , 2 - b , - z ) = 1 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 π‘Ž π‘Ž 𝑏 superscript 𝑧 2 superscript 𝑏 2 1 superscript 𝑏 2 Kummer-confluent-hypergeometric-M 1 π‘Ž 2 𝑏 𝑧 Kummer-confluent-hypergeometric-M 1 π‘Ž 2 𝑏 𝑧 1 {\displaystyle{\displaystyle M\left(a,b,z\right)M\left(-a,-b,-z\right)+\frac{a% (a-b)z^{2}}{b^{2}(1-b^{2})}M\left(1+a,2+b,z\right)M\left(1-a,2-b,-z\right)=1}} KummerM(a, b, z)*KummerM(- a, - b, - z)+(a*(a - b)* (z)^(2))/((b)^(2)*(1 - (b)^(2)))*KummerM(1 + a, 2 + b, z)*KummerM(1 - a, 2 - b, - z)= 1 Hypergeometric1F1[a, b, z]*Hypergeometric1F1[- a, - b, - z]+Divide[a*(a - b)* (z)^(2),(b)^(2)*(1 - (b)^(2))]*Hypergeometric1F1[1 + a, 2 + b, z]*Hypergeometric1F1[1 - a, 2 - b, - z]= 1 Failure Failure Successful Skip
13.14.E1 d 2 W d z 2 + ( - 1 4 + ΞΊ z + 1 4 - ΞΌ 2 z 2 ) ⁒ W = 0 derivative π‘Š 𝑧 2 1 4 πœ… 𝑧 1 4 superscript πœ‡ 2 superscript 𝑧 2 π‘Š 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}W}{{\mathrm{d}z}^{2}}+\left(% -\frac{1}{4}+\frac{\kappa}{z}+\frac{\frac{1}{4}-\mu^{2}}{z^{2}}\right)W=0}} diff(W, [z$(2)])+(-(1)/(4)+(kappa)/(z)+((1)/(4)- (mu)^(2))/((z)^(2)))* W = 0 D[W, {z, 2}]+(-Divide[1,4]+Divide[\[Kappa],z]+Divide[Divide[1,4]- (\[Mu])^(2),(z)^(2)])* W = 0 Failure Failure
Fail
-.2651650428-.4419417382*I <- {W = 2^(1/2)+I*2^(1/2), kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.4419417381+2.563262081*I <- {W = 2^(1/2)+I*2^(1/2), kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-3.093592167-3.270368862*I <- {W = 2^(1/2)+I*2^(1/2), kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
2.386485386-.2651650429*I <- {W = 2^(1/2)+I*2^(1/2), kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.2651650429449553, -0.44194173824159216] <- {Rule[W, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.5632620818012346, 2.3864853865045976] <- {Rule[W, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.2651650429449553, -0.44194173824159216] <- {Rule[W, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.5632620818012346, 2.3864853865045976] <- {Rule[W, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.14.E2 M ΞΊ , ΞΌ ⁑ ( z ) = e - 1 2 ⁒ z ⁒ z 1 2 + ΞΌ ⁒ M ⁑ ( 1 2 + ΞΌ - ΞΊ , 1 + 2 ⁒ ΞΌ , z ) Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 πœ‡ Kummer-confluent-hypergeometric-M 1 2 πœ‡ πœ… 1 2 πœ‡ 𝑧 {\displaystyle{\displaystyle M_{\kappa,\mu}\left(z\right)=e^{-\frac{1}{2}z}z^{% \frac{1}{2}+\mu}M\left(\tfrac{1}{2}+\mu-\kappa,1+2\mu,z\right)}} WhittakerM(kappa, mu, z)= exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* KummerM((1)/(2)+ mu - kappa, 1 + 2*mu, z) WhittakerM[\[Kappa], \[Mu], z]= Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Hypergeometric1F1[Divide[1,2]+ \[Mu]- \[Kappa], 1 + 2*\[Mu], z] Successful Successful - -
13.14.E3 W ΞΊ , ΞΌ ⁑ ( z ) = e - 1 2 ⁒ z ⁒ z 1 2 + ΞΌ ⁒ U ⁑ ( 1 2 + ΞΌ - ΞΊ , 1 + 2 ⁒ ΞΌ , z ) Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 πœ‡ Kummer-confluent-hypergeometric-U 1 2 πœ‡ πœ… 1 2 πœ‡ 𝑧 {\displaystyle{\displaystyle W_{\kappa,\mu}\left(z\right)=e^{-\frac{1}{2}z}z^{% \frac{1}{2}+\mu}U\left(\tfrac{1}{2}+\mu-\kappa,1+2\mu,z\right)}} WhittakerW(kappa, mu, z)= exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* KummerU((1)/(2)+ mu - kappa, 1 + 2*mu, z) WhittakerW[\[Kappa], \[Mu], z]= Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* HypergeometricU[Divide[1,2]+ \[Mu]- \[Kappa], 1 + 2*\[Mu], z] Successful Successful - -
13.14.E4 M ⁑ ( a , b , z ) = e 1 2 ⁒ z ⁒ z - 1 2 ⁒ b ⁒ M 1 2 ⁒ b - a , 1 2 ⁒ b - 1 2 ⁑ ( z ) Kummer-confluent-hypergeometric-M π‘Ž 𝑏 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 𝑏 Whittaker-confluent-hypergeometric-M 1 2 𝑏 π‘Ž 1 2 𝑏 1 2 𝑧 {\displaystyle{\displaystyle M\left(a,b,z\right)=e^{\frac{1}{2}z}z^{-\frac{1}{% 2}b}M_{\frac{1}{2}b-a,\frac{1}{2}b-\frac{1}{2}}\left(z\right)}} KummerM(a, b, z)= exp((1)/(2)*z)*(z)^(-(1)/(2)*b)* WhittakerM((1)/(2)*b - a, (1)/(2)*b -(1)/(2), z) Hypergeometric1F1[a, b, z]= Exp[Divide[1,2]*z]*(z)^(-Divide[1,2]*b)* WhittakerM[Divide[1,2]*b - a, Divide[1,2]*b -Divide[1,2], z] Successful Successful - -
13.14.E5 U ⁑ ( a , b , z ) = e 1 2 ⁒ z ⁒ z - 1 2 ⁒ b ⁒ W 1 2 ⁒ b - a , 1 2 ⁒ b - 1 2 ⁑ ( z ) Kummer-confluent-hypergeometric-U π‘Ž 𝑏 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 𝑏 Whittaker-confluent-hypergeometric-W 1 2 𝑏 π‘Ž 1 2 𝑏 1 2 𝑧 {\displaystyle{\displaystyle U\left(a,b,z\right)=e^{\frac{1}{2}z}z^{-\frac{1}{% 2}b}W_{\frac{1}{2}b-a,\frac{1}{2}b-\frac{1}{2}}\left(z\right)}} KummerU(a, b, z)= exp((1)/(2)*z)*(z)^(-(1)/(2)*b)* WhittakerW((1)/(2)*b - a, (1)/(2)*b -(1)/(2), z) HypergeometricU[a, b, z]= Exp[Divide[1,2]*z]*(z)^(-Divide[1,2]*b)* WhittakerW[Divide[1,2]*b - a, Divide[1,2]*b -Divide[1,2], z] Successful Successful - -
13.14.E6 M ΞΊ , ΞΌ ⁑ ( z ) = e - 1 2 ⁒ z ⁒ z 1 2 + ΞΌ ⁒ βˆ‘ s = 0 ∞ ( 1 2 + ΞΌ - ΞΊ ) s ( 1 + 2 ⁒ ΞΌ ) s ⁒ s ! ⁒ z s Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 πœ‡ superscript subscript 𝑠 0 Pochhammer 1 2 πœ‡ πœ… 𝑠 Pochhammer 1 2 πœ‡ 𝑠 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle M_{\kappa,\mu}\left(z\right)=e^{-\frac{1}{2}z}z^{% \frac{1}{2}+\mu}\sum_{s=0}^{\infty}\frac{{\left(\frac{1}{2}+\mu-\kappa\right)_% {s}}}{{\left(1+2\mu\right)_{s}}s!}z^{s}}} WhittakerM(kappa, mu, z)= exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* sum((pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(z)^(s), s = 0..infinity) WhittakerM[\[Kappa], \[Mu], z]= Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Sum[Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(z)^(s), {s, 0, Infinity}] Successful Successful - -
13.14.E6 e - 1 2 ⁒ z ⁒ z 1 2 + ΞΌ ⁒ βˆ‘ s = 0 ∞ ( 1 2 + ΞΌ - ΞΊ ) s ( 1 + 2 ⁒ ΞΌ ) s ⁒ s ! ⁒ z s = z 1 2 + ΞΌ ⁒ βˆ‘ n = 0 ∞ F 1 2 ⁑ ( - n , 1 2 + ΞΌ - ΞΊ 1 + 2 ⁒ ΞΌ ; 2 ) ⁒ ( - 1 2 ⁒ z ) n n ! superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 πœ‡ superscript subscript 𝑠 0 Pochhammer 1 2 πœ‡ πœ… 𝑠 Pochhammer 1 2 πœ‡ 𝑠 𝑠 superscript 𝑧 𝑠 superscript 𝑧 1 2 πœ‡ superscript subscript 𝑛 0 Gauss-hypergeometric-F-as-2F1 𝑛 1 2 πœ‡ πœ… 1 2 πœ‡ 2 superscript 1 2 𝑧 𝑛 𝑛 {\displaystyle{\displaystyle e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\sum_{s=0}^{% \infty}\frac{{\left(\frac{1}{2}+\mu-\kappa\right)_{s}}}{{\left(1+2\mu\right)_{% s}}s!}z^{s}=z^{\frac{1}{2}+\mu}\sum_{n=0}^{\infty}{{}_{2}F_{1}}\left({-n,% \tfrac{1}{2}+\mu-\kappa\atop 1+2\mu};2\right)\frac{\left(-\tfrac{1}{2}z\right)% ^{n}}{n!}}} exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* sum((pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(z)^(s), s = 0..infinity)= (z)^((1)/(2)+ mu)* sum(hypergeom([- n ,(1)/(2)+ mu - kappa], [1 + 2*mu], 2)*((-(1)/(2)*z)^(n))/(factorial(n)), n = 0..infinity) Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Sum[Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(z)^(s), {s, 0, Infinity}]= (z)^(Divide[1,2]+ \[Mu])* Sum[HypergeometricPFQ[{- n ,Divide[1,2]+ \[Mu]- \[Kappa]}, {1 + 2*\[Mu]}, 2]*Divide[(-Divide[1,2]*z)^(n),(n)!], {n, 0, Infinity}] Failure Failure Skip Skip
13.14.E7 ( - 1 2 ⁒ n - ΞΊ ) n + 1 ( n + 1 ) ! ⁒ M ΞΊ , 1 2 ⁒ ( n + 1 ) ⁑ ( z ) = e - 1 2 ⁒ z ⁒ z - 1 2 ⁒ n ⁒ βˆ‘ s = n + 1 ∞ ( - 1 2 ⁒ n - ΞΊ ) s Ξ“ ⁑ ( s - n ) ⁒ s ! ⁒ z s Pochhammer 1 2 𝑛 πœ… 𝑛 1 𝑛 1 Whittaker-confluent-hypergeometric-M πœ… 1 2 𝑛 1 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 𝑛 superscript subscript 𝑠 𝑛 1 Pochhammer 1 2 𝑛 πœ… 𝑠 Euler-Gamma 𝑠 𝑛 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle\frac{{\left(-\frac{1}{2}n-\kappa\right)_{n+1}}}{(% n+1)!}M_{\kappa,\frac{1}{2}(n+1)}\left(z\right)=e^{-\frac{1}{2}z}z^{-\frac{1}{% 2}n}\sum_{s=n+1}^{\infty}\frac{{\left(-\frac{1}{2}n-\kappa\right)_{s}}}{\Gamma% \left(s-n\right)s!}z^{s}}} (pochhammer(-(1)/(2)*n - kappa, n + 1))/(factorial(n + 1))*WhittakerM(kappa, (1)/(2)*(n + 1), z)= exp(-(1)/(2)*z)*(z)^(-(1)/(2)*n)* sum((pochhammer(-(1)/(2)*n - kappa, s))/(GAMMA(s - n)*factorial(s))*(z)^(s), s = n + 1..infinity) Divide[Pochhammer[-Divide[1,2]*n - \[Kappa], n + 1],(n + 1)!]*WhittakerM[\[Kappa], Divide[1,2]*(n + 1), z]= Exp[-Divide[1,2]*z]*(z)^(-Divide[1,2]*n)* Sum[Divide[Pochhammer[-Divide[1,2]*n - \[Kappa], s],Gamma[s - n]*(s)!]*(z)^(s), {s, n + 1, Infinity}] Successful Successful - -
13.14.E10 M ΞΊ , ΞΌ ⁑ ( z ⁒ e + Ο€ ⁒ i ) = + i ⁒ e + ΞΌ ⁒ Ο€ ⁒ i ⁒ M - ΞΊ , ΞΌ ⁑ ( z ) Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 𝑒 πœ‹ imaginary-unit imaginary-unit superscript 𝑒 πœ‡ πœ‹ imaginary-unit Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 {\displaystyle{\displaystyle M_{\kappa,\mu}\left(ze^{+\pi\mathrm{i}}\right)=+% \mathrm{i}e^{+\mu\pi\mathrm{i}}M_{-\kappa,\mu}\left(z\right)}} WhittakerM(kappa, mu, z*exp(+ Pi*I))= + I*exp(+ mu*Pi*I)*WhittakerM(- kappa, mu, z) WhittakerM[\[Kappa], \[Mu], z*Exp[+ Pi*I]]= + I*Exp[+ \[Mu]*Pi*I]*WhittakerM[- \[Kappa], \[Mu], z] Failure Failure
Fail
-170.7233278-52.66673233*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
5.614866181-.1961391743*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-253.7484615-500.5136150*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
4338.981046-2443.697049*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-170.7233281137989, -52.66673241325771] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-253.74846171929062, -500.51361552060405] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-27.726012706068122, -46.132000771477266] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-52.00289849528395, 25.53895774298251] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.14.E10 M ΞΊ , ΞΌ ⁑ ( z ⁒ e - Ο€ ⁒ i ) = - i ⁒ e - ΞΌ ⁒ Ο€ ⁒ i ⁒ M - ΞΊ , ΞΌ ⁑ ( z ) Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 𝑒 πœ‹ imaginary-unit imaginary-unit superscript 𝑒 πœ‡ πœ‹ imaginary-unit Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 {\displaystyle{\displaystyle M_{\kappa,\mu}\left(ze^{-\pi\mathrm{i}}\right)=-% \mathrm{i}e^{-\mu\pi\mathrm{i}}M_{-\kappa,\mu}\left(z\right)}} WhittakerM(kappa, mu, z*exp(- Pi*I))= - I*exp(- mu*Pi*I)*WhittakerM(- kappa, mu, z) WhittakerM[\[Kappa], \[Mu], z*Exp[- Pi*I]]= - I*Exp[- \[Mu]*Pi*I]*WhittakerM[- \[Kappa], \[Mu], z] Failure Failure
Fail
-1336.329299+1299.001005*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
4031.109392-3933.985765*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-156.7833633-147.7697510*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
17.75799389-.6206610589*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-1336.3293012153467, 1299.0010073665994] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-156.7833635417097, -147.76975126580453] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.6144703540529446, -5.648276978861849] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[13.567482135419885, 36.936365970710575] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ΞΊ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ΞΌ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.14.E11 M ΞΊ , ΞΌ ⁑ ( z ⁒ e 2 ⁒ m ⁒ Ο€ ⁒ i ) = ( - 1 ) m ⁒ e 2 ⁒ m ⁒ ΞΌ ⁒ Ο€ ⁒ i ⁒ M ΞΊ , ΞΌ ⁑ ( z ) Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 𝑒 2 π‘š πœ‹ imaginary-unit superscript 1 π‘š superscript 𝑒 2 π‘š πœ‡ πœ‹ imaginary-unit Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 {\displaystyle{\displaystyle M_{\kappa,\mu}\left(ze^{2m\pi\mathrm{i}}\right)=(% -1)^{m}e^{2m\mu\pi\mathrm{i}}M_{\kappa,\mu}\left(z\right)}} WhittakerM(kappa, mu, z*exp(2*m*Pi*I))=(- 1)^(m)* exp(2*m*mu*Pi*I)*WhittakerM(kappa, mu, z) WhittakerM[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]]=(- 1)^(m)* Exp[2*m*\[Mu]*Pi*I]*WhittakerM[\[Kappa], \[Mu], z] Failure Failure
Fail
-.1992563118+.7533300151*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 1}
-.1992264798+.7534336021*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 2}
-.1992264621+.7534336186*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 3}
5.614866174-.1961391695*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), m = 1}
... skip entries to safe data
Skip
13.14.E12 W ΞΊ , ΞΌ ⁑ ( z ⁒ e 2 ⁒ m ⁒ Ο€ ⁒ i ) = ( - 1 ) m + 1 ⁒ 2 ⁒ Ο€ ⁒ i ⁒ sin ⁑ ( 2 ⁒ Ο€ ⁒ ΞΌ ⁒ m ) Ξ“ ⁑ ( 1 2 - ΞΌ - ΞΊ ) ⁒ Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ sin ⁑ ( 2 ⁒ Ο€ ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) + ( - 1 ) m ⁒ e - 2 ⁒ m ⁒ ΞΌ ⁒ Ο€ ⁒ i ⁒ W ΞΊ , ΞΌ ⁑ ( z ) Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 𝑒 2 π‘š πœ‹ imaginary-unit superscript 1 π‘š 1 2 πœ‹ imaginary-unit 2 πœ‹ πœ‡ π‘š Euler-Gamma 1 2 πœ‡ πœ… Euler-Gamma 1 2 πœ‡ 2 πœ‹ πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 1 π‘š superscript 𝑒 2 π‘š πœ‡ πœ‹ imaginary-unit Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 {\displaystyle{\displaystyle W_{\kappa,\mu}\left(ze^{2m\pi\mathrm{i}}\right)=% \frac{(-1)^{m+1}2\pi\mathrm{i}\sin\left(2\pi\mu m\right)}{\Gamma\left(\frac{1}% {2}-\mu-\kappa\right)\Gamma\left(1+2\mu\right)\sin\left(2\pi\mu\right)}M_{% \kappa,\mu}\left(z\right)+(-1)^{m}e^{-2m\mu\pi\mathrm{i}}W_{\kappa,\mu}\left(z% \right)}} WhittakerW(kappa, mu, z*exp(2*m*Pi*I))=((- 1)^(m + 1)* 2*Pi*I*sin(2*Pi*mu*m))/(GAMMA((1)/(2)- mu - kappa)*GAMMA(1 + 2*mu)*sin(2*Pi*mu))*WhittakerM(kappa, mu, z)+(- 1)^(m)* exp(- 2*m*mu*Pi*I)*WhittakerW(kappa, mu, z) WhittakerW[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]]=Divide[(- 1)^(m + 1)* 2*Pi*I*Sin[2*Pi*\[Mu]*m],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]*Gamma[1 + 2*\[Mu]]*Sin[2*Pi*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]+(- 1)^(m)* Exp[- 2*m*\[Mu]*Pi*I]*WhittakerW[\[Kappa], \[Mu], z] Failure Failure
Fail
4888.973639-5758.546940*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 1}
51701593.85-17588478.17*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 2}
.3859873546e12+.827147997e11*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 3}
339.062648-414.78030*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), m = 1}
... skip entries to safe data
Skip
13.14.E13 ( - 1 ) m ⁒ W ΞΊ , ΞΌ ⁑ ( z ⁒ e 2 ⁒ m ⁒ Ο€ ⁒ i ) = - e 2 ⁒ ΞΊ ⁒ Ο€ ⁒ i ⁒ sin ⁑ ( 2 ⁒ m ⁒ ΞΌ ⁒ Ο€ ) + sin ⁑ ( ( 2 ⁒ m - 2 ) ⁒ ΞΌ ⁒ Ο€ ) sin ⁑ ( 2 ⁒ ΞΌ ⁒ Ο€ ) ⁒ W ΞΊ , ΞΌ ⁑ ( z ) - sin ⁑ ( 2 ⁒ m ⁒ ΞΌ ⁒ Ο€ ) ⁒ 2 ⁒ Ο€ ⁒ i ⁒ e ΞΊ ⁒ Ο€ ⁒ i sin ⁑ ( 2 ⁒ ΞΌ ⁒ Ο€ ) ⁒ Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ Ξ“ ⁑ ( 1 2 - ΞΌ - ΞΊ ) ⁒ W - ΞΊ , ΞΌ ⁑ ( z ⁒ e Ο€ ⁒ i ) superscript 1 π‘š Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 𝑒 2 π‘š πœ‹ imaginary-unit superscript 𝑒 2 πœ… πœ‹ imaginary-unit 2 π‘š πœ‡ πœ‹ 2 π‘š 2 πœ‡ πœ‹ 2 πœ‡ πœ‹ Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 2 π‘š πœ‡ πœ‹ 2 πœ‹ imaginary-unit superscript 𝑒 πœ… πœ‹ imaginary-unit 2 πœ‡ πœ‹ Euler-Gamma 1 2 πœ‡ πœ… Euler-Gamma 1 2 πœ‡ πœ… Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 𝑒 πœ‹ imaginary-unit {\displaystyle{\displaystyle(-1)^{m}W_{\kappa,\mu}\left(ze^{2m\pi\mathrm{i}}% \right)=-\frac{e^{2\kappa\pi\mathrm{i}}\sin\left(2m\mu\pi\right)+\sin\left((2m% -2)\mu\pi\right)}{\sin\left(2\mu\pi\right)}W_{\kappa,\mu}\left(z\right)-\frac{% \sin\left(2m\mu\pi\right)2\pi\mathrm{i}e^{\kappa\pi\mathrm{i}}}{\sin\left(2\mu% \pi\right)\Gamma\left(\frac{1}{2}+\mu-\kappa\right)\Gamma\left(\frac{1}{2}-\mu% -\kappa\right)}W_{-\kappa,\mu}\left(ze^{\pi\mathrm{i}}\right)}} (- 1)^(m)* WhittakerW(kappa, mu, z*exp(2*m*Pi*I))= -(exp(2*kappa*Pi*I)*sin(2*m*mu*Pi)+ sin((2*m - 2)* mu*Pi))/(sin(2*mu*Pi))*WhittakerW(kappa, mu, z)-(sin(2*m*mu*Pi)*2*Pi*I*exp(kappa*Pi*I))/(sin(2*mu*Pi)*GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*WhittakerW(- kappa, mu, z*exp(Pi*I)) (- 1)^(m)* WhittakerW[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]]= -Divide[Exp[2*\[Kappa]*Pi*I]*Sin[2*m*\[Mu]*Pi]+ Sin[(2*m - 2)* \[Mu]*Pi],Sin[2*\[Mu]*Pi]]*WhittakerW[\[Kappa], \[Mu], z]-Divide[Sin[2*m*\[Mu]*Pi]*2*Pi*I*Exp[\[Kappa]*Pi*I],Sin[2*\[Mu]*Pi]*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], z*Exp[Pi*I]] Failure Failure
Fail
-.3787433625+.42488234e-1*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 1}
9903.313865-3475.249377*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 2}
-74336427.26-15180270.02*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 3}
-339.0626695+414.7802897*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), m = 1}
... skip entries to safe data
Skip
13.14.E25 𝒲 ⁑ { M ΞΊ , ΞΌ ⁑ ( z ) , M ΞΊ , - ΞΌ ⁑ ( z ) } = - 2 ⁒ ΞΌ Wronskian Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 2 πœ‡ {\displaystyle{\displaystyle\mathscr{W}\left\{M_{\kappa,\mu}\left(z\right),M_{% \kappa,-\mu}\left(z\right)\right\}=-2\mu}} (WhittakerM(kappa, mu, z))*diff(WhittakerM(kappa, - mu, z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerM(kappa, - mu, z))= - 2*mu Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerM[\[Kappa], - \[Mu], z]}, z]= - 2*\[Mu] Failure Failure Successful Successful
13.14.E26 𝒲 ⁑ { M ΞΊ , ΞΌ ⁑ ( z ) , W ΞΊ , ΞΌ ⁑ ( z ) } = - Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) Wronskian Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 Euler-Gamma 1 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… {\displaystyle{\displaystyle\mathscr{W}\left\{M_{\kappa,\mu}\left(z\right),W_{% \kappa,\mu}\left(z\right)\right\}=-\frac{\Gamma\left(1+2\mu\right)}{\Gamma% \left(\frac{1}{2}+\mu-\kappa\right)}}} (WhittakerM(kappa, mu, z))*diff(WhittakerW(kappa, mu, z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(kappa, mu, z))= -(GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu - kappa)) Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[\[Kappa], \[Mu], z]}, z]= -Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]] Failure Failure Successful Skip
13.14.E27 𝒲 ⁑ { M ΞΊ , ΞΌ ⁑ ( z ) , W - ΞΊ , ΞΌ ⁑ ( e + Ο€ ⁒ i ⁒ z ) } = Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) Ξ“ ⁑ ( 1 2 + ΞΌ + ΞΊ ) ⁒ e - ( 1 2 + ΞΌ ) ⁒ Ο€ ⁒ i Wronskian Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ superscript 𝑒 πœ‹ imaginary-unit 𝑧 Euler-Gamma 1 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… superscript 𝑒 1 2 πœ‡ πœ‹ imaginary-unit {\displaystyle{\displaystyle\mathscr{W}\left\{M_{\kappa,\mu}\left(z\right),W_{% -\kappa,\mu}\left(e^{+\pi\mathrm{i}}z\right)\right\}=\frac{\Gamma\left(1+2\mu% \right)}{\Gamma\left(\frac{1}{2}+\mu+\kappa\right)}e^{-(\frac{1}{2}+\mu)\pi% \mathrm{i}}}} (WhittakerM(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z))=(GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu + kappa))*exp(-((1)/(2)+ mu)* Pi*I) Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z]=Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Exp[-(Divide[1,2]+ \[Mu])* Pi*I] Failure Failure
Fail
-139.4018328-103.8422707*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-139.4018328-103.8422707*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-34.52500080+37.00315934*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-34.52500081+37.00315938*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E27 𝒲 ⁑ { M ΞΊ , ΞΌ ⁑ ( z ) , W - ΞΊ , ΞΌ ⁑ ( e - Ο€ ⁒ i ⁒ z ) } = Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) Ξ“ ⁑ ( 1 2 + ΞΌ + ΞΊ ) ⁒ e + ( 1 2 + ΞΌ ) ⁒ Ο€ ⁒ i Wronskian Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ superscript 𝑒 πœ‹ imaginary-unit 𝑧 Euler-Gamma 1 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… superscript 𝑒 1 2 πœ‡ πœ‹ imaginary-unit {\displaystyle{\displaystyle\mathscr{W}\left\{M_{\kappa,\mu}\left(z\right),W_{% -\kappa,\mu}\left(e^{-\pi\mathrm{i}}z\right)\right\}=\frac{\Gamma\left(1+2\mu% \right)}{\Gamma\left(\frac{1}{2}+\mu+\kappa\right)}e^{+(\frac{1}{2}+\mu)\pi% \mathrm{i}}}} (WhittakerM(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z))=(GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu + kappa))*exp(+((1)/(2)+ mu)* Pi*I) Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z]=Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Exp[+(Divide[1,2]+ \[Mu])* Pi*I] Failure Failure
Fail
139.4018325+103.8422705*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
139.4018324+103.8422705*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
34.52500091-37.00315940*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
34.52500091-37.00315940*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E28 𝒲 ⁑ { M ΞΊ , - ΞΌ ⁑ ( z ) , W ΞΊ , ΞΌ ⁑ ( z ) } = - Ξ“ ⁑ ( 1 - 2 ⁒ ΞΌ ) Ξ“ ⁑ ( 1 2 - ΞΌ - ΞΊ ) Wronskian Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 Euler-Gamma 1 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… {\displaystyle{\displaystyle\mathscr{W}\left\{M_{\kappa,-\mu}\left(z\right),W_% {\kappa,\mu}\left(z\right)\right\}=-\frac{\Gamma\left(1-2\mu\right)}{\Gamma% \left(\frac{1}{2}-\mu-\kappa\right)}}} (WhittakerM(kappa, - mu, z))*diff(WhittakerW(kappa, mu, z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(kappa, mu, z))= -(GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu - kappa)) Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[\[Kappa], \[Mu], z]}, z]= -Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]] Failure Failure Successful Skip
13.14.E29 𝒲 ⁑ { M ΞΊ , - ΞΌ ⁑ ( z ) , W - ΞΊ , ΞΌ ⁑ ( e + Ο€ ⁒ i ⁒ z ) } = Ξ“ ⁑ ( 1 - 2 ⁒ ΞΌ ) Ξ“ ⁑ ( 1 2 - ΞΌ + ΞΊ ) ⁒ e - ( 1 2 - ΞΌ ) ⁒ Ο€ ⁒ i Wronskian Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ superscript 𝑒 πœ‹ imaginary-unit 𝑧 Euler-Gamma 1 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… superscript 𝑒 1 2 πœ‡ πœ‹ imaginary-unit {\displaystyle{\displaystyle\mathscr{W}\left\{M_{\kappa,-\mu}\left(z\right),W_% {-\kappa,\mu}\left(e^{+\pi\mathrm{i}}z\right)\right\}=\frac{\Gamma\left(1-2\mu% \right)}{\Gamma\left(\frac{1}{2}-\mu+\kappa\right)}e^{-(\frac{1}{2}-\mu)\pi% \mathrm{i}}}} (WhittakerM(kappa, - mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z))=(GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu + kappa))*exp(-((1)/(2)- mu)* Pi*I) Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z]=Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]]]*Exp[-(Divide[1,2]- \[Mu])* Pi*I] Failure Failure
Fail
.3494764582e-2+.1012865874*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.3494764522e-2+.1012865875*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.5639963652+6.066610734*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.5639963652+6.066610734*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E29 𝒲 ⁑ { M ΞΊ , - ΞΌ ⁑ ( z ) , W - ΞΊ , ΞΌ ⁑ ( e - Ο€ ⁒ i ⁒ z ) } = Ξ“ ⁑ ( 1 - 2 ⁒ ΞΌ ) Ξ“ ⁑ ( 1 2 - ΞΌ + ΞΊ ) ⁒ e + ( 1 2 - ΞΌ ) ⁒ Ο€ ⁒ i Wronskian Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ superscript 𝑒 πœ‹ imaginary-unit 𝑧 Euler-Gamma 1 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… superscript 𝑒 1 2 πœ‡ πœ‹ imaginary-unit {\displaystyle{\displaystyle\mathscr{W}\left\{M_{\kappa,-\mu}\left(z\right),W_% {-\kappa,\mu}\left(e^{-\pi\mathrm{i}}z\right)\right\}=\frac{\Gamma\left(1-2\mu% \right)}{\Gamma\left(\frac{1}{2}-\mu+\kappa\right)}e^{+(\frac{1}{2}-\mu)\pi% \mathrm{i}}}} (WhittakerM(kappa, - mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z))=(GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu + kappa))*exp(+((1)/(2)- mu)* Pi*I) Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z]=Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]]]*Exp[+(Divide[1,2]- \[Mu])* Pi*I] Failure Failure
Fail
-.3494764696e-2-.1012865889*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.3494764619e-2-.1012865875*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.5639963688-6.066610726*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.5639963668-6.066610729*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E30 𝒲 ⁑ { W ΞΊ , ΞΌ ⁑ ( z ) , W - ΞΊ , ΞΌ ⁑ ( e + Ο€ ⁒ i ⁒ z ) } = e - ΞΊ ⁒ Ο€ ⁒ i Wronskian Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ superscript 𝑒 πœ‹ imaginary-unit 𝑧 superscript 𝑒 πœ… πœ‹ imaginary-unit {\displaystyle{\displaystyle\mathscr{W}\left\{W_{\kappa,\mu}\left(z\right),W_{% -\kappa,\mu}\left(e^{+\pi\mathrm{i}}z\right)\right\}=e^{-\kappa\pi\mathrm{i}}}} (WhittakerW(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerW(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z))= exp(- kappa*Pi*I) Wronskian[{WhittakerW[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z]= Exp[- \[Kappa]*Pi*I] Failure Failure
Fail
22.63381635-81.96203695*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
22.63381635-81.96203695*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
22.63381635-81.96203695*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
22.63381635-81.96203695*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E30 𝒲 ⁑ { W ΞΊ , ΞΌ ⁑ ( z ) , W - ΞΊ , ΞΌ ⁑ ( e - Ο€ ⁒ i ⁒ z ) } = e + ΞΊ ⁒ Ο€ ⁒ i Wronskian Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ superscript 𝑒 πœ‹ imaginary-unit 𝑧 superscript 𝑒 πœ… πœ‹ imaginary-unit {\displaystyle{\displaystyle\mathscr{W}\left\{W_{\kappa,\mu}\left(z\right),W_{% -\kappa,\mu}\left(e^{-\pi\mathrm{i}}z\right)\right\}=e^{+\kappa\pi\mathrm{i}}}} (WhittakerW(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerW(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z))= exp(+ kappa*Pi*I) Wronskian[{WhittakerW[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z]= Exp[+ \[Kappa]*Pi*I] Failure Failure
Fail
-22.63381633+81.96203683*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-22.63381632+81.96203679*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-22.63381646+81.96203679*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-22.63381644+81.96203672*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E31 W ΞΊ , ΞΌ ⁑ ( z ) = W ΞΊ , - ΞΌ ⁑ ( z ) Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 {\displaystyle{\displaystyle W_{\kappa,\mu}\left(z\right)=W_{\kappa,-\mu}\left% (z\right)}} WhittakerW(kappa, mu, z)= WhittakerW(kappa, - mu, z) WhittakerW[\[Kappa], \[Mu], z]= WhittakerW[\[Kappa], - \[Mu], z] Successful Successful - -
13.14.E32 1 Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) = e + ( ΞΊ - ΞΌ - 1 2 ) ⁒ Ο€ ⁒ i Ξ“ ⁑ ( 1 2 + ΞΌ + ΞΊ ) ⁒ W ΞΊ , ΞΌ ⁑ ( z ) + e + ΞΊ ⁒ Ο€ ⁒ i Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ W - ΞΊ , ΞΌ ⁑ ( e + Ο€ ⁒ i ⁒ z ) 1 Euler-Gamma 1 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 𝑒 πœ… πœ‡ 1 2 πœ‹ imaginary-unit Euler-Gamma 1 2 πœ‡ πœ… Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 𝑒 πœ… πœ‹ imaginary-unit Euler-Gamma 1 2 πœ‡ πœ… Whittaker-confluent-hypergeometric-W πœ… πœ‡ superscript 𝑒 πœ‹ imaginary-unit 𝑧 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)}M_{\kappa,\mu}% \left(z\right)=\frac{e^{+(\kappa-\mu-\frac{1}{2})\pi\mathrm{i}}}{\Gamma\left(% \frac{1}{2}+\mu+\kappa\right)}W_{\kappa,\mu}\left(z\right)+\frac{e^{+\kappa\pi% \mathrm{i}}}{\Gamma\left(\frac{1}{2}+\mu-\kappa\right)}W_{-\kappa,\mu}\left(e^% {+\pi\mathrm{i}}z\right)}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z)=(exp(+(kappa - mu -(1)/(2))* Pi*I))/(GAMMA((1)/(2)+ mu + kappa))*WhittakerW(kappa, mu, z)+(exp(+ kappa*Pi*I))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerW(- kappa, mu, exp(+ Pi*I)*z) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]=Divide[Exp[+(\[Kappa]- \[Mu]-Divide[1,2])* Pi*I],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[\[Kappa], \[Mu], z]+Divide[Exp[+ \[Kappa]*Pi*I],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z] Failure Failure
Fail
1.298497732-.1938713855e-1*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.187122752-1.346515592*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-9.654177833-4.981936798*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
34.26140886+126.3803650*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E32 1 Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) = e - ( ΞΊ - ΞΌ - 1 2 ) ⁒ Ο€ ⁒ i Ξ“ ⁑ ( 1 2 + ΞΌ + ΞΊ ) ⁒ W ΞΊ , ΞΌ ⁑ ( z ) + e - ΞΊ ⁒ Ο€ ⁒ i Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ W - ΞΊ , ΞΌ ⁑ ( e - Ο€ ⁒ i ⁒ z ) 1 Euler-Gamma 1 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 𝑒 πœ… πœ‡ 1 2 πœ‹ imaginary-unit Euler-Gamma 1 2 πœ‡ πœ… Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 𝑒 πœ… πœ‹ imaginary-unit Euler-Gamma 1 2 πœ‡ πœ… Whittaker-confluent-hypergeometric-W πœ… πœ‡ superscript 𝑒 πœ‹ imaginary-unit 𝑧 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)}M_{\kappa,\mu}% \left(z\right)=\frac{e^{-(\kappa-\mu-\frac{1}{2})\pi\mathrm{i}}}{\Gamma\left(% \frac{1}{2}+\mu+\kappa\right)}W_{\kappa,\mu}\left(z\right)+\frac{e^{-\kappa\pi% \mathrm{i}}}{\Gamma\left(\frac{1}{2}+\mu-\kappa\right)}W_{-\kappa,\mu}\left(e^% {-\pi\mathrm{i}}z\right)}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z)=(exp(-(kappa - mu -(1)/(2))* Pi*I))/(GAMMA((1)/(2)+ mu + kappa))*WhittakerW(kappa, mu, z)+(exp(- kappa*Pi*I))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerW(- kappa, mu, exp(- Pi*I)*z) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]=Divide[Exp[-(\[Kappa]- \[Mu]-Divide[1,2])* Pi*I],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[\[Kappa], \[Mu], z]+Divide[Exp[- \[Kappa]*Pi*I],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z] Failure Failure
Fail
579.6433793+324.2736386*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
201.3880428-41.30381202*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-8591.170394-81467.17807*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-198894.9185-2104750.118*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E33 W ΞΊ , ΞΌ ⁑ ( z ) = Ξ“ ⁑ ( - 2 ⁒ ΞΌ ) Ξ“ ⁑ ( 1 2 - ΞΌ - ΞΊ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) + Ξ“ ⁑ ( 2 ⁒ ΞΌ ) Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ M ΞΊ , - ΞΌ ⁑ ( z ) Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 Euler-Gamma 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Euler-Gamma 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 {\displaystyle{\displaystyle W_{\kappa,\mu}\left(z\right)=\frac{\Gamma\left(-2% \mu\right)}{\Gamma\left(\frac{1}{2}-\mu-\kappa\right)}M_{\kappa,\mu}\left(z% \right)+\frac{\Gamma\left(2\mu\right)}{\Gamma\left(\frac{1}{2}+\mu-\kappa% \right)}M_{\kappa,-\mu}\left(z\right)}} WhittakerW(kappa, mu, z)=(GAMMA(- 2*mu))/(GAMMA((1)/(2)- mu - kappa))*WhittakerM(kappa, mu, z)+(GAMMA(2*mu))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerM(kappa, - mu, z) WhittakerW[\[Kappa], \[Mu], z]=Divide[Gamma[- 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*WhittakerM[\[Kappa], \[Mu], z]+Divide[Gamma[2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerM[\[Kappa], - \[Mu], z] Successful Failure - Skip
13.15.E1 ( ΞΊ - ΞΌ - 1 2 ) ⁒ M ΞΊ - 1 , ΞΌ ⁑ ( z ) + ( z - 2 ⁒ ΞΊ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) + ( ΞΊ + ΞΌ + 1 2 ) ⁒ M ΞΊ + 1 , ΞΌ ⁑ ( z ) = 0 πœ… πœ‡ 1 2 Whittaker-confluent-hypergeometric-M πœ… 1 πœ‡ 𝑧 𝑧 2 πœ… Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 πœ… πœ‡ 1 2 Whittaker-confluent-hypergeometric-M πœ… 1 πœ‡ 𝑧 0 {\displaystyle{\displaystyle(\kappa-\mu-\tfrac{1}{2})M_{\kappa-1,\mu}\left(z% \right)+(z-2\kappa)M_{\kappa,\mu}\left(z\right)+(\kappa+\mu+\tfrac{1}{2})M_{% \kappa+1,\mu}\left(z\right)=0}} (kappa - mu -(1)/(2))* WhittakerM(kappa - 1, mu, z)+(z - 2*kappa)* WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))* WhittakerM(kappa + 1, mu, z)= 0 (\[Kappa]- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa]- 1, \[Mu], z]+(z - 2*\[Kappa])* WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])* WhittakerM[\[Kappa]+ 1, \[Mu], z]= 0 Successful Successful - -
13.15.E2 2 ⁒ ΞΌ ⁒ ( 1 + 2 ⁒ ΞΌ ) ⁒ z ⁒ M ΞΊ - 1 2 , ΞΌ - 1 2 ⁑ ( z ) - ( z + 2 ⁒ ΞΌ ) ⁒ ( 1 + 2 ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) + ( ΞΊ + ΞΌ + 1 2 ) ⁒ z ⁒ M ΞΊ + 1 2 , ΞΌ + 1 2 ⁑ ( z ) = 0 2 πœ‡ 1 2 πœ‡ 𝑧 Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 𝑧 2 πœ‡ 1 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 πœ… πœ‡ 1 2 𝑧 Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 0 {\displaystyle{\displaystyle 2\mu(1+2\mu)\sqrt{z}M_{\kappa-\frac{1}{2},\mu-% \frac{1}{2}}\left(z\right)-(z+2\mu)(1+2\mu)M_{\kappa,\mu}\left(z\right)+(% \kappa+\mu+\tfrac{1}{2})\sqrt{z}M_{\kappa+\frac{1}{2},\mu+\frac{1}{2}}\left(z% \right)=0}} 2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)-(z + 2*mu)*(1 + 2*mu)* WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))*sqrt(z)*WhittakerM(kappa +(1)/(2), mu +(1)/(2), z)= 0 2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(z + 2*\[Mu])*(1 + 2*\[Mu])* WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Successful
13.15.E3 ( ΞΊ - ΞΌ - 1 2 ) ⁒ M ΞΊ - 1 2 , ΞΌ + 1 2 ⁑ ( z ) + ( 1 + 2 ⁒ ΞΌ ) ⁒ z ⁒ M ΞΊ , ΞΌ ⁑ ( z ) - ( ΞΊ + ΞΌ + 1 2 ) ⁒ M ΞΊ + 1 2 , ΞΌ + 1 2 ⁑ ( z ) = 0 πœ… πœ‡ 1 2 Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 1 2 πœ‡ 𝑧 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 πœ… πœ‡ 1 2 Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 0 {\displaystyle{\displaystyle(\kappa-\mu-\tfrac{1}{2})M_{\kappa-\frac{1}{2},\mu% +\frac{1}{2}}\left(z\right)+(1+2\mu)\sqrt{z}M_{\kappa,\mu}\left(z\right)-(% \kappa+\mu+\tfrac{1}{2})M_{\kappa+\frac{1}{2},\mu+\frac{1}{2}}\left(z\right)=0}} (kappa - mu -(1)/(2))* WhittakerM(kappa -(1)/(2), mu +(1)/(2), z)+(1 + 2*mu)*sqrt(z)*WhittakerM(kappa, mu, z)-(kappa + mu +(1)/(2))* WhittakerM(kappa +(1)/(2), mu +(1)/(2), z)= 0 (\[Kappa]- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]+(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa], \[Mu], z]-(\[Kappa]+ \[Mu]+Divide[1,2])* WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Successful
13.15.E4 2 ⁒ ΞΌ ⁒ M ΞΊ - 1 2 , ΞΌ - 1 2 ⁑ ( z ) - 2 ⁒ ΞΌ ⁒ M ΞΊ + 1 2 , ΞΌ - 1 2 ⁑ ( z ) - z ⁒ M ΞΊ , ΞΌ ⁑ ( z ) = 0 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 𝑧 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 0 {\displaystyle{\displaystyle 2\mu M_{\kappa-\frac{1}{2},\mu-\frac{1}{2}}\left(% z\right)-2\mu M_{\kappa+\frac{1}{2},\mu-\frac{1}{2}}\left(z\right)-\sqrt{z}M_{% \kappa,\mu}\left(z\right)=0}} 2*mu*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)- 2*mu*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)-sqrt(z)*WhittakerM(kappa, mu, z)= 0 2*\[Mu]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]- 2*\[Mu]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]-Sqrt[z]*WhittakerM[\[Kappa], \[Mu], z]= 0 Successful Failure - Successful
13.15.E5 2 ⁒ ΞΌ ⁒ ( 1 + 2 ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) - 2 ⁒ ΞΌ ⁒ ( 1 + 2 ⁒ ΞΌ ) ⁒ z ⁒ M ΞΊ - 1 2 , ΞΌ - 1 2 ⁑ ( z ) - ( ΞΊ - ΞΌ - 1 2 ) ⁒ z ⁒ M ΞΊ - 1 2 , ΞΌ + 1 2 ⁑ ( z ) = 0 2 πœ‡ 1 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 2 πœ‡ 1 2 πœ‡ 𝑧 Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 πœ… πœ‡ 1 2 𝑧 Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 0 {\displaystyle{\displaystyle 2\mu(1+2\mu)M_{\kappa,\mu}\left(z\right)-2\mu(1+2% \mu)\sqrt{z}M_{\kappa-\frac{1}{2},\mu-\frac{1}{2}}\left(z\right)-(\kappa-\mu-% \tfrac{1}{2})\sqrt{z}M_{\kappa-\frac{1}{2},\mu+\frac{1}{2}}\left(z\right)=0}} 2*mu*(1 + 2*mu)* WhittakerM(kappa, mu, z)- 2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)-(kappa - mu -(1)/(2))*sqrt(z)*WhittakerM(kappa -(1)/(2), mu +(1)/(2), z)= 0 2*\[Mu]*(1 + 2*\[Mu])* WhittakerM[\[Kappa], \[Mu], z]- 2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Successful
13.15.E6 2 ⁒ ΞΌ ⁒ ( 1 + 2 ⁒ ΞΌ ) ⁒ z ⁒ M ΞΊ + 1 2 , ΞΌ - 1 2 ⁑ ( z ) + ( z - 2 ⁒ ΞΌ ) ⁒ ( 1 + 2 ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) + ( ΞΊ - ΞΌ - 1 2 ) ⁒ z ⁒ M ΞΊ - 1 2 , ΞΌ + 1 2 ⁑ ( z ) = 0 2 πœ‡ 1 2 πœ‡ 𝑧 Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 𝑧 2 πœ‡ 1 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 πœ… πœ‡ 1 2 𝑧 Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 0 {\displaystyle{\displaystyle 2\mu(1+2\mu)\sqrt{z}M_{\kappa+\frac{1}{2},\mu-% \frac{1}{2}}\left(z\right)+(z-2\mu)(1+2\mu)M_{\kappa,\mu}\left(z\right)+(% \kappa-\mu-\tfrac{1}{2})\sqrt{z}M_{\kappa-\frac{1}{2},\mu+\frac{1}{2}}\left(z% \right)=0}} 2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)+(z - 2*mu)*(1 + 2*mu)* WhittakerM(kappa, mu, z)+(kappa - mu -(1)/(2))*sqrt(z)*WhittakerM(kappa -(1)/(2), mu +(1)/(2), z)= 0 2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]+(z - 2*\[Mu])*(1 + 2*\[Mu])* WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Successful
13.15.E7 2 ⁒ ΞΌ ⁒ ( 1 + 2 ⁒ ΞΌ ) ⁒ z ⁒ M ΞΊ + 1 2 , ΞΌ - 1 2 ⁑ ( z ) - 2 ⁒ ΞΌ ⁒ ( 1 + 2 ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) + ( ΞΊ + ΞΌ + 1 2 ) ⁒ z ⁒ M ΞΊ + 1 2 , ΞΌ + 1 2 ⁑ ( z ) = 0 2 πœ‡ 1 2 πœ‡ 𝑧 Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 2 πœ‡ 1 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 πœ… πœ‡ 1 2 𝑧 Whittaker-confluent-hypergeometric-M πœ… 1 2 πœ‡ 1 2 𝑧 0 {\displaystyle{\displaystyle 2\mu(1+2\mu)\sqrt{z}M_{\kappa+\frac{1}{2},\mu-% \frac{1}{2}}\left(z\right)-2\mu(1+2\mu)M_{\kappa,\mu}\left(z\right)+(\kappa+% \mu+\tfrac{1}{2})\sqrt{z}M_{\kappa+\frac{1}{2},\mu+\frac{1}{2}}\left(z\right)=% 0}} 2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)- 2*mu*(1 + 2*mu)* WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))*sqrt(z)*WhittakerM(kappa +(1)/(2), mu +(1)/(2), z)= 0 2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]- 2*\[Mu]*(1 + 2*\[Mu])* WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Successful
13.15.E8 W ΞΊ + 1 2 , ΞΌ + 1 2 ⁑ ( z ) - z ⁒ W ΞΊ , ΞΌ ⁑ ( z ) + ( ΞΊ - ΞΌ - 1 2 ) ⁒ W ΞΊ - 1 2 , ΞΌ + 1 2 ⁑ ( z ) = 0 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 πœ… πœ‡ 1 2 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 0 {\displaystyle{\displaystyle W_{\kappa+\frac{1}{2},\mu+\frac{1}{2}}\left(z% \right)-\sqrt{z}W_{\kappa,\mu}\left(z\right)+(\kappa-\mu-\tfrac{1}{2})W_{% \kappa-\frac{1}{2},\mu+\frac{1}{2}}\left(z\right)=0}} WhittakerW(kappa +(1)/(2), mu +(1)/(2), z)-sqrt(z)*WhittakerW(kappa, mu, z)+(kappa - mu -(1)/(2))* WhittakerW(kappa -(1)/(2), mu +(1)/(2), z)= 0 WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]-Sqrt[z]*WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])* WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E9 W ΞΊ + 1 2 , ΞΌ - 1 2 ⁑ ( z ) - z ⁒ W ΞΊ , ΞΌ ⁑ ( z ) + ( ΞΊ + ΞΌ - 1 2 ) ⁒ W ΞΊ - 1 2 , ΞΌ - 1 2 ⁑ ( z ) = 0 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 πœ… πœ‡ 1 2 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 0 {\displaystyle{\displaystyle W_{\kappa+\frac{1}{2},\mu-\frac{1}{2}}\left(z% \right)-\sqrt{z}W_{\kappa,\mu}\left(z\right)+(\kappa+\mu-\tfrac{1}{2})W_{% \kappa-\frac{1}{2},\mu-\frac{1}{2}}\left(z\right)=0}} WhittakerW(kappa +(1)/(2), mu -(1)/(2), z)-sqrt(z)*WhittakerW(kappa, mu, z)+(kappa + mu -(1)/(2))* WhittakerW(kappa -(1)/(2), mu -(1)/(2), z)= 0 WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]-Sqrt[z]*WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]-Divide[1,2])* WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E10 2 ⁒ ΞΌ ⁒ W ΞΊ , ΞΌ ⁑ ( z ) - z ⁒ W ΞΊ + 1 2 , ΞΌ + 1 2 ⁑ ( z ) + z ⁒ W ΞΊ + 1 2 , ΞΌ - 1 2 ⁑ ( z ) = 0 2 πœ‡ Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 𝑧 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 𝑧 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 0 {\displaystyle{\displaystyle 2\mu W_{\kappa,\mu}\left(z\right)-\sqrt{z}W_{% \kappa+\frac{1}{2},\mu+\frac{1}{2}}\left(z\right)+\sqrt{z}W_{\kappa+\frac{1}{2% },\mu-\frac{1}{2}}\left(z\right)=0}} 2*mu*WhittakerW(kappa, mu, z)-sqrt(z)*WhittakerW(kappa +(1)/(2), mu +(1)/(2), z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu -(1)/(2), z)= 0 2*\[Mu]*WhittakerW[\[Kappa], \[Mu], z]-Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E11 W ΞΊ + 1 , ΞΌ ⁑ ( z ) + ( 2 ⁒ ΞΊ - z ) ⁒ W ΞΊ , ΞΌ ⁑ ( z ) + ( ΞΊ - ΞΌ - 1 2 ) ⁒ ( ΞΊ + ΞΌ - 1 2 ) ⁒ W ΞΊ - 1 , ΞΌ ⁑ ( z ) = 0 Whittaker-confluent-hypergeometric-W πœ… 1 πœ‡ 𝑧 2 πœ… 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 πœ… πœ‡ 1 2 πœ… πœ‡ 1 2 Whittaker-confluent-hypergeometric-W πœ… 1 πœ‡ 𝑧 0 {\displaystyle{\displaystyle W_{\kappa+1,\mu}\left(z\right)+(2\kappa-z)W_{% \kappa,\mu}\left(z\right)+(\kappa-\mu-\tfrac{1}{2})(\kappa+\mu-\tfrac{1}{2})W_% {\kappa-1,\mu}\left(z\right)=0}} WhittakerW(kappa + 1, mu, z)+(2*kappa - z)* WhittakerW(kappa, mu, z)+(kappa - mu -(1)/(2))*(kappa + mu -(1)/(2))* WhittakerW(kappa - 1, mu, z)= 0 WhittakerW[\[Kappa]+ 1, \[Mu], z]+(2*\[Kappa]- z)* WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])*(\[Kappa]+ \[Mu]-Divide[1,2])* WhittakerW[\[Kappa]- 1, \[Mu], z]= 0 Successful Successful - -
13.15.E12 ( ΞΊ - ΞΌ - 1 2 ) ⁒ z ⁒ W ΞΊ - 1 2 , ΞΌ + 1 2 ⁑ ( z ) + 2 ⁒ ΞΌ ⁒ W ΞΊ , ΞΌ ⁑ ( z ) - ( ΞΊ + ΞΌ - 1 2 ) ⁒ z ⁒ W ΞΊ - 1 2 , ΞΌ - 1 2 ⁑ ( z ) = 0 πœ… πœ‡ 1 2 𝑧 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 2 πœ‡ Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 πœ… πœ‡ 1 2 𝑧 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 0 {\displaystyle{\displaystyle(\kappa-\mu-\tfrac{1}{2})\sqrt{z}W_{\kappa-\frac{1% }{2},\mu+\frac{1}{2}}\left(z\right)+2\mu W_{\kappa,\mu}\left(z\right)-(\kappa+% \mu-\tfrac{1}{2})\sqrt{z}W_{\kappa-\frac{1}{2},\mu-\frac{1}{2}}\left(z\right)=% 0}} (kappa - mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu +(1)/(2), z)+ 2*mu*WhittakerW(kappa, mu, z)-(kappa + mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu -(1)/(2), z)= 0 (\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]+ 2*\[Mu]*WhittakerW[\[Kappa], \[Mu], z]-(\[Kappa]+ \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E13 ( ΞΊ + ΞΌ - 1 2 ) ⁒ z ⁒ W ΞΊ - 1 2 , ΞΌ - 1 2 ⁑ ( z ) - ( z + 2 ⁒ ΞΌ ) ⁒ W ΞΊ , ΞΌ ⁑ ( z ) + z ⁒ W ΞΊ + 1 2 , ΞΌ + 1 2 ⁑ ( z ) = 0 πœ… πœ‡ 1 2 𝑧 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 𝑧 2 πœ‡ Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 𝑧 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 0 {\displaystyle{\displaystyle(\kappa+\mu-\tfrac{1}{2})\sqrt{z}W_{\kappa-\frac{1% }{2},\mu-\frac{1}{2}}\left(z\right)-(z+2\mu)W_{\kappa,\mu}\left(z\right)+\sqrt% {z}W_{\kappa+\frac{1}{2},\mu+\frac{1}{2}}\left(z\right)=0}} (kappa + mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu -(1)/(2), z)-(z + 2*mu)* WhittakerW(kappa, mu, z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu +(1)/(2), z)= 0 (\[Kappa]+ \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(z + 2*\[Mu])* WhittakerW[\[Kappa], \[Mu], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E14 ( ΞΊ - ΞΌ - 1 2 ) ⁒ z ⁒ W ΞΊ - 1 2 , ΞΌ + 1 2 ⁑ ( z ) - ( z - 2 ⁒ ΞΌ ) ⁒ W ΞΊ , ΞΌ ⁑ ( z ) + z ⁒ W ΞΊ + 1 2 , ΞΌ - 1 2 ⁑ ( z ) = 0 πœ… πœ‡ 1 2 𝑧 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 𝑧 2 πœ‡ Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 𝑧 Whittaker-confluent-hypergeometric-W πœ… 1 2 πœ‡ 1 2 𝑧 0 {\displaystyle{\displaystyle(\kappa-\mu-\tfrac{1}{2})\sqrt{z}W_{\kappa-\frac{1% }{2},\mu+\frac{1}{2}}\left(z\right)-(z-2\mu)W_{\kappa,\mu}\left(z\right)+\sqrt% {z}W_{\kappa+\frac{1}{2},\mu-\frac{1}{2}}\left(z\right)=0}} (kappa - mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu +(1)/(2), z)-(z - 2*mu)* WhittakerW(kappa, mu, z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu -(1)/(2), z)= 0 (\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]-(z - 2*\[Mu])* WhittakerW[\[Kappa], \[Mu], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E15 d n d z n ⁑ ( e 1 2 ⁒ z ⁒ z ΞΌ - 1 2 ⁒ M ΞΊ , ΞΌ ⁑ ( z ) ) = ( - 1 ) n ⁒ ( - 2 ⁒ ΞΌ ) n ⁒ e 1 2 ⁒ z ⁒ z ΞΌ - 1 2 ⁒ ( n + 1 ) ⁒ M ΞΊ - 1 2 ⁒ n , ΞΌ - 1 2 ⁒ n ⁑ ( z ) derivative 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 1 𝑛 Pochhammer 2 πœ‡ 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 𝑛 1 Whittaker-confluent-hypergeometric-M πœ… 1 2 𝑛 πœ‡ 1 2 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(e^% {\frac{1}{2}z}z^{\mu-\frac{1}{2}}M_{\kappa,\mu}\left(z\right)\right)=(-1)^{n}{% \left(-2\mu\right)_{n}}e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}M_{\kappa-\frac% {1}{2}n,\mu-\frac{1}{2}n}\left(z\right)}} diff(exp((1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)])=(- 1)^(n)* pochhammer(- 2*mu, n)*exp((1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerM(kappa -(1)/(2)*n, mu -(1)/(2)*n, z) D[Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Pochhammer[- 2*\[Mu], n]*Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]-Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E16 d n d z n ⁑ ( e 1 2 ⁒ z ⁒ z - ΞΌ - 1 2 ⁒ M ΞΊ , ΞΌ ⁑ ( z ) ) = ( 1 2 + ΞΌ - ΞΊ ) n ( 1 + 2 ⁒ ΞΌ ) n ⁒ e 1 2 ⁒ z ⁒ z - ΞΌ - 1 2 ⁒ ( n + 1 ) ⁒ M ΞΊ - 1 2 ⁒ n , ΞΌ + 1 2 ⁒ n ⁑ ( z ) derivative 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Pochhammer 1 2 πœ‡ πœ… 𝑛 Pochhammer 1 2 πœ‡ 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 𝑛 1 Whittaker-confluent-hypergeometric-M πœ… 1 2 𝑛 πœ‡ 1 2 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(e^% {\frac{1}{2}z}z^{-\mu-\frac{1}{2}}M_{\kappa,\mu}\left(z\right)\right)=\frac{{% \left(\frac{1}{2}+\mu-\kappa\right)_{n}}}{{\left(1+2\mu\right)_{n}}}e^{\frac{1% }{2}z}z^{-\mu-\frac{1}{2}(n+1)}M_{\kappa-\frac{1}{2}n,\mu+\frac{1}{2}n}\left(z% \right)}} diff(exp((1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)])=(pochhammer((1)/(2)+ mu - kappa, n))/(pochhammer(1 + 2*mu, n))*exp((1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerM(kappa -(1)/(2)*n, mu +(1)/(2)*n, z) D[Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}]=Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n],Pochhammer[1 + 2*\[Mu], n]]*Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]-Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E17 ( z ⁒ d d z ⁑ z ) n ⁒ ( e 1 2 ⁒ z ⁒ z - ΞΊ - 1 ⁒ M ΞΊ , ΞΌ ⁑ ( z ) ) = ( 1 2 + ΞΌ - ΞΊ ) n ⁒ e 1 2 ⁒ z ⁒ z n - ΞΊ - 1 ⁒ M ΞΊ - n , ΞΌ ⁑ ( z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ… 1 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Pochhammer 1 2 πœ‡ πœ… 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 𝑛 πœ… 1 Whittaker-confluent-hypergeometric-M πœ… 𝑛 πœ‡ 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(e^{\frac{1}{2}z}z^{-\kappa-1}M_{\kappa,\mu}\left(z\right)\right)={\left(% \tfrac{1}{2}+\mu-\kappa\right)_{n}}e^{\frac{1}{2}z}z^{n-\kappa-1}M_{\kappa-n,% \mu}\left(z\right)}} (z*diff(z, z))^(n)*(exp((1)/(2)*z)*(z)^(- kappa - 1)* WhittakerM(kappa, mu, z))= pochhammer((1)/(2)+ mu - kappa, n)*exp((1)/(2)*z)*(z)^(n - kappa - 1)* WhittakerM(kappa - n, mu, z) (z*D[z, z])^(n)*(Exp[Divide[1,2]*z]*(z)^(- \[Kappa]- 1)* WhittakerM[\[Kappa], \[Mu], z])= Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(n - \[Kappa]- 1)* WhittakerM[\[Kappa]- n, \[Mu], z] Failure Failure
Fail
.422889411+.400864309e-1*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
.3423332190-2.928704994*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
28.78460329-27.79294397*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
.8091469094-.1815739427*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.15.E18 d n d z n ⁑ ( e - 1 2 ⁒ z ⁒ z ΞΌ - 1 2 ⁒ M ΞΊ , ΞΌ ⁑ ( z ) ) = ( - 1 ) n ⁒ ( - 2 ⁒ ΞΌ ) n ⁒ e - 1 2 ⁒ z ⁒ z ΞΌ - 1 2 ⁒ ( n + 1 ) ⁒ M ΞΊ + 1 2 ⁒ n , ΞΌ - 1 2 ⁒ n ⁑ ( z ) derivative 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 1 𝑛 Pochhammer 2 πœ‡ 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 𝑛 1 Whittaker-confluent-hypergeometric-M πœ… 1 2 𝑛 πœ‡ 1 2 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(e^% {-\frac{1}{2}z}z^{\mu-\frac{1}{2}}M_{\kappa,\mu}\left(z\right)\right)=(-1)^{n}% {\left(-2\mu\right)_{n}}e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}M_{\kappa+% \frac{1}{2}n,\mu-\frac{1}{2}n}\left(z\right)}} diff(exp(-(1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)])=(- 1)^(n)* pochhammer(- 2*mu, n)*exp(-(1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerM(kappa +(1)/(2)*n, mu -(1)/(2)*n, z) D[Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Pochhammer[- 2*\[Mu], n]*Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]+Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E19 d n d z n ⁑ ( e - 1 2 ⁒ z ⁒ z - ΞΌ - 1 2 ⁒ M ΞΊ , ΞΌ ⁑ ( z ) ) = ( - 1 ) n ⁒ ( 1 2 + ΞΌ + ΞΊ ) n ( 1 + 2 ⁒ ΞΌ ) n ⁒ e - 1 2 ⁒ z ⁒ z - ΞΌ - 1 2 ⁒ ( n + 1 ) ⁒ M ΞΊ + 1 2 ⁒ n , ΞΌ + 1 2 ⁒ n ⁑ ( z ) derivative 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 1 𝑛 Pochhammer 1 2 πœ‡ πœ… 𝑛 Pochhammer 1 2 πœ‡ 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 𝑛 1 Whittaker-confluent-hypergeometric-M πœ… 1 2 𝑛 πœ‡ 1 2 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(e^% {-\frac{1}{2}z}z^{-\mu-\frac{1}{2}}M_{\kappa,\mu}\left(z\right)\right)=(-1)^{n% }\frac{{\left(\frac{1}{2}+\mu+\kappa\right)_{n}}}{{\left(1+2\mu\right)_{n}}}e^% {-\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\*M_{\kappa+\frac{1}{2}n,\mu+\frac{1}{% 2}n}\left(z\right)}} diff(exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)])=(- 1)^(n)*(pochhammer((1)/(2)+ mu + kappa, n))/(pochhammer(1 + 2*mu, n))*exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerM(kappa +(1)/(2)*n, mu +(1)/(2)*n, z) D[Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)*Divide[Pochhammer[Divide[1,2]+ \[Mu]+ \[Kappa], n],Pochhammer[1 + 2*\[Mu], n]]*Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]+Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E20 ( z ⁒ d d z ⁑ z ) n ⁒ ( e - 1 2 ⁒ z ⁒ z ΞΊ - 1 ⁒ M ΞΊ , ΞΌ ⁑ ( z ) ) = ( 1 2 + ΞΌ + ΞΊ ) n ⁒ e - 1 2 ⁒ z ⁒ z ΞΊ + n - 1 ⁒ M ΞΊ + n , ΞΌ ⁑ ( z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ… 1 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Pochhammer 1 2 πœ‡ πœ… 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ… 𝑛 1 Whittaker-confluent-hypergeometric-M πœ… 𝑛 πœ‡ 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(e^{-\frac{1}{2}z}z^{\kappa-1}M_{\kappa,\mu}\left(z\right)\right)={\left(% \tfrac{1}{2}+\mu+\kappa\right)_{n}}e^{-\frac{1}{2}z}z^{\kappa+n-1}\*M_{\kappa+% n,\mu}\left(z\right)}} (z*diff(z, z))^(n)*(exp(-(1)/(2)*z)*(z)^(kappa - 1)* WhittakerM(kappa, mu, z))= pochhammer((1)/(2)+ mu + kappa, n)*exp(-(1)/(2)*z)*(z)^(kappa + n - 1)* WhittakerM(kappa + n, mu, z) (z*D[z, z])^(n)*(Exp[-Divide[1,2]*z]*(z)^(\[Kappa]- 1)* WhittakerM[\[Kappa], \[Mu], z])= Pochhammer[Divide[1,2]+ \[Mu]+ \[Kappa], n]*Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ n - 1)* WhittakerM[\[Kappa]+ n, \[Mu], z] Failure Failure
Fail
.3651560696+.5317892033*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
-2.267246204+4.379959380*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
-31.10787298-.100038800*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
29.73991513-87.25229264*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.15.E21 d n d z n ⁑ ( e 1 2 ⁒ z ⁒ z - ΞΌ - 1 2 ⁒ W ΞΊ , ΞΌ ⁑ ( z ) ) = ( - 1 ) n ⁒ ( 1 2 + ΞΌ - ΞΊ ) n ⁒ e 1 2 ⁒ z ⁒ z - ΞΌ - 1 2 ⁒ ( n + 1 ) ⁒ W ΞΊ - 1 2 ⁒ n , ΞΌ + 1 2 ⁒ n ⁑ ( z ) derivative 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 1 𝑛 Pochhammer 1 2 πœ‡ πœ… 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 𝑛 1 Whittaker-confluent-hypergeometric-W πœ… 1 2 𝑛 πœ‡ 1 2 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(e^% {\frac{1}{2}z}z^{-\mu-\frac{1}{2}}W_{\kappa,\mu}\left(z\right)\right)=(-1)^{n}% {\left(\tfrac{1}{2}+\mu-\kappa\right)_{n}}e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}(% n+1)}\*W_{\kappa-\frac{1}{2}n,\mu+\frac{1}{2}n}\left(z\right)}} diff(exp((1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)])=(- 1)^(n)* pochhammer((1)/(2)+ mu - kappa, n)*exp((1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerW(kappa -(1)/(2)*n, mu +(1)/(2)*n, z) D[Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]-Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E22 d n d z n ⁑ ( e 1 2 ⁒ z ⁒ z ΞΌ - 1 2 ⁒ W ΞΊ , ΞΌ ⁑ ( z ) ) = ( - 1 ) n ⁒ ( 1 2 - ΞΌ - ΞΊ ) n ⁒ e 1 2 ⁒ z ⁒ z ΞΌ - 1 2 ⁒ ( n + 1 ) ⁒ W ΞΊ - 1 2 ⁒ n , ΞΌ - 1 2 ⁒ n ⁑ ( z ) derivative 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 1 𝑛 Pochhammer 1 2 πœ‡ πœ… 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 𝑛 1 Whittaker-confluent-hypergeometric-W πœ… 1 2 𝑛 πœ‡ 1 2 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(e^% {\frac{1}{2}z}z^{\mu-\frac{1}{2}}W_{\kappa,\mu}\left(z\right)\right)=(-1)^{n}{% \left(\tfrac{1}{2}-\mu-\kappa\right)_{n}}e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+% 1)}\*W_{\kappa-\frac{1}{2}n,\mu-\frac{1}{2}n}\left(z\right)}} diff(exp((1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)])=(- 1)^(n)* pochhammer((1)/(2)- mu - kappa, n)*exp((1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerW(kappa -(1)/(2)*n, mu -(1)/(2)*n, z) D[Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Pochhammer[Divide[1,2]- \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]-Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E23 ( z ⁒ d d z ⁑ z ) n ⁒ ( e 1 2 ⁒ z ⁒ z - ΞΊ - 1 ⁒ W ΞΊ , ΞΌ ⁑ ( z ) ) = ( 1 2 + ΞΌ - ΞΊ ) n ⁒ ( 1 2 - ΞΌ - ΞΊ ) n ⁒ e 1 2 ⁒ z ⁒ z n - ΞΊ - 1 ⁒ W ΞΊ - n , ΞΌ ⁑ ( z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ… 1 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 Pochhammer 1 2 πœ‡ πœ… 𝑛 Pochhammer 1 2 πœ‡ πœ… 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 𝑛 πœ… 1 Whittaker-confluent-hypergeometric-W πœ… 𝑛 πœ‡ 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(e^{\frac{1}{2}z}z^{-\kappa-1}W_{\kappa,\mu}\left(z\right)\right)={\left(% \tfrac{1}{2}+\mu-\kappa\right)_{n}}{\left(\tfrac{1}{2}-\mu-\kappa\right)_{n}}e% ^{\frac{1}{2}z}z^{n-\kappa-1}W_{\kappa-n,\mu}\left(z\right)}} (z*diff(z, z))^(n)*(exp((1)/(2)*z)*(z)^(- kappa - 1)* WhittakerW(kappa, mu, z))= pochhammer((1)/(2)+ mu - kappa, n)*pochhammer((1)/(2)- mu - kappa, n)*exp((1)/(2)*z)*(z)^(n - kappa - 1)* WhittakerW(kappa - n, mu, z) (z*D[z, z])^(n)*(Exp[Divide[1,2]*z]*(z)^(- \[Kappa]- 1)* WhittakerW[\[Kappa], \[Mu], z])= Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Pochhammer[Divide[1,2]- \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(n - \[Kappa]- 1)* WhittakerW[\[Kappa]- n, \[Mu], z] Failure Failure
Fail
2.287537999+5.448901962*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
12.33305908+8.582530455*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
22.68496902-17.41418341*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
.1675216432+.4056625244*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.15.E24 d n d z n ⁑ ( e - 1 2 ⁒ z ⁒ z - ΞΌ - 1 2 ⁒ W ΞΊ , ΞΌ ⁑ ( z ) ) = ( - 1 ) n ⁒ e - 1 2 ⁒ z ⁒ z - ΞΌ - 1 2 ⁒ ( n + 1 ) ⁒ W ΞΊ + 1 2 ⁒ n , ΞΌ + 1 2 ⁒ n ⁑ ( z ) derivative 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 1 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 𝑛 1 Whittaker-confluent-hypergeometric-W πœ… 1 2 𝑛 πœ‡ 1 2 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(e^% {-\frac{1}{2}z}z^{-\mu-\frac{1}{2}}W_{\kappa,\mu}\left(z\right)\right)=(-1)^{n% }e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}W_{\kappa+\frac{1}{2}n,\mu+\frac{1}% {2}n}\left(z\right)}} diff(exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)])=(- 1)^(n)* exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerW(kappa +(1)/(2)*n, mu +(1)/(2)*n, z) D[Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]+Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E25 d n d z n ⁑ ( e - 1 2 ⁒ z ⁒ z ΞΌ - 1 2 ⁒ W ΞΊ , ΞΌ ⁑ ( z ) ) = ( - 1 ) n ⁒ e - 1 2 ⁒ z ⁒ z ΞΌ - 1 2 ⁒ ( n + 1 ) ⁒ W ΞΊ + 1 2 ⁒ n , ΞΌ - 1 2 ⁒ n ⁑ ( z ) derivative 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 1 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ‡ 1 2 𝑛 1 Whittaker-confluent-hypergeometric-W πœ… 1 2 𝑛 πœ‡ 1 2 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(e^% {-\frac{1}{2}z}z^{\mu-\frac{1}{2}}W_{\kappa,\mu}\left(z\right)\right)=(-1)^{n}% e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}W_{\kappa+\frac{1}{2}n,\mu-\frac{1}{2% }n}\left(z\right)}} diff(exp(-(1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)])=(- 1)^(n)* exp(-(1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerW(kappa +(1)/(2)*n, mu -(1)/(2)*n, z) D[Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]+Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E26 ( z ⁒ d d z ⁑ z ) n ⁒ ( e - 1 2 ⁒ z ⁒ z ΞΊ - 1 ⁒ W ΞΊ , ΞΌ ⁑ ( z ) ) = ( - 1 ) n ⁒ e - 1 2 ⁒ z ⁒ z ΞΊ + n - 1 ⁒ W ΞΊ + n , ΞΌ ⁑ ( z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ… 1 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 1 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ… 𝑛 1 Whittaker-confluent-hypergeometric-W πœ… 𝑛 πœ‡ 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(e^{-\frac{1}{2}z}z^{\kappa-1}W_{\kappa,\mu}\left(z\right)\right)=(-1)^{n% }e^{-\frac{1}{2}z}z^{\kappa+n-1}W_{\kappa+n,\mu}\left(z\right)}} (z*diff(z, z))^(n)*(exp(-(1)/(2)*z)*(z)^(kappa - 1)* WhittakerW(kappa, mu, z))=(- 1)^(n)* exp(-(1)/(2)*z)*(z)^(kappa + n - 1)* WhittakerW(kappa + n, mu, z) (z*D[z, z])^(n)*(Exp[-Divide[1,2]*z]*(z)^(\[Kappa]- 1)* WhittakerW[\[Kappa], \[Mu], z])=(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ n - 1)* WhittakerW[\[Kappa]+ n, \[Mu], z] Failure Failure
Fail
-.2720350864+.1235096327*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
-1.238205578-.8204474278*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
6.403097481-9.930704107*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
44.88142838-1.79519457*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.16.E1 M ΞΊ , ΞΌ ⁑ ( z ) = Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ z ΞΌ + 1 2 ⁒ 2 - 2 ⁒ ΞΌ Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ Ξ“ ⁑ ( 1 2 + ΞΌ + ΞΊ ) ⁒ ∫ - 1 1 e 1 2 ⁒ z ⁒ t ⁒ ( 1 + t ) ΞΌ - 1 2 - ΞΊ ⁒ ( 1 - t ) ΞΌ - 1 2 + ΞΊ ⁒ d t Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Euler-Gamma 1 2 πœ‡ superscript 𝑧 πœ‡ 1 2 superscript 2 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… Euler-Gamma 1 2 πœ‡ πœ… superscript subscript 1 1 superscript 𝑒 1 2 𝑧 𝑑 superscript 1 𝑑 πœ‡ 1 2 πœ… superscript 1 𝑑 πœ‡ 1 2 πœ… 𝑑 {\displaystyle{\displaystyle M_{\kappa,\mu}\left(z\right)=\frac{\Gamma\left(1+% 2\mu\right)z^{\mu+\frac{1}{2}}2^{-2\mu}}{\Gamma\left(\frac{1}{2}+\mu-\kappa% \right)\Gamma\left(\frac{1}{2}+\mu+\kappa\right)}\*\int_{-1}^{1}e^{\frac{1}{2}% zt}(1+t)^{\mu-\frac{1}{2}-\kappa}(1-t)^{\mu-\frac{1}{2}+\kappa}\mathrm{d}t}} WhittakerM(kappa, mu, z)=(GAMMA(1 + 2*mu)*(z)^(mu +(1)/(2))* (2)^(- 2*mu))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)+ mu + kappa))* int(exp((1)/(2)*z*t)*(1 + t)^(mu -(1)/(2)- kappa)*(1 - t)^(mu -(1)/(2)+ kappa), t = - 1..1) WhittakerM[\[Kappa], \[Mu], z]=Divide[Gamma[1 + 2*\[Mu]]*(z)^(\[Mu]+Divide[1,2])* (2)^(- 2*\[Mu]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]* Integrate[Exp[Divide[1,2]*z*t]*(1 + t)^(\[Mu]-Divide[1,2]- \[Kappa])*(1 - t)^(\[Mu]-Divide[1,2]+ \[Kappa]), {t, - 1, 1}] Failure Failure Skip Error
13.16.E2 M ΞΊ , ΞΌ ⁑ ( z ) = Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ z Ξ» Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ - 2 ⁒ Ξ» ) ⁒ Ξ“ ⁑ ( 2 ⁒ Ξ» ) ⁒ ∫ 0 1 M ΞΊ - Ξ» , ΞΌ - Ξ» ⁑ ( z ⁒ t ) ⁒ e 1 2 ⁒ z ⁒ ( t - 1 ) ⁒ t ΞΌ - Ξ» - 1 2 ⁒ ( 1 - t ) 2 ⁒ Ξ» - 1 ⁒ d t Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Euler-Gamma 1 2 πœ‡ superscript 𝑧 πœ† Euler-Gamma 1 2 πœ‡ 2 πœ† Euler-Gamma 2 πœ† superscript subscript 0 1 Whittaker-confluent-hypergeometric-M πœ… πœ† πœ‡ πœ† 𝑧 𝑑 superscript 𝑒 1 2 𝑧 𝑑 1 superscript 𝑑 πœ‡ πœ† 1 2 superscript 1 𝑑 2 πœ† 1 𝑑 {\displaystyle{\displaystyle M_{\kappa,\mu}\left(z\right)=\frac{\Gamma\left(1+% 2\mu\right)z^{\lambda}}{\Gamma\left(1+2\mu-2\lambda\right)\Gamma\left(2\lambda% \right)}\*\int_{0}^{1}M_{\kappa-\lambda,\mu-\lambda}\left(zt\right)e^{\frac{1}% {2}z(t-1)}t^{\mu-\lambda-\frac{1}{2}}{(1-t)^{2\lambda-1}}\mathrm{d}t}} WhittakerM(kappa, mu, z)=(GAMMA(1 + 2*mu)*(z)^(lambda))/(GAMMA(1 + 2*mu - 2*lambda)*GAMMA(2*lambda))* int(WhittakerM(kappa - lambda, mu - lambda, z*t)*exp((1)/(2)*z*(t - 1))*(t)^(mu - lambda -(1)/(2))*(1 - t)^(2*lambda - 1), t = 0..1) WhittakerM[\[Kappa], \[Mu], z]=Divide[Gamma[1 + 2*\[Mu]]*(z)^(\[Lambda]),Gamma[1 + 2*\[Mu]- 2*\[Lambda]]*Gamma[2*\[Lambda]]]* Integrate[WhittakerM[\[Kappa]- \[Lambda], \[Mu]- \[Lambda], z*t]*Exp[Divide[1,2]*z*(t - 1)]*(t)^(\[Mu]- \[Lambda]-Divide[1,2])*(1 - t)^(2*\[Lambda]- 1), {t, 0, 1}] Failure Failure Skip Error
13.16.E3 1 Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) = z ⁒ e 1 2 ⁒ z Ξ“ ⁑ ( 1 2 + ΞΌ + ΞΊ ) ⁒ ∫ 0 ∞ e - t ⁒ t ΞΊ - 1 2 ⁒ J 2 ⁒ ΞΌ ⁑ ( 2 ⁒ z ⁒ t ) ⁒ d t 1 Euler-Gamma 1 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 𝑧 superscript 𝑒 1 2 𝑧 Euler-Gamma 1 2 πœ‡ πœ… superscript subscript 0 superscript 𝑒 𝑑 superscript 𝑑 πœ… 1 2 Bessel-J 2 πœ‡ 2 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)}M_{\kappa,\mu}% \left(z\right)=\frac{\sqrt{z}e^{\frac{1}{2}z}}{\Gamma\left(\frac{1}{2}+\mu+% \kappa\right)}\int_{0}^{\infty}e^{-t}t^{\kappa-\frac{1}{2}}J_{2\mu}\left(2% \sqrt{zt}\right)\mathrm{d}t}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z)=(sqrt(z)*exp((1)/(2)*z))/(GAMMA((1)/(2)+ mu + kappa))*int(exp(- t)*(t)^(kappa -(1)/(2))* BesselJ(2*mu, 2*sqrt(z*t)), t = 0..infinity) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]=Divide[Sqrt[z]*Exp[Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Integrate[Exp[- t]*(t)^(\[Kappa]-Divide[1,2])* BesselJ[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}] Successful Failure - Error
13.16.E4 1 Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) = z ⁒ e - 1 2 ⁒ z Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ ∫ 0 ∞ e - t ⁒ t - ΞΊ - 1 2 ⁒ I 2 ⁒ ΞΌ ⁑ ( 2 ⁒ z ⁒ t ) ⁒ d t 1 Euler-Gamma 1 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 𝑧 superscript 𝑒 1 2 𝑧 Euler-Gamma 1 2 πœ‡ πœ… superscript subscript 0 superscript 𝑒 𝑑 superscript 𝑑 πœ… 1 2 modified-Bessel-first-kind 2 πœ‡ 2 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)}M_{\kappa,\mu}% \left(z\right)=\frac{\sqrt{z}e^{-\frac{1}{2}z}}{\Gamma\left(\frac{1}{2}+\mu-% \kappa\right)}\*\int_{0}^{\infty}e^{-t}t^{-\kappa-\frac{1}{2}}I_{2\mu}\left(2% \sqrt{zt}\right)\mathrm{d}t}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z)=(sqrt(z)*exp(-(1)/(2)*z))/(GAMMA((1)/(2)+ mu - kappa))* int(exp(- t)*(t)^(- kappa -(1)/(2))* BesselI(2*mu, 2*sqrt(z*t)), t = 0..infinity) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]=Divide[Sqrt[z]*Exp[-Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Exp[- t]*(t)^(- \[Kappa]-Divide[1,2])* BesselI[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}] Failure Failure Skip Successful
13.16.E5 W ΞΊ , ΞΌ ⁑ ( z ) = z ΞΌ + 1 2 ⁒ 2 - 2 ⁒ ΞΌ Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ ∫ 1 ∞ e - 1 2 ⁒ z ⁒ t ⁒ ( t - 1 ) ΞΌ - 1 2 - ΞΊ ⁒ ( t + 1 ) ΞΌ - 1 2 + ΞΊ ⁒ d t Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 𝑧 πœ‡ 1 2 superscript 2 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… superscript subscript 1 superscript 𝑒 1 2 𝑧 𝑑 superscript 𝑑 1 πœ‡ 1 2 πœ… superscript 𝑑 1 πœ‡ 1 2 πœ… 𝑑 {\displaystyle{\displaystyle W_{\kappa,\mu}\left(z\right)=\frac{z^{\mu+\frac{1% }{2}}2^{-2\mu}}{\Gamma\left(\frac{1}{2}+\mu-\kappa\right)}\*\int_{1}^{\infty}e% ^{-\frac{1}{2}zt}(t-1)^{\mu-\frac{1}{2}-\kappa}(t+1)^{\mu-\frac{1}{2}+\kappa}% \mathrm{d}t}} WhittakerW(kappa, mu, z)=((z)^(mu +(1)/(2))* (2)^(- 2*mu))/(GAMMA((1)/(2)+ mu - kappa))* int(exp(-(1)/(2)*z*t)*(t - 1)^(mu -(1)/(2)- kappa)*(t + 1)^(mu -(1)/(2)+ kappa), t = 1..infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[(z)^(\[Mu]+Divide[1,2])* (2)^(- 2*\[Mu]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Exp[-Divide[1,2]*z*t]*(t - 1)^(\[Mu]-Divide[1,2]- \[Kappa])*(t + 1)^(\[Mu]-Divide[1,2]+ \[Kappa]), {t, 1, Infinity}] Failure Failure Skip Error
13.16.E6 W ΞΊ , ΞΌ ⁑ ( z ) = e - 1 2 ⁒ z ⁒ z ΞΊ + 1 Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ Ξ“ ⁑ ( 1 2 - ΞΌ - ΞΊ ) ⁒ ∫ 0 ∞ W - ΞΊ , ΞΌ ⁑ ( t ) ⁒ e - 1 2 ⁒ t ⁒ t - ΞΊ - 1 t + z ⁒ d t Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ… 1 Euler-Gamma 1 2 πœ‡ πœ… Euler-Gamma 1 2 πœ‡ πœ… superscript subscript 0 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑑 superscript 𝑒 1 2 𝑑 superscript 𝑑 πœ… 1 𝑑 𝑧 𝑑 {\displaystyle{\displaystyle W_{\kappa,\mu}\left(z\right)=\frac{e^{-\frac{1}{2% }z}z^{\kappa+1}}{\Gamma\left(\frac{1}{2}+\mu-\kappa\right)\Gamma\left(\frac{1}% {2}-\mu-\kappa\right)}\*\int_{0}^{\infty}\frac{W_{-\kappa,\mu}\left(t\right)e^% {-\frac{1}{2}t}t^{-\kappa-1}}{t+z}\mathrm{d}t}} WhittakerW(kappa, mu, z)=(exp(-(1)/(2)*z)*(z)^(kappa + 1))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))* int((WhittakerW(- kappa, mu, t)*exp(-(1)/(2)*t)*(t)^(- kappa - 1))/(t + z), t = 0..infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ 1),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Divide[WhittakerW[- \[Kappa], \[Mu], t]*Exp[-Divide[1,2]*t]*(t)^(- \[Kappa]- 1),t + z], {t, 0, Infinity}] Failure Failure Skip Error
13.16.E7 W ΞΊ , ΞΌ ⁑ ( z ) = ( - 1 ) n ⁒ e - 1 2 ⁒ z ⁒ z 1 2 - ΞΌ - n Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ Ξ“ ⁑ ( 1 2 - ΞΌ - ΞΊ ) ⁒ ∫ 0 ∞ M - ΞΊ , ΞΌ ⁑ ( t ) ⁒ e - 1 2 ⁒ t ⁒ t n + ΞΌ - 1 2 t + z ⁒ d t Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 1 𝑛 superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 πœ‡ 𝑛 Euler-Gamma 1 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… superscript subscript 0 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑑 superscript 𝑒 1 2 𝑑 superscript 𝑑 𝑛 πœ‡ 1 2 𝑑 𝑧 𝑑 {\displaystyle{\displaystyle W_{\kappa,\mu}\left(z\right)=\frac{(-1)^{n}e^{-% \frac{1}{2}z}z^{\frac{1}{2}-\mu-n}}{\Gamma\left(1+2\mu\right)\Gamma\left(\frac% {1}{2}-\mu-\kappa\right)}\*\int_{0}^{\infty}\frac{M_{-\kappa,\mu}\left(t\right% )e^{-\frac{1}{2}t}t^{n+\mu-\frac{1}{2}}}{t+z}\mathrm{d}t}} WhittakerW(kappa, mu, z)=((- 1)^(n)* exp(-(1)/(2)*z)*(z)^((1)/(2)- mu - n))/(GAMMA(1 + 2*mu)*GAMMA((1)/(2)- mu - kappa))* int((WhittakerM(- kappa, mu, t)*exp(-(1)/(2)*t)*(t)^(n + mu -(1)/(2)))/(t + z), t = 0..infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu]- n),Gamma[1 + 2*\[Mu]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Divide[WhittakerM[- \[Kappa], \[Mu], t]*Exp[-Divide[1,2]*t]*(t)^(n + \[Mu]-Divide[1,2]),t + z], {t, 0, Infinity}] Failure Failure Skip Error
13.16.E8 W ΞΊ , ΞΌ ⁑ ( z ) = 2 ⁒ z ⁒ e - 1 2 ⁒ z Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ Ξ“ ⁑ ( 1 2 - ΞΌ - ΞΊ ) ⁒ ∫ 0 ∞ e - t ⁒ t - ΞΊ - 1 2 ⁒ K 2 ⁒ ΞΌ ⁑ ( 2 ⁒ z ⁒ t ) ⁒ d t Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 2 𝑧 superscript 𝑒 1 2 𝑧 Euler-Gamma 1 2 πœ‡ πœ… Euler-Gamma 1 2 πœ‡ πœ… superscript subscript 0 superscript 𝑒 𝑑 superscript 𝑑 πœ… 1 2 modified-Bessel-second-kind 2 πœ‡ 2 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle W_{\kappa,\mu}\left(z\right)=\frac{2\sqrt{z}e^{-% \frac{1}{2}z}}{\Gamma\left(\frac{1}{2}+\mu-\kappa\right)\Gamma\left(\frac{1}{2% }-\mu-\kappa\right)}\*\int_{0}^{\infty}e^{-t}t^{-\kappa-\frac{1}{2}}K_{2\mu}% \left(2\sqrt{zt}\right)\mathrm{d}t}} WhittakerW(kappa, mu, z)=(2*sqrt(z)*exp(-(1)/(2)*z))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))* int(exp(- t)*(t)^(- kappa -(1)/(2))* BesselK(2*mu, 2*sqrt(z*t)), t = 0..infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[2*Sqrt[z]*Exp[-Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Exp[- t]*(t)^(- \[Kappa]-Divide[1,2])* BesselK[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}] Successful Failure - Error
13.16.E9 W ΞΊ , ΞΌ ⁑ ( z ) = e - 1 2 ⁒ z ⁒ z ΞΊ + c ⁒ ∫ 0 ∞ e - z ⁒ t ⁒ t c - 1 ⁒ 𝐅 1 2 ⁑ ( 1 2 + ΞΌ - ΞΊ , 1 2 - ΞΌ - ΞΊ c ; - t ) ⁒ d t Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ… 𝑐 superscript subscript 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 𝑐 1 hypergeometric-bold-pFq 2 1 1 2 πœ‡ πœ… 1 2 πœ‡ πœ… 𝑐 𝑑 𝑑 {\displaystyle{\displaystyle W_{\kappa,\mu}\left(z\right)=e^{-\frac{1}{2}z}z^{% \kappa+c}\*\int_{0}^{\infty}e^{-zt}t^{c-1}{{}_{2}{\mathbf{F}}_{1}}\left({% \tfrac{1}{2}+\mu-\kappa,\tfrac{1}{2}-\mu-\kappa\atop c};-t\right)\mathrm{d}t}} WhittakerW(kappa, mu, z)= exp(-(1)/(2)*z)*(z)^(kappa + c)* int(exp(- z*t)*(t)^(c - 1)* hypergeom([(1)/(2)+ mu - kappa ,(1)/(2)- mu - kappa], [c], - t), t = 0..infinity) WhittakerW[\[Kappa], \[Mu], z]= Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ c)* Integrate[Exp[- z*t]*(t)^(c - 1)* HypergeometricPFQRegularized[{Divide[1,2]+ \[Mu]- \[Kappa],Divide[1,2]- \[Mu]- \[Kappa]}, {c}, - t], {t, 0, Infinity}] Failure Failure Skip Error
13.16.E10 1 Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( e + Ο€ ⁒ i ⁒ z ) = e 1 2 ⁒ z + ( 1 2 + ΞΌ ) ⁒ Ο€ ⁒ i 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ ∫ - i ⁒ ∞ i ⁒ ∞ Ξ“ ⁑ ( t - ΞΊ ) ⁒ Ξ“ ⁑ ( 1 2 + ΞΌ - t ) Ξ“ ⁑ ( 1 2 + ΞΌ + t ) ⁒ z t ⁒ d t 1 Euler-Gamma 1 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ superscript 𝑒 πœ‹ imaginary-unit 𝑧 superscript 𝑒 1 2 𝑧 1 2 πœ‡ πœ‹ imaginary-unit 2 πœ‹ imaginary-unit Euler-Gamma 1 2 πœ‡ πœ… superscript subscript imaginary-unit imaginary-unit Euler-Gamma 𝑑 πœ… Euler-Gamma 1 2 πœ‡ 𝑑 Euler-Gamma 1 2 πœ‡ 𝑑 superscript 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)}M_{\kappa,\mu}% \left(e^{+\pi\mathrm{i}}z\right)=\frac{e^{\frac{1}{2}z+(\frac{1}{2}+\mu)\pi% \mathrm{i}}}{2\pi\mathrm{i}\Gamma\left(\frac{1}{2}+\mu-\kappa\right)}\*\int_{-% \mathrm{i}\infty}^{\mathrm{i}\infty}\frac{\Gamma\left(t-\kappa\right)\Gamma% \left(\frac{1}{2}+\mu-t\right)}{\Gamma\left(\frac{1}{2}+\mu+t\right)}z^{t}% \mathrm{d}t}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, exp(+ Pi*I)*z)=(exp((1)/(2)*z +((1)/(2)+ mu)* Pi*I))/(2*Pi*I*GAMMA((1)/(2)+ mu - kappa))* int((GAMMA(t - kappa)*GAMMA((1)/(2)+ mu - t))/(GAMMA((1)/(2)+ mu + t))*(z)^(t), t = - I*infinity..I*infinity) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], Exp[+ Pi*I]*z]=Divide[Exp[Divide[1,2]*z +(Divide[1,2]+ \[Mu])* Pi*I],2*Pi*I*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Divide[Gamma[t - \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- t],Gamma[Divide[1,2]+ \[Mu]+ t]]*(z)^(t), {t, - I*Infinity, I*Infinity}] Error Failure - Error
13.16.E10 1 Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( e - Ο€ ⁒ i ⁒ z ) = e 1 2 ⁒ z - ( 1 2 + ΞΌ ) ⁒ Ο€ ⁒ i 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ ∫ - i ⁒ ∞ i ⁒ ∞ Ξ“ ⁑ ( t - ΞΊ ) ⁒ Ξ“ ⁑ ( 1 2 + ΞΌ - t ) Ξ“ ⁑ ( 1 2 + ΞΌ + t ) ⁒ z t ⁒ d t 1 Euler-Gamma 1 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ superscript 𝑒 πœ‹ imaginary-unit 𝑧 superscript 𝑒 1 2 𝑧 1 2 πœ‡ πœ‹ imaginary-unit 2 πœ‹ imaginary-unit Euler-Gamma 1 2 πœ‡ πœ… superscript subscript imaginary-unit imaginary-unit Euler-Gamma 𝑑 πœ… Euler-Gamma 1 2 πœ‡ 𝑑 Euler-Gamma 1 2 πœ‡ 𝑑 superscript 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)}M_{\kappa,\mu}% \left(e^{-\pi\mathrm{i}}z\right)=\frac{e^{\frac{1}{2}z-(\frac{1}{2}+\mu)\pi% \mathrm{i}}}{2\pi\mathrm{i}\Gamma\left(\frac{1}{2}+\mu-\kappa\right)}\*\int_{-% \mathrm{i}\infty}^{\mathrm{i}\infty}\frac{\Gamma\left(t-\kappa\right)\Gamma% \left(\frac{1}{2}+\mu-t\right)}{\Gamma\left(\frac{1}{2}+\mu+t\right)}z^{t}% \mathrm{d}t}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, exp(- Pi*I)*z)=(exp((1)/(2)*z -((1)/(2)+ mu)* Pi*I))/(2*Pi*I*GAMMA((1)/(2)+ mu - kappa))* int((GAMMA(t - kappa)*GAMMA((1)/(2)+ mu - t))/(GAMMA((1)/(2)+ mu + t))*(z)^(t), t = - I*infinity..I*infinity) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], Exp[- Pi*I]*z]=Divide[Exp[Divide[1,2]*z -(Divide[1,2]+ \[Mu])* Pi*I],2*Pi*I*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Divide[Gamma[t - \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- t],Gamma[Divide[1,2]+ \[Mu]+ t]]*(z)^(t), {t, - I*Infinity, I*Infinity}] Error Failure - Error
13.16.E11 W ΞΊ , ΞΌ ⁑ ( z ) = e - 1 2 ⁒ z 2 ⁒ Ο€ ⁒ i ⁒ ∫ - i ⁒ ∞ i ⁒ ∞ Ξ“ ⁑ ( 1 2 + ΞΌ + t ) ⁒ Ξ“ ⁑ ( 1 2 - ΞΌ + t ) ⁒ Ξ“ ⁑ ( - ΞΊ - t ) Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ Ξ“ ⁑ ( 1 2 - ΞΌ - ΞΊ ) ⁒ z - t ⁒ d t Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 𝑒 1 2 𝑧 2 πœ‹ imaginary-unit superscript subscript imaginary-unit imaginary-unit Euler-Gamma 1 2 πœ‡ 𝑑 Euler-Gamma 1 2 πœ‡ 𝑑 Euler-Gamma πœ… 𝑑 Euler-Gamma 1 2 πœ‡ πœ… Euler-Gamma 1 2 πœ‡ πœ… superscript 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle W_{\kappa,\mu}\left(z\right)=\frac{e^{-\frac{1}{2% }z}}{2\pi\mathrm{i}}\*\int_{-\mathrm{i}\infty}^{\mathrm{i}\infty}\frac{\Gamma% \left(\frac{1}{2}+\mu+t\right)\Gamma\left(\frac{1}{2}-\mu+t\right)\Gamma\left(% -\kappa-t\right)}{\Gamma\left(\frac{1}{2}+\mu-\kappa\right)\Gamma\left(\frac{1% }{2}-\mu-\kappa\right)}z^{-t}\mathrm{d}t}} WhittakerW(kappa, mu, z)=(exp(-(1)/(2)*z))/(2*Pi*I)* int((GAMMA((1)/(2)+ mu + t)*GAMMA((1)/(2)- mu + t)*GAMMA(- kappa - t))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*(z)^(- t), t = - I*infinity..I*infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[Exp[-Divide[1,2]*z],2*Pi*I]* Integrate[Divide[Gamma[Divide[1,2]+ \[Mu]+ t]*Gamma[Divide[1,2]- \[Mu]+ t]*Gamma[- \[Kappa]- t],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*(z)^(- t), {t, - I*Infinity, I*Infinity}] Error Failure - Error
13.16.E12 W ΞΊ , ΞΌ ⁑ ( z ) = e 1 2 ⁒ z 2 ⁒ Ο€ ⁒ i ⁒ ∫ - i ⁒ ∞ i ⁒ ∞ Ξ“ ⁑ ( 1 2 + ΞΌ + t ) ⁒ Ξ“ ⁑ ( 1 2 - ΞΌ + t ) Ξ“ ⁑ ( 1 - ΞΊ + t ) ⁒ z - t ⁒ d t Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑧 superscript 𝑒 1 2 𝑧 2 πœ‹ imaginary-unit superscript subscript imaginary-unit imaginary-unit Euler-Gamma 1 2 πœ‡ 𝑑 Euler-Gamma 1 2 πœ‡ 𝑑 Euler-Gamma 1 πœ… 𝑑 superscript 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle W_{\kappa,\mu}\left(z\right)=\frac{e^{\frac{1}{2}% z}}{2\pi\mathrm{i}}\int_{-\mathrm{i}\infty}^{\mathrm{i}\infty}\frac{\Gamma% \left(\frac{1}{2}+\mu+t\right)\Gamma\left(\frac{1}{2}-\mu+t\right)}{\Gamma% \left(1-\kappa+t\right)}z^{-t}\mathrm{d}t}} WhittakerW(kappa, mu, z)=(exp((1)/(2)*z))/(2*Pi*I)*int((GAMMA((1)/(2)+ mu + t)*GAMMA((1)/(2)- mu + t))/(GAMMA(1 - kappa + t))*(z)^(- t), t = - I*infinity..I*infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[Exp[Divide[1,2]*z],2*Pi*I]*Integrate[Divide[Gamma[Divide[1,2]+ \[Mu]+ t]*Gamma[Divide[1,2]- \[Mu]+ t],Gamma[1 - \[Kappa]+ t]]*(z)^(- t), {t, - I*Infinity, I*Infinity}] Failure Failure Skip Error
13.18.E1 M 0 , 1 2 ⁑ ( 2 ⁒ z ) = 2 ⁒ sinh ⁑ z Whittaker-confluent-hypergeometric-M 0 1 2 2 𝑧 2 𝑧 {\displaystyle{\displaystyle M_{0,\frac{1}{2}}\left(2z\right)=2\sinh z}} WhittakerM(0, (1)/(2), 2*z)= 2*sinh(z) WhittakerM[0, Divide[1,2], 2*z]= 2*Sinh[z] Successful Successful - -
13.18.E2 M ΞΊ , ΞΊ - 1 2 ⁑ ( z ) = W ΞΊ , ΞΊ - 1 2 ⁑ ( z ) Whittaker-confluent-hypergeometric-M πœ… πœ… 1 2 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ… 1 2 𝑧 {\displaystyle{\displaystyle M_{\kappa,\kappa-\frac{1}{2}}\left(z\right)=W_{% \kappa,\kappa-\frac{1}{2}}\left(z\right)}} WhittakerM(kappa, kappa -(1)/(2), z)= WhittakerW(kappa, kappa -(1)/(2), z) WhittakerM[\[Kappa], \[Kappa]-Divide[1,2], z]= WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z] Successful Successful - -
13.18.E2 W ΞΊ , ΞΊ - 1 2 ⁑ ( z ) = W ΞΊ , - ΞΊ + 1 2 ⁑ ( z ) Whittaker-confluent-hypergeometric-W πœ… πœ… 1 2 𝑧 Whittaker-confluent-hypergeometric-W πœ… πœ… 1 2 𝑧 {\displaystyle{\displaystyle W_{\kappa,\kappa-\frac{1}{2}}\left(z\right)=W_{% \kappa,-\kappa+\frac{1}{2}}\left(z\right)}} WhittakerW(kappa, kappa -(1)/(2), z)= WhittakerW(kappa, - kappa +(1)/(2), z) WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z]= WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z] Failure Successful Successful -
13.18.E2 W ΞΊ , - ΞΊ + 1 2 ⁑ ( z ) = e - 1 2 ⁒ z ⁒ z ΞΊ Whittaker-confluent-hypergeometric-W πœ… πœ… 1 2 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ… {\displaystyle{\displaystyle W_{\kappa,-\kappa+\frac{1}{2}}\left(z\right)=e^{-% \frac{1}{2}z}z^{\kappa}}} WhittakerW(kappa, - kappa +(1)/(2), z)= exp(-(1)/(2)*z)*(z)^(kappa) WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z]= Exp[-Divide[1,2]*z]*(z)^(\[Kappa]) Failure Successful Skip -
13.18.E3 M ΞΊ , - ΞΊ - 1 2 ⁑ ( z ) = e 1 2 ⁒ z ⁒ z - ΞΊ Whittaker-confluent-hypergeometric-M πœ… πœ… 1 2 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 πœ… {\displaystyle{\displaystyle M_{\kappa,-\kappa-\frac{1}{2}}\left(z\right)=e^{% \frac{1}{2}z}z^{-\kappa}}} WhittakerM(kappa, - kappa -(1)/(2), z)= exp((1)/(2)*z)*(z)^(- kappa) WhittakerM[\[Kappa], - \[Kappa]-Divide[1,2], z]= Exp[Divide[1,2]*z]*(z)^(- \[Kappa]) Successful Successful - -
13.18.E4 M ΞΌ - 1 2 , ΞΌ ⁑ ( z ) = 2 ⁒ ΞΌ ⁒ e 1 2 ⁒ z ⁒ z 1 2 - ΞΌ ⁒ Ξ³ ⁑ ( 2 ⁒ ΞΌ , z ) Whittaker-confluent-hypergeometric-M πœ‡ 1 2 πœ‡ 𝑧 2 πœ‡ superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 πœ‡ incomplete-gamma 2 πœ‡ 𝑧 {\displaystyle{\displaystyle M_{\mu-\frac{1}{2},\mu}\left(z\right)=2\mu e^{% \frac{1}{2}z}z^{\frac{1}{2}-\mu}\gamma\left(2\mu,z\right)}} WhittakerM(mu -(1)/(2), mu, z)= 2*mu*exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu)-GAMMA(2*mu, z) WhittakerM[\[Mu]-Divide[1,2], \[Mu], z]= 2*\[Mu]*Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], 0, z] Failure Successful
Fail
4.200609167-1.330017252*I <- {mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.614512827-1.289496767*I <- {mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
2101.588542-3319.229912*I <- {mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-3.931276422-11.62291844*I <- {mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
-
13.18.E5 W ΞΌ - 1 2 , ΞΌ ⁑ ( z ) = e 1 2 ⁒ z ⁒ z 1 2 - ΞΌ ⁒ Ξ“ ⁑ ( 2 ⁒ ΞΌ , z ) Whittaker-confluent-hypergeometric-W πœ‡ 1 2 πœ‡ 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 πœ‡ incomplete-Gamma 2 πœ‡ 𝑧 {\displaystyle{\displaystyle W_{\mu-\frac{1}{2},\mu}\left(z\right)=e^{\frac{1}% {2}z}z^{\frac{1}{2}-\mu}\Gamma\left(2\mu,z\right)}} WhittakerW(mu -(1)/(2), mu, z)= exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu, z) WhittakerW[\[Mu]-Divide[1,2], \[Mu], z]= Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], z] Successful Successful - -
13.18.E6 M - 1 4 , 1 4 ⁑ ( z 2 ) = 1 2 ⁒ e 1 2 ⁒ z 2 ⁒ Ο€ ⁒ z ⁒ erf ⁑ ( z ) Whittaker-confluent-hypergeometric-M 1 4 1 4 superscript 𝑧 2 1 2 superscript 𝑒 1 2 superscript 𝑧 2 πœ‹ 𝑧 error-function 𝑧 {\displaystyle{\displaystyle M_{-\frac{1}{4},\frac{1}{4}}\left(z^{2}\right)=% \tfrac{1}{2}e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\operatorname{erf}\left(z\right)}} WhittakerM(-(1)/(4), (1)/(4), (z)^(2))=(1)/(2)*exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erf(z) WhittakerM[-Divide[1,4], Divide[1,4], (z)^(2)]=Divide[1,2]*Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erf[z] Failure Failure
Fail
.4198419251+1.807257668*I <- {z = -2^(1/2)-I*2^(1/2)}
.4198419251-1.807257668*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.4198419223374512, 1.8072576674879106] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.4198419223374512, -1.8072576674879106] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.18.E7 W - 1 4 , + 1 4 ⁑ ( z 2 ) = e 1 2 ⁒ z 2 ⁒ Ο€ ⁒ z ⁒ erfc ⁑ ( z ) Whittaker-confluent-hypergeometric-W 1 4 1 4 superscript 𝑧 2 superscript 𝑒 1 2 superscript 𝑧 2 πœ‹ 𝑧 complementary-error-function 𝑧 {\displaystyle{\displaystyle W_{-\frac{1}{4},+\frac{1}{4}}\left(z^{2}\right)=e% ^{\frac{1}{2}z^{2}}\sqrt{\pi z}\operatorname{erfc}\left(z\right)}} WhittakerW(-(1)/(4), +(1)/(4), (z)^(2))= exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z) WhittakerW[-Divide[1,4], +Divide[1,4], (z)^(2)]= Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z] Failure Failure
Fail
-4.382229868-3.743892002*I <- {z = -2^(1/2)-I*2^(1/2)}
-4.382229868+3.743892002*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-4.38222986299419, -3.7438920038513093] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.38222986299419, 3.7438920038513093] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.18.E7 W - 1 4 , - 1 4 ⁑ ( z 2 ) = e 1 2 ⁒ z 2 ⁒ Ο€ ⁒ z ⁒ erfc ⁑ ( z ) Whittaker-confluent-hypergeometric-W 1 4 1 4 superscript 𝑧 2 superscript 𝑒 1 2 superscript 𝑧 2 πœ‹ 𝑧 complementary-error-function 𝑧 {\displaystyle{\displaystyle W_{-\frac{1}{4},-\frac{1}{4}}\left(z^{2}\right)=e% ^{\frac{1}{2}z^{2}}\sqrt{\pi z}\operatorname{erfc}\left(z\right)}} WhittakerW(-(1)/(4), -(1)/(4), (z)^(2))= exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z) WhittakerW[-Divide[1,4], -Divide[1,4], (z)^(2)]= Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z] Failure Failure
Fail
-4.382229868-3.743892002*I <- {z = -2^(1/2)-I*2^(1/2)}
-4.382229868+3.743892002*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-4.382229862994191, -3.7438920038513093] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.382229862994191, 3.7438920038513093] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.18.E8 M 0 , Ξ½ ⁑ ( 2 ⁒ z ) = 2 2 ⁒ Ξ½ + 1 2 ⁒ Ξ“ ⁑ ( 1 + Ξ½ ) ⁒ z ⁒ I Ξ½ ⁑ ( z ) Whittaker-confluent-hypergeometric-M 0 𝜈 2 𝑧 superscript 2 2 𝜈 1 2 Euler-Gamma 1 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 {\displaystyle{\displaystyle M_{0,\nu}\left(2z\right)=2^{2\nu+\frac{1}{2}}% \Gamma\left(1+\nu\right)\sqrt{z}I_{\nu}\left(z\right)}} WhittakerM(0, nu, 2*z)= (2)^(2*nu +(1)/(2))* GAMMA(1 + nu)*sqrt(z)*BesselI(nu, z) WhittakerM[0, \[Nu], 2*z]= (2)^(2*\[Nu]+Divide[1,2])* Gamma[1 + \[Nu]]*Sqrt[z]*BesselI[\[Nu], z] Successful Successful - -
13.18.E9 W 0 , Ξ½ ⁑ ( 2 ⁒ z ) = 2 ⁒ z / Ο€ ⁒ K Ξ½ ⁑ ( z ) Whittaker-confluent-hypergeometric-W 0 𝜈 2 𝑧 2 𝑧 πœ‹ modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle W_{0,\nu}\left(2z\right)=\sqrt{\ifrac{2z}{\pi}}K_% {\nu}\left(z\right)}} WhittakerW(0, nu, 2*z)=sqrt((2*z)/(Pi))*BesselK(nu, z) WhittakerW[0, \[Nu], 2*z]=Sqrt[Divide[2*z,Pi]]*BesselK[\[Nu], z] Successful Successful - -
13.18.E10 W 0 , 1 3 ⁑ ( 4 3 ⁒ z 3 2 ) = 2 ⁒ Ο€ ⁒ z 1 4 ⁒ Ai ⁑ ( z ) Whittaker-confluent-hypergeometric-W 0 1 3 4 3 superscript 𝑧 3 2 2 πœ‹ superscript 𝑧 1 4 Airy-Ai 𝑧 {\displaystyle{\displaystyle W_{0,\frac{1}{3}}\left(\tfrac{4}{3}z^{\frac{3}{2}% }\right)=2\sqrt{\pi}z^{\frac{1}{4}}\mathrm{Ai}\left(z\right)}} WhittakerW(0, (1)/(3), (4)/(3)*(z)^((3)/(2)))= 2*sqrt(Pi)*(z)^((1)/(4))* AiryAi(z) WhittakerW[0, Divide[1,3], Divide[4,3]*(z)^(Divide[3,2])]= 2*Sqrt[Pi]*(z)^(Divide[1,4])* AiryAi[z] Failure Failure
Fail
-.111157710+.128876647*I <- {z = -2^(1/2)-I*2^(1/2)}
-.111157710-.128876647*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.11115770699234684, 0.12887664550372602] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.11115770699234684, -0.12887664550372602] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.18.E11 W - 1 2 ⁒ a , + 1 4 ⁑ ( 1 2 ⁒ z 2 ) = 2 1 2 ⁒ a ⁒ z ⁒ U ⁑ ( a , z ) Whittaker-confluent-hypergeometric-W 1 2 π‘Ž 1 4 1 2 superscript 𝑧 2 superscript 2 1 2 π‘Ž 𝑧 parabolic-U π‘Ž 𝑧 {\displaystyle{\displaystyle W_{-\frac{1}{2}a,+\frac{1}{4}}\left(\tfrac{1}{2}z% ^{2}\right)=2^{\frac{1}{2}a}\sqrt{z}U(a,z)}} WhittakerW(-(1)/(2)*a, +(1)/(4), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a)*sqrt(z)*CylinderU(a , z, $1) WhittakerW[-Divide[1,2]*a, +Divide[1,4], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a)*Sqrt[z]*ParabolicCylinderD[-a , z - 1/2, $1] Error Error - -
13.18.E11 W - 1 2 ⁒ a , - 1 4 ⁑ ( 1 2 ⁒ z 2 ) = 2 1 2 ⁒ a ⁒ z ⁒ U ⁑ ( a , z ) Whittaker-confluent-hypergeometric-W 1 2 π‘Ž 1 4 1 2 superscript 𝑧 2 superscript 2 1 2 π‘Ž 𝑧 parabolic-U π‘Ž 𝑧 {\displaystyle{\displaystyle W_{-\frac{1}{2}a,-\frac{1}{4}}\left(\tfrac{1}{2}z% ^{2}\right)=2^{\frac{1}{2}a}\sqrt{z}U(a,z)}} WhittakerW(-(1)/(2)*a, -(1)/(4), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a)*sqrt(z)*CylinderU(a , z, $1) WhittakerW[-Divide[1,2]*a, -Divide[1,4], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a)*Sqrt[z]*ParabolicCylinderD[-a , z - 1/2, $1] Error Error - -
13.18.E12 M - 1 2 ⁒ a , - 1 4 ⁑ ( 1 2 ⁒ z 2 ) = 2 1 2 ⁒ a - 1 ⁒ Ξ“ ⁑ ( 1 2 ⁒ a + 3 4 ) ⁒ z / Ο€ ⁒ ( U ⁑ ( a , z ) + U ⁑ ( a , - z ) ) Whittaker-confluent-hypergeometric-M 1 2 π‘Ž 1 4 1 2 superscript 𝑧 2 superscript 2 1 2 π‘Ž 1 Euler-Gamma 1 2 π‘Ž 3 4 𝑧 πœ‹ parabolic-U π‘Ž 𝑧 parabolic-U π‘Ž 𝑧 {\displaystyle{\displaystyle M_{-\frac{1}{2}a,-\frac{1}{4}}\left(\tfrac{1}{2}z% ^{2}\right)=2^{\frac{1}{2}a-1}\Gamma\left(\tfrac{1}{2}a+\tfrac{3}{4}\right)% \sqrt{\ifrac{z}{\pi}}\*\left(U\left(a,z\right)+U\left(a,-z\right)\right)}} WhittakerM(-(1)/(2)*a, -(1)/(4), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a - 1)* GAMMA((1)/(2)*a +(3)/(4))*sqrt((z)/(Pi))*(CylinderU(a, z)+ CylinderU(a, - z)) WhittakerM[-Divide[1,2]*a, -Divide[1,4], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a - 1)* Gamma[Divide[1,2]*a +Divide[3,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[-a - 1/2, z]+ ParabolicCylinderD[-a - 1/2, - z]) Failure Failure
Fail
-1.595813139-1.786229512*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-6.548449077-7.324160790*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-6.548449077+7.324160790*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.595813139+1.786229512*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-1.5958131384127743, -1.7862295136979531] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-6.548449089259156, -7.324160795019219] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-6.548449089259156, 7.324160795019219] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5958131384127743, 1.7862295136979531] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.18.E13 M - 1 2 ⁒ a , 1 4 ⁑ ( 1 2 ⁒ z 2 ) = 2 1 2 ⁒ a - 2 ⁒ Ξ“ ⁑ ( 1 2 ⁒ a + 1 4 ) ⁒ z / Ο€ ⁒ ( U ⁑ ( a , - z ) - U ⁑ ( a , z ) ) Whittaker-confluent-hypergeometric-M 1 2 π‘Ž 1 4 1 2 superscript 𝑧 2 superscript 2 1 2 π‘Ž 2 Euler-Gamma 1 2 π‘Ž 1 4 𝑧 πœ‹ parabolic-U π‘Ž 𝑧 parabolic-U π‘Ž 𝑧 {\displaystyle{\displaystyle M_{-\frac{1}{2}a,\frac{1}{4}}\left(\tfrac{1}{2}z^% {2}\right)=2^{\frac{1}{2}a-2}\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{4}\right)% \sqrt{\ifrac{z}{\pi}}\*\left(U\left(a,-z\right)-U\left(a,z\right)\right)}} WhittakerM(-(1)/(2)*a, (1)/(4), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a - 2)* GAMMA((1)/(2)*a +(1)/(4))*sqrt((z)/(Pi))*(CylinderU(a, - z)- CylinderU(a, z)) WhittakerM[-Divide[1,2]*a, Divide[1,4], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a - 2)* Gamma[Divide[1,2]*a +Divide[1,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[-a - 1/2, - z]- ParabolicCylinderD[-a - 1/2, z]) Failure Failure
Fail
-.2924843841+.9350194047*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
2.175978499-4.464282068*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
2.175978499+4.464282068*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.2924843841-.9350194047*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.29248438571599344, 0.9350194045102764] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.175978498735585, -4.464282074060343] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.175978498735585, 4.464282074060343] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.29248438571599344, -0.9350194045102764] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.18.E14 M 1 4 + n , - 1 4 ⁑ ( z 2 ) = ( - 1 ) n ⁒ n ! ( 2 ⁒ n ) ! ⁒ e - 1 2 ⁒ z 2 ⁒ z ⁒ H 2 ⁒ n ⁑ ( z ) Whittaker-confluent-hypergeometric-M 1 4 𝑛 1 4 superscript 𝑧 2 superscript 1 𝑛 𝑛 2 𝑛 superscript 𝑒 1 2 superscript 𝑧 2 𝑧 Hermite-polynomial-H 2 𝑛 𝑧 {\displaystyle{\displaystyle M_{\frac{1}{4}+n,-\frac{1}{4}}\left(z^{2}\right)=% (-1)^{n}\frac{n!}{(2n)!}e^{-\frac{1}{2}z^{2}}\sqrt{z}H_{2n}\left(z\right)}} WhittakerM((1)/(4)+ n, -(1)/(4), (z)^(2))=(- 1)^(n)*(factorial(n))/(factorial(2*n))*exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(2*n, z) WhittakerM[Divide[1,4]+ n, -Divide[1,4], (z)^(2)]=(- 1)^(n)*Divide[(n)!,(2*n)!]*Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[2*n, z] Failure Failure
Fail
-10.35742410-12.35814572*I <- {z = -2^(1/2)-I*2^(1/2), n = 1}
-51.12520045+7.99947819*I <- {z = -2^(1/2)-I*2^(1/2), n = 2}
-70.94025645+106.0858980*I <- {z = -2^(1/2)-I*2^(1/2), n = 3}
-10.35742410+12.35814572*I <- {z = -2^(1/2)+I*2^(1/2), n = 1}
... skip entries to safe data
Fail
Complex[-10.357424118634546, -12.358145719594317] <- {Rule[n, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-51.125200492418, 7.999478257226418] <- {Rule[n, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-70.9402563798825, 106.08589822655182] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-10.357424118634546, 12.358145719594317] <- {Rule[n, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.18.E15 M 3 4 + n , 1 4 ⁑ ( z 2 ) = ( - 1 ) n ⁒ n ! ( 2 ⁒ n + 1 ) ! ⁒ e - 1 2 ⁒ z 2 ⁒ z 2 ⁒ H 2 ⁒ n + 1 ⁑ ( z ) Whittaker-confluent-hypergeometric-M 3 4 𝑛 1 4 superscript 𝑧 2 superscript 1 𝑛 𝑛 2 𝑛 1 superscript 𝑒 1 2 superscript 𝑧 2 𝑧 2 Hermite-polynomial-H 2 𝑛 1 𝑧 {\displaystyle{\displaystyle M_{\frac{3}{4}+n,\frac{1}{4}}\left(z^{2}\right)=(% -1)^{n}\frac{n!}{(2n+1)!}\frac{e^{-\frac{1}{2}z^{2}}\sqrt{z}}{2}H_{2n+1}\left(% z\right)}} WhittakerM((3)/(4)+ n, (1)/(4), (z)^(2))=(- 1)^(n)*(factorial(n))/(factorial(2*n + 1))*(exp(-(1)/(2)*(z)^(2))*sqrt(z))/(2)*HermiteH(2*n + 1, z) WhittakerM[Divide[3,4]+ n, Divide[1,4], (z)^(2)]=(- 1)^(n)*Divide[(n)!,(2*n + 1)!]*Divide[Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z],2]*HermiteH[2*n + 1, z] Failure Failure
Fail
-10.80554626-3.608039299*I <- {z = -2^(1/2)-I*2^(1/2), n = 1}
-20.84223327+13.83655303*I <- {z = -2^(1/2)-I*2^(1/2), n = 2}
-10.76427954+47.62458665*I <- {z = -2^(1/2)-I*2^(1/2), n = 3}
-10.80554626+3.608039299*I <- {z = -2^(1/2)+I*2^(1/2), n = 1}
... skip entries to safe data
Fail
Complex[-10.805546272663701, -3.6080392912358032] <- {Rule[n, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-20.84223327255954, 13.836553078751255] <- {Rule[n, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-10.764279468212877, 47.6245867445262] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-10.805546272663701, 3.6080392912358032] <- {Rule[n, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.18.E16 W 1 4 + 1 2 ⁒ n , 1 4 ⁑ ( z 2 ) = 2 - n ⁒ e - 1 2 ⁒ z 2 ⁒ z ⁒ H n ⁑ ( z ) Whittaker-confluent-hypergeometric-W 1 4 1 2 𝑛 1 4 superscript 𝑧 2 superscript 2 𝑛 superscript 𝑒 1 2 superscript 𝑧 2 𝑧 Hermite-polynomial-H 𝑛 𝑧 {\displaystyle{\displaystyle W_{\frac{1}{4}+\frac{1}{2}n,\frac{1}{4}}\left(z^{% 2}\right)=2^{-n}e^{-\frac{1}{2}z^{2}}\sqrt{z}H_{n}\left(z\right)}} WhittakerW((1)/(4)+(1)/(2)*n, (1)/(4), (z)^(2))= (2)^(- n)* exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(n, z) WhittakerW[Divide[1,4]+Divide[1,2]*n, Divide[1,4], (z)^(2)]= (2)^(- n)* Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[n, z] Failure Failure
Fail
-.145985934-3.997335125*I <- {z = -2^(1/2)-I*2^(1/2), n = 1}
5.178712051+6.179072864*I <- {z = -2^(1/2)-I*2^(1/2), n = 2}
16.20831939+5.412058949*I <- {z = -2^(1/2)-I*2^(1/2), n = 3}
-.145985934+3.997335125*I <- {z = -2^(1/2)+I*2^(1/2), n = 1}
... skip entries to safe data
Fail
Complex[-0.1459859378673154, -3.997335125548645] <- {Rule[n, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[5.178712059317274, 6.179072859797158] <- {Rule[n, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[16.208319408995553, 5.412058936853704] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.1459859378673154, 3.997335125548645] <- {Rule[n, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.18.E17 W 1 2 ⁒ Ξ± + 1 2 + n , 1 2 ⁒ Ξ± ⁑ ( z ) = ( - 1 ) n ⁒ ( Ξ± + 1 ) n ⁒ M 1 2 ⁒ Ξ± + 1 2 + n , 1 2 ⁒ Ξ± ⁑ ( z ) Whittaker-confluent-hypergeometric-W 1 2 𝛼 1 2 𝑛 1 2 𝛼 𝑧 superscript 1 𝑛 Pochhammer 𝛼 1 𝑛 Whittaker-confluent-hypergeometric-M 1 2 𝛼 1 2 𝑛 1 2 𝛼 𝑧 {\displaystyle{\displaystyle W_{\frac{1}{2}\alpha+\frac{1}{2}+n,\frac{1}{2}% \alpha}\left(z\right)=(-1)^{n}{\left(\alpha+1\right)_{n}}M_{\frac{1}{2}\alpha+% \frac{1}{2}+n,\frac{1}{2}\alpha}\left(z\right)}} WhittakerW((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z)=(- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) WhittakerW[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z]=(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] Failure Failure Successful Successful
13.20.E9 ΞΆ ⁒ ΞΆ 2 + Ξ± 2 + Ξ± 2 ⁒ arcsinh ⁑ ( ΞΆ Ξ± ) = X ΞΌ - 2 ⁒ ΞΊ ΞΌ ⁒ ln ⁑ ( X + x - 2 ⁒ ΞΊ 2 ⁒ ΞΌ 2 - ΞΊ 2 ) - 2 ⁒ ln ⁑ ( ΞΌ ⁒ X + 2 ⁒ ΞΌ 2 - ΞΊ ⁒ x x ⁒ ΞΌ 2 - ΞΊ 2 ) 𝜁 superscript 𝜁 2 superscript 𝛼 2 superscript 𝛼 2 hyperbolic-inverse-sine 𝜁 𝛼 𝑋 πœ‡ 2 πœ… πœ‡ 𝑋 π‘₯ 2 πœ… 2 superscript πœ‡ 2 superscript πœ… 2 2 πœ‡ 𝑋 2 superscript πœ‡ 2 πœ… π‘₯ π‘₯ superscript πœ‡ 2 superscript πœ… 2 {\displaystyle{\displaystyle\zeta\sqrt{\zeta^{2}+\alpha^{2}}+\alpha^{2}% \operatorname{arcsinh}\left(\frac{\zeta}{\alpha}\right)=\frac{X}{\mu}-\frac{2% \kappa}{\mu}\ln\left(\frac{X+x-2\kappa}{2\sqrt{\mu^{2}-\kappa^{2}}}\right)-2% \ln\left(\frac{\mu X+2\mu^{2}-\kappa x}{x\sqrt{\mu^{2}-\kappa^{2}}}\right)}} zeta*sqrt((zeta)^(2)+ (alpha)^(2))+ (alpha)^(2)* arcsinh((zeta)/(alpha))=(X)/(mu)-(2*kappa)/(mu)*ln((X + x - 2*kappa)/(2*sqrt((mu)^(2)- (kappa)^(2))))- 2*ln((mu*X + 2*(mu)^(2)- kappa*x)/(x*sqrt((mu)^(2)- (kappa)^(2)))) \[zeta]*Sqrt[(\[zeta])^(2)+ (\[Alpha])^(2)]+ (\[Alpha])^(2)* ArcSinh[Divide[\[zeta],\[Alpha]]]=Divide[X,\[Mu]]-Divide[2*\[Kappa],\[Mu]]*Log[Divide[X + x - 2*\[Kappa],2*Sqrt[(\[Mu])^(2)- (\[Kappa])^(2)]]]- 2*Log[Divide[\[Mu]*X + 2*(\[Mu])^(2)- \[Kappa]*x,x*Sqrt[(\[Mu])^(2)- (\[Kappa])^(2)]]] Failure Failure Skip Error
13.20.E10 ΞΆ = + x ΞΌ - 2 - 2 ⁒ ln ⁑ ( x 2 ⁒ ΞΌ ) 𝜁 π‘₯ πœ‡ 2 2 π‘₯ 2 πœ‡ {\displaystyle{\displaystyle\zeta=+\sqrt{\frac{x}{\mu}-2-2\ln\left(\frac{x}{2% \mu}\right)}}} zeta = +sqrt((x)/(mu)- 2 - 2*ln((x)/(2*mu))) \[zeta]= +Sqrt[Divide[x,\[Mu]]- 2 - 2*Log[Divide[x,2*\[Mu]]]] Failure Failure
Fail
.234294656+.8983972080*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 1}
.7206264000+.7915884667*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 2}
1.051794028+.7104212616*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 3}
.234294656-1.930029916*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Error
13.20.E10 ΞΆ = - x ΞΌ - 2 - 2 ⁒ ln ⁑ ( x 2 ⁒ ΞΌ ) 𝜁 π‘₯ πœ‡ 2 2 π‘₯ 2 πœ‡ {\displaystyle{\displaystyle\zeta=-\sqrt{\frac{x}{\mu}-2-2\ln\left(\frac{x}{2% \mu}\right)}}} zeta = -sqrt((x)/(mu)- 2 - 2*ln((x)/(2*mu))) \[zeta]= -Sqrt[Divide[x,\[Mu]]- 2 - 2*Log[Divide[x,2*\[Mu]]]] Failure Failure
Fail
2.594132468+1.930029916*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 1}
2.107800724+2.036838657*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 2}
1.776633096+2.118005862*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 3}
2.594132468-.8983972080*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Error
13.20.E13 ΞΆ ⁒ ΞΆ 2 - Ξ± 2 - Ξ± 2 ⁒ arccosh ⁑ ( ΞΆ Ξ± ) = X ΞΌ - 2 ⁒ ΞΊ ΞΌ ⁒ ln ⁑ ( X + x - 2 ⁒ ΞΊ 2 ⁒ ΞΊ 2 - ΞΌ 2 ) - 2 ⁒ ln ⁑ ( ΞΊ ⁒ x - ΞΌ ⁒ X - 2 ⁒ ΞΌ 2 x ⁒ ΞΊ 2 - ΞΌ 2 ) 𝜁 superscript 𝜁 2 superscript 𝛼 2 superscript 𝛼 2 hyperbolic-inverse-cosine 𝜁 𝛼 𝑋 πœ‡ 2 πœ… πœ‡ 𝑋 π‘₯ 2 πœ… 2 superscript πœ… 2 superscript πœ‡ 2 2 πœ… π‘₯ πœ‡ 𝑋 2 superscript πœ‡ 2 π‘₯ superscript πœ… 2 superscript πœ‡ 2 {\displaystyle{\displaystyle\zeta\sqrt{\zeta^{2}-\alpha^{2}}-\alpha^{2}% \operatorname{arccosh}\left(\frac{\zeta}{\alpha}\right)=\frac{X}{\mu}-\frac{2% \kappa}{\mu}\ln\left(\frac{X+x-2\kappa}{2\sqrt{\kappa^{2}-\mu^{2}}}\right)-2% \ln\left(\frac{\kappa x-\mu X-2\mu^{2}}{x\sqrt{\kappa^{2}-\mu^{2}}}\right)}} zeta*sqrt((zeta)^(2)- (alpha)^(2))- (alpha)^(2)* arccosh((zeta)/(alpha))=(X)/(mu)-(2*kappa)/(mu)*ln((X + x - 2*kappa)/(2*sqrt((kappa)^(2)- (mu)^(2))))- 2*ln((kappa*x - mu*X - 2*(mu)^(2))/(x*sqrt((kappa)^(2)- (mu)^(2)))) \[zeta]*Sqrt[(\[zeta])^(2)- (\[Alpha])^(2)]- (\[Alpha])^(2)* ArcCosh[Divide[\[zeta],\[Alpha]]]=Divide[X,\[Mu]]-Divide[2*\[Kappa],\[Mu]]*Log[Divide[X + x - 2*\[Kappa],2*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)]]]- 2*Log[Divide[\[Kappa]*x - \[Mu]*X - 2*(\[Mu])^(2),x*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)]]] Error Failure - Error
13.20.E14 ΞΆ ⁒ Ξ± 2 - ΞΆ 2 + Ξ± 2 ⁒ arcsin ⁑ ( ΞΆ Ξ± ) = X ΞΌ + 2 ⁒ ΞΊ ΞΌ ⁒ arctan ⁑ ( x - 2 ⁒ ΞΊ X ) - 2 ⁒ arctan ⁑ ( ΞΊ ⁒ x - 2 ⁒ ΞΌ 2 ΞΌ ⁒ X ) 𝜁 superscript 𝛼 2 superscript 𝜁 2 superscript 𝛼 2 𝜁 𝛼 𝑋 πœ‡ 2 πœ… πœ‡ π‘₯ 2 πœ… 𝑋 2 πœ… π‘₯ 2 superscript πœ‡ 2 πœ‡ 𝑋 {\displaystyle{\displaystyle\zeta\sqrt{\alpha^{2}-\zeta^{2}}+\alpha^{2}% \operatorname{arcsin}\left(\frac{\zeta}{\alpha}\right)=\frac{X}{\mu}+\frac{2% \kappa}{\mu}\operatorname{arctan}\left(\frac{x-2\kappa}{X}\right)-2% \operatorname{arctan}\left(\frac{\kappa x-2\mu^{2}}{\mu X}\right)}} zeta*sqrt((alpha)^(2)- (zeta)^(2))+ (alpha)^(2)* arcsin((zeta)/(alpha))=(X)/(mu)+(2*kappa)/(mu)*arctan((x - 2*kappa)/(X))- 2*arctan((kappa*x - 2*(mu)^(2))/(mu*X)) \[zeta]*Sqrt[(\[Alpha])^(2)- (\[zeta])^(2)]+ (\[Alpha])^(2)* ArcSin[Divide[\[zeta],\[Alpha]]]=Divide[X,\[Mu]]+Divide[2*\[Kappa],\[Mu]]*ArcTan[Divide[x - 2*\[Kappa],X]]- 2*ArcTan[Divide[\[Kappa]*x - 2*(\[Mu])^(2),\[Mu]*X]] Error Failure - Error
13.20.E15 - ΞΆ ⁒ ΞΆ 2 - Ξ± 2 - Ξ± 2 ⁒ arccosh ⁑ ( - ΞΆ Ξ± ) = - X ΞΌ + 2 ⁒ ΞΊ ΞΌ ⁒ ln ⁑ ( 2 ⁒ ΞΊ - X - x 2 ⁒ ΞΊ 2 - ΞΌ 2 ) + 2 ⁒ ln ⁑ ( ΞΌ ⁒ X + 2 ⁒ ΞΌ 2 - ΞΊ ⁒ x x ⁒ ΞΊ 2 - ΞΌ 2 ) 𝜁 superscript 𝜁 2 superscript 𝛼 2 superscript 𝛼 2 hyperbolic-inverse-cosine 𝜁 𝛼 𝑋 πœ‡ 2 πœ… πœ‡ 2 πœ… 𝑋 π‘₯ 2 superscript πœ… 2 superscript πœ‡ 2 2 πœ‡ 𝑋 2 superscript πœ‡ 2 πœ… π‘₯ π‘₯ superscript πœ… 2 superscript πœ‡ 2 {\displaystyle{\displaystyle-\zeta\sqrt{\zeta^{2}-\alpha^{2}}-\alpha^{2}% \operatorname{arccosh}\left(-\frac{\zeta}{\alpha}\right)=-\frac{X}{\mu}+\frac{% 2\kappa}{\mu}\ln\left(\frac{2\kappa-X-x}{2\sqrt{\kappa^{2}-\mu^{2}}}\right)+2% \ln\left(\frac{\mu X+2\mu^{2}-\kappa x}{x\sqrt{\kappa^{2}-\mu^{2}}}\right)}} - zeta*sqrt((zeta)^(2)- (alpha)^(2))- (alpha)^(2)* arccosh(-(zeta)/(alpha))= -(X)/(mu)+(2*kappa)/(mu)*ln((2*kappa - X - x)/(2*sqrt((kappa)^(2)- (mu)^(2))))+ 2*ln((mu*X + 2*(mu)^(2)- kappa*x)/(x*sqrt((kappa)^(2)- (mu)^(2)))) - \[zeta]*Sqrt[(\[zeta])^(2)- (\[Alpha])^(2)]- (\[Alpha])^(2)* ArcCosh[-Divide[\[zeta],\[Alpha]]]= -Divide[X,\[Mu]]+Divide[2*\[Kappa],\[Mu]]*Log[Divide[2*\[Kappa]- X - x,2*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)]]]+ 2*Log[Divide[\[Mu]*X + 2*(\[Mu])^(2)- \[Kappa]*x,x*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)]]] Error Failure - Error
13.21.E5 2 ⁒ ΞΆ = x + x 2 + ln ⁑ ( x + 1 + x ) 2 𝜁 π‘₯ superscript π‘₯ 2 π‘₯ 1 π‘₯ {\displaystyle{\displaystyle 2\sqrt{\zeta}=\sqrt{x+x^{2}}+\ln\left(\sqrt{x}+% \sqrt{1+x}\right)}} 2*sqrt(zeta)=sqrt(x + (x)^(2))+ ln(sqrt(x)+sqrt(1 + x)) 2*Sqrt[\[zeta]]=Sqrt[x + (x)^(2)]+ Log[Sqrt[x]+Sqrt[1 + x]] Failure Failure
Fail
.3175387811+1.082392200*I <- {zeta = 2^(1/2)+I*2^(1/2), x = 1}
-.982579648+1.082392200*I <- {zeta = 2^(1/2)+I*2^(1/2), x = 2}
-2.167933582+1.082392200*I <- {zeta = 2^(1/2)+I*2^(1/2), x = 3}
.3175387811-1.082392200*I <- {zeta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Error
13.21.E11 4 ⁒ ΞΌ 2 - ΞΊ ⁒ ΞΆ - ΞΌ ⁒ ln ⁑ ( 2 ⁒ ΞΌ + 4 ⁒ ΞΌ 2 - ΞΊ ⁒ ΞΆ 2 ⁒ ΞΌ - 4 ⁒ ΞΌ 2 - ΞΊ ⁒ ΞΆ ) = 1 2 ⁒ X + ΞΌ ⁒ ln ⁑ ( x ⁒ ΞΊ 2 - ΞΌ 2 2 ⁒ ΞΌ 2 - ΞΊ ⁒ x + ΞΌ ⁒ X ) + ΞΊ ⁒ ln ⁑ ( 2 ⁒ ΞΊ 2 - ΞΌ 2 2 ⁒ ΞΊ - x - X ) 4 superscript πœ‡ 2 πœ… 𝜁 πœ‡ 2 πœ‡ 4 superscript πœ‡ 2 πœ… 𝜁 2 πœ‡ 4 superscript πœ‡ 2 πœ… 𝜁 1 2 𝑋 πœ‡ π‘₯ superscript πœ… 2 superscript πœ‡ 2 2 superscript πœ‡ 2 πœ… π‘₯ πœ‡ 𝑋 πœ… 2 superscript πœ… 2 superscript πœ‡ 2 2 πœ… π‘₯ 𝑋 {\displaystyle{\displaystyle\sqrt{4\mu^{2}-\kappa\zeta}-\mu\ln\left(\frac{2\mu% +\sqrt{4\mu^{2}-\kappa\zeta}}{2\mu-\sqrt{4\mu^{2}-\kappa\zeta}}\right)=\tfrac{% 1}{2}X+\mu\ln\left(\frac{x\sqrt{\kappa^{2}-\mu^{2}}}{2\mu^{2}-\kappa x+\mu X}% \right)+\kappa\ln\left(\frac{2\sqrt{\kappa^{2}-\mu^{2}}}{2\kappa-x-X}\right)}} sqrt(4*(mu)^(2)- kappa*zeta)- mu*ln((2*mu +sqrt(4*(mu)^(2)- kappa*zeta))/(2*mu -sqrt(4*(mu)^(2)- kappa*zeta)))=(1)/(2)*X + mu*ln((x*sqrt((kappa)^(2)- (mu)^(2)))/(2*(mu)^(2)- kappa*x + mu*X))+ kappa*ln((2*sqrt((kappa)^(2)- (mu)^(2)))/(2*kappa - x - X)) Sqrt[4*(\[Mu])^(2)- \[Kappa]*\[zeta]]- \[Mu]*Log[Divide[2*\[Mu]+Sqrt[4*(\[Mu])^(2)- \[Kappa]*\[zeta]],2*\[Mu]-Sqrt[4*(\[Mu])^(2)- \[Kappa]*\[zeta]]]]=Divide[1,2]*X + \[Mu]*Log[Divide[x*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)],2*(\[Mu])^(2)- \[Kappa]*x + \[Mu]*X]]+ \[Kappa]*Log[Divide[2*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)],2*\[Kappa]- x - X]] Error Failure - Error
13.21.E12 ΞΊ ⁒ ΞΆ - 4 ⁒ ΞΌ 2 - 2 ⁒ ΞΌ ⁒ arctan ⁑ ( ΞΊ ⁒ ΞΆ - 4 ⁒ ΞΌ 2 2 ⁒ ΞΌ ) = 1 2 ⁒ ( X - Ο€ ⁒ ΞΌ ) - ΞΌ ⁒ arctan ⁑ ( x ⁒ ΞΊ - 2 ⁒ ΞΌ 2 ΞΌ ⁒ X ) + ΞΊ ⁒ arcsin ⁑ ( X 2 ⁒ ΞΊ 2 - ΞΌ 2 ) πœ… 𝜁 4 superscript πœ‡ 2 2 πœ‡ πœ… 𝜁 4 superscript πœ‡ 2 2 πœ‡ 1 2 𝑋 πœ‹ πœ‡ πœ‡ π‘₯ πœ… 2 superscript πœ‡ 2 πœ‡ 𝑋 πœ… 𝑋 2 superscript πœ… 2 superscript πœ‡ 2 {\displaystyle{\displaystyle\sqrt{\kappa\zeta-4\mu^{2}}-2\mu\operatorname{% arctan}\left(\frac{\sqrt{\kappa\zeta-4\mu^{2}}}{2\mu}\right)=\tfrac{1}{2}(X-% \pi\mu)-\mu\operatorname{arctan}\left(\frac{x\kappa-2\mu^{2}}{\mu X}\right)+% \kappa\operatorname{arcsin}\left(\frac{X}{2\sqrt{\kappa^{2}-\mu^{2}}}\right)}} sqrt(kappa*zeta - 4*(mu)^(2))- 2*mu*arctan((sqrt(kappa*zeta - 4*(mu)^(2)))/(2*mu))=(1)/(2)*(X - Pi*mu)- mu*arctan((x*kappa - 2*(mu)^(2))/(mu*X))+ kappa*arcsin((X)/(2*sqrt((kappa)^(2)- (mu)^(2)))) Sqrt[\[Kappa]*\[zeta]- 4*(\[Mu])^(2)]- 2*\[Mu]*ArcTan[Divide[Sqrt[\[Kappa]*\[zeta]- 4*(\[Mu])^(2)],2*\[Mu]]]=Divide[1,2]*(X - Pi*\[Mu])- \[Mu]*ArcTan[Divide[x*\[Kappa]- 2*(\[Mu])^(2),\[Mu]*X]]+ \[Kappa]*ArcSin[Divide[X,2*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)]]] Error Failure - Error
13.23.E1 ∫ 0 ∞ e - z ⁒ t ⁒ t Ξ½ - 1 ⁒ M ΞΊ , ΞΌ ⁑ ( t ) ⁒ d t = Ξ“ ⁑ ( ΞΌ + Ξ½ + 1 2 ) ( z + 1 2 ) ΞΌ + Ξ½ + 1 2 ⁒ F 1 2 ⁑ ( 1 2 + ΞΌ - ΞΊ , 1 2 + ΞΌ + Ξ½ 1 + 2 ⁒ ΞΌ ; 1 z + 1 2 ) superscript subscript 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 𝜈 1 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑑 𝑑 Euler-Gamma πœ‡ 𝜈 1 2 superscript 𝑧 1 2 πœ‡ 𝜈 1 2 Gauss-hypergeometric-F-as-2F1 1 2 πœ‡ πœ… 1 2 πœ‡ 𝜈 1 2 πœ‡ 1 𝑧 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-zt}t^{\nu-1}M_{\kappa,\mu}% \left(t\right)\mathrm{d}t=\frac{\Gamma\left(\mu+\nu+\tfrac{1}{2}\right)}{\left% (z+\frac{1}{2}\right)^{\mu+\nu+\frac{1}{2}}}\*{{}_{2}F_{1}}\left({\tfrac{1}{2}% +\mu-\kappa,\tfrac{1}{2}+\mu+\nu\atop 1+2\mu};\frac{1}{z+\frac{1}{2}}\right)}} int(exp(- z*t)*(t)^(nu - 1)* WhittakerM(kappa, mu, t), t = 0..infinity)=(GAMMA(mu + nu +(1)/(2)))/((z +(1)/(2))^(mu + nu +(1)/(2)))* hypergeom([(1)/(2)+ mu - kappa ,(1)/(2)+ mu + nu], [1 + 2*mu], (1)/(z +(1)/(2))) Integrate[Exp[- z*t]*(t)^(\[Nu]- 1)* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}]=Divide[Gamma[\[Mu]+ \[Nu]+Divide[1,2]],(z +Divide[1,2])^(\[Mu]+ \[Nu]+Divide[1,2])]* HypergeometricPFQ[{Divide[1,2]+ \[Mu]- \[Kappa],Divide[1,2]+ \[Mu]+ \[Nu]}, {1 + 2*\[Mu]}, Divide[1,z +Divide[1,2]]] Failure Failure Skip Error
13.23.E2 ∫ 0 ∞ e - z ⁒ t ⁒ t ΞΌ - 1 2 ⁒ M ΞΊ , ΞΌ ⁑ ( t ) ⁒ d t = Ξ“ ⁑ ( 2 ⁒ ΞΌ + 1 ) ⁒ ( z + 1 2 ) - ΞΊ - ΞΌ - 1 2 ⁒ ( z - 1 2 ) ΞΊ - ΞΌ - 1 2 superscript subscript 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 πœ‡ 1 2 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑑 𝑑 Euler-Gamma 2 πœ‡ 1 superscript 𝑧 1 2 πœ… πœ‡ 1 2 superscript 𝑧 1 2 πœ… πœ‡ 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-zt}t^{\mu-\frac{1}{2}}M_{% \kappa,\mu}\left(t\right)\mathrm{d}t=\Gamma\left(2\mu+1\right)\left(z+\tfrac{1% }{2}\right)^{-\kappa-\mu-\frac{1}{2}}\*\left(z-\tfrac{1}{2}\right)^{\kappa-\mu% -\frac{1}{2}}}} int(exp(- z*t)*(t)^(mu -(1)/(2))* WhittakerM(kappa, mu, t), t = 0..infinity)= GAMMA(2*mu + 1)*(z +(1)/(2))^(- kappa - mu -(1)/(2))*(z -(1)/(2))^(kappa - mu -(1)/(2)) Integrate[Exp[- z*t]*(t)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}]= Gamma[2*\[Mu]+ 1]*(z +Divide[1,2])^(- \[Kappa]- \[Mu]-Divide[1,2])*(z -Divide[1,2])^(\[Kappa]- \[Mu]-Divide[1,2]) Failure Failure Skip Error
13.23.E3 1 Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ ∫ 0 ∞ e - 1 2 ⁒ t ⁒ t Ξ½ - 1 ⁒ M ΞΊ , ΞΌ ⁑ ( t ) ⁒ d t = Ξ“ ⁑ ( ΞΌ + Ξ½ + 1 2 ) ⁒ Ξ“ ⁑ ( ΞΊ - Ξ½ ) Ξ“ ⁑ ( 1 2 + ΞΌ + ΞΊ ) ⁒ Ξ“ ⁑ ( 1 2 + ΞΌ - Ξ½ ) 1 Euler-Gamma 1 2 πœ‡ superscript subscript 0 superscript 𝑒 1 2 𝑑 superscript 𝑑 𝜈 1 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑑 𝑑 Euler-Gamma πœ‡ 𝜈 1 2 Euler-Gamma πœ… 𝜈 Euler-Gamma 1 2 πœ‡ πœ… Euler-Gamma 1 2 πœ‡ 𝜈 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)}\int_{0}^{% \infty}e^{-\frac{1}{2}t}t^{\nu-1}M_{\kappa,\mu}\left(t\right)\mathrm{d}t=\frac% {\Gamma\left(\mu+\nu+\frac{1}{2}\right)\Gamma\left(\kappa-\nu\right)}{\Gamma% \left(\frac{1}{2}+\mu+\kappa\right)\Gamma\left(\frac{1}{2}+\mu-\nu\right)}}} (1)/(GAMMA(1 + 2*mu))*int(exp(-(1)/(2)*t)*(t)^(nu - 1)* WhittakerM(kappa, mu, t), t = 0..infinity)=(GAMMA(mu + nu +(1)/(2))*GAMMA(kappa - nu))/(GAMMA((1)/(2)+ mu + kappa)*GAMMA((1)/(2)+ mu - nu)) Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Exp[-Divide[1,2]*t]*(t)^(\[Nu]- 1)* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}]=Divide[Gamma[\[Mu]+ \[Nu]+Divide[1,2]]*Gamma[\[Kappa]- \[Nu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- \[Nu]]] Failure Failure Skip Error
13.23.E4 ∫ 0 ∞ e - z ⁒ t ⁒ t Ξ½ - 1 ⁒ W ΞΊ , ΞΌ ⁑ ( t ) ⁒ d t = Ξ“ ⁑ ( 1 2 + ΞΌ + Ξ½ ) ⁒ Ξ“ ⁑ ( 1 2 - ΞΌ + Ξ½ ) ⁒ 𝐅 1 2 ⁑ ( 1 2 - ΞΌ + Ξ½ , 1 2 + ΞΌ + Ξ½ Ξ½ - ΞΊ + 1 ; 1 2 - z ) superscript subscript 0 superscript 𝑒 𝑧 𝑑 superscript 𝑑 𝜈 1 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑑 𝑑 Euler-Gamma 1 2 πœ‡ 𝜈 Euler-Gamma 1 2 πœ‡ 𝜈 hypergeometric-bold-pFq 2 1 1 2 πœ‡ 𝜈 1 2 πœ‡ 𝜈 𝜈 πœ… 1 1 2 𝑧 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-zt}t^{\nu-1}W_{\kappa,\mu}% \left(t\right)\mathrm{d}t=\Gamma\left(\tfrac{1}{2}+\mu+\nu\right)\Gamma\left(% \tfrac{1}{2}-\mu+\nu\right)\*{{}_{2}{\mathbf{F}}_{1}}\left({\tfrac{1}{2}-\mu+% \nu,\tfrac{1}{2}+\mu+\nu\atop\nu-\kappa+1};\tfrac{1}{2}-z\right)}} int(exp(- z*t)*(t)^(nu - 1)* WhittakerW(kappa, mu, t), t = 0..infinity)= GAMMA((1)/(2)+ mu + nu)*GAMMA((1)/(2)- mu + nu)* hypergeom([(1)/(2)- mu + nu ,(1)/(2)+ mu + nu], [nu - kappa + 1], (1)/(2)- z) Integrate[Exp[- z*t]*(t)^(\[Nu]- 1)* WhittakerW[\[Kappa], \[Mu], t], {t, 0, Infinity}]= Gamma[Divide[1,2]+ \[Mu]+ \[Nu]]*Gamma[Divide[1,2]- \[Mu]+ \[Nu]]* HypergeometricPFQRegularized[{Divide[1,2]- \[Mu]+ \[Nu],Divide[1,2]+ \[Mu]+ \[Nu]}, {\[Nu]- \[Kappa]+ 1}, Divide[1,2]- z] Failure Failure Skip Error
13.23.E5 ∫ 0 ∞ e 1 2 ⁒ t ⁒ t Ξ½ - 1 ⁒ W ΞΊ , ΞΌ ⁑ ( t ) ⁒ d t = Ξ“ ⁑ ( 1 2 + ΞΌ + Ξ½ ) ⁒ Ξ“ ⁑ ( 1 2 - ΞΌ + Ξ½ ) ⁒ Ξ“ ⁑ ( - ΞΊ - Ξ½ ) Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ Ξ“ ⁑ ( 1 2 - ΞΌ - ΞΊ ) superscript subscript 0 superscript 𝑒 1 2 𝑑 superscript 𝑑 𝜈 1 Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑑 𝑑 Euler-Gamma 1 2 πœ‡ 𝜈 Euler-Gamma 1 2 πœ‡ 𝜈 Euler-Gamma πœ… 𝜈 Euler-Gamma 1 2 πœ‡ πœ… Euler-Gamma 1 2 πœ‡ πœ… {\displaystyle{\displaystyle\int_{0}^{\infty}e^{\frac{1}{2}t}t^{\nu-1}W_{% \kappa,\mu}\left(t\right)\mathrm{d}t=\frac{\Gamma\left(\frac{1}{2}+\mu+\nu% \right)\Gamma\left(\frac{1}{2}-\mu+\nu\right)\Gamma\left(-\kappa-\nu\right)}{% \Gamma\left(\frac{1}{2}+\mu-\kappa\right)\Gamma\left(\frac{1}{2}-\mu-\kappa% \right)}}} int(exp((1)/(2)*t)*(t)^(nu - 1)* WhittakerW(kappa, mu, t), t = 0..infinity)=(GAMMA((1)/(2)+ mu + nu)*GAMMA((1)/(2)- mu + nu)*GAMMA(- kappa - nu))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa)) Integrate[Exp[Divide[1,2]*t]*(t)^(\[Nu]- 1)* WhittakerW[\[Kappa], \[Mu], t], {t, 0, Infinity}]=Divide[Gamma[Divide[1,2]+ \[Mu]+ \[Nu]]*Gamma[Divide[1,2]- \[Mu]+ \[Nu]]*Gamma[- \[Kappa]- \[Nu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]] Failure Failure Skip Error
13.23.E6 1 Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ 2 ⁒ Ο€ ⁒ i ⁒ ∫ - ∞ ( 0 + ) e z ⁒ t + 1 2 ⁒ t - 1 ⁒ t ΞΊ ⁒ M ΞΊ , ΞΌ ⁑ ( t - 1 ) ⁒ d t = z - ΞΊ - 1 2 Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ I 2 ⁒ ΞΌ ⁑ ( 2 ⁒ z ) 1 Euler-Gamma 1 2 πœ‡ 2 πœ‹ imaginary-unit superscript subscript limit-from 0 superscript 𝑒 𝑧 𝑑 1 2 superscript 𝑑 1 superscript 𝑑 πœ… Whittaker-confluent-hypergeometric-M πœ… πœ‡ superscript 𝑑 1 𝑑 superscript 𝑧 πœ… 1 2 Euler-Gamma 1 2 πœ‡ πœ… modified-Bessel-first-kind 2 πœ‡ 2 𝑧 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)2\pi\mathrm{i}}% \int_{-\infty}^{(0+)}e^{zt+\frac{1}{2}t^{-1}}t^{\kappa}M_{\kappa,\mu}\left(t^{% -1}\right)\mathrm{d}t=\frac{z^{-\kappa-\frac{1}{2}}}{\Gamma\left(\frac{1}{2}+% \mu-\kappa\right)}I_{2\mu}\left(2\sqrt{z}\right)}} (1)/(GAMMA(1 + 2*mu)*2*Pi*I)*int(exp(z*t +(1)/(2)*(t)^(- 1))*(t)^(kappa)* WhittakerM(kappa, mu, (t)^(- 1)), t = - infinity..(0 +))=((z)^(- kappa -(1)/(2)))/(GAMMA((1)/(2)+ mu - kappa))*BesselI(2*mu, 2*sqrt(z)) Divide[1,Gamma[1 + 2*\[Mu]]*2*Pi*I]*Integrate[Exp[z*t +Divide[1,2]*(t)^(- 1)]*(t)^(\[Kappa])* WhittakerM[\[Kappa], \[Mu], (t)^(- 1)], {t, - Infinity, (0 +)}]=Divide[(z)^(- \[Kappa]-Divide[1,2]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*BesselI[2*\[Mu], 2*Sqrt[z]] Error Failure - Error
13.23.E7 1 2 ⁒ Ο€ ⁒ i ⁒ ∫ - ∞ ( 0 + ) e z ⁒ t + 1 2 ⁒ t - 1 ⁒ t ΞΊ ⁒ W ΞΊ , ΞΌ ⁑ ( t - 1 ) ⁒ d t = 2 ⁒ z - ΞΊ - 1 2 Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ Ξ“ ⁑ ( 1 2 - ΞΌ - ΞΊ ) ⁒ K 2 ⁒ ΞΌ ⁑ ( 2 ⁒ z ) 1 2 πœ‹ imaginary-unit superscript subscript limit-from 0 superscript 𝑒 𝑧 𝑑 1 2 superscript 𝑑 1 superscript 𝑑 πœ… Whittaker-confluent-hypergeometric-W πœ… πœ‡ superscript 𝑑 1 𝑑 2 superscript 𝑧 πœ… 1 2 Euler-Gamma 1 2 πœ‡ πœ… Euler-Gamma 1 2 πœ‡ πœ… modified-Bessel-second-kind 2 πœ‡ 2 𝑧 {\displaystyle{\displaystyle\frac{1}{2\pi\mathrm{i}}\int_{-\infty}^{(0+)}e^{zt% +\frac{1}{2}t^{-1}}t^{\kappa}W_{\kappa,\mu}\left(t^{-1}\right)\mathrm{d}t=% \frac{2z^{-\kappa-\frac{1}{2}}}{\Gamma\left(\frac{1}{2}+\mu-\kappa\right)% \Gamma\left(\frac{1}{2}-\mu-\kappa\right)}K_{2\mu}\left(2\sqrt{z}\right)}} (1)/(2*Pi*I)*int(exp(z*t +(1)/(2)*(t)^(- 1))*(t)^(kappa)* WhittakerW(kappa, mu, (t)^(- 1)), t = - infinity..(0 +))=(2*(z)^(- kappa -(1)/(2)))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*BesselK(2*mu, 2*sqrt(z)) Divide[1,2*Pi*I]*Integrate[Exp[z*t +Divide[1,2]*(t)^(- 1)]*(t)^(\[Kappa])* WhittakerW[\[Kappa], \[Mu], (t)^(- 1)], {t, - Infinity, (0 +)}]=Divide[2*(z)^(- \[Kappa]-Divide[1,2]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*BesselK[2*\[Mu], 2*Sqrt[z]] Error Failure - Error
13.23.E8 1 Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ ∫ 0 ∞ cos ⁑ ( 2 ⁒ x ⁒ t ) ⁒ e - 1 2 ⁒ t 2 ⁒ t - 2 ⁒ ΞΌ - 1 ⁒ M ΞΊ , ΞΌ ⁑ ( t 2 ) ⁒ d t = Ο€ ⁒ e - 1 2 ⁒ x 2 ⁒ x ΞΌ + ΞΊ - 1 2 ⁒ Ξ“ ⁑ ( 1 2 + ΞΌ + ΞΊ ) ⁒ W 1 2 ⁒ ΞΊ - 3 2 ⁒ ΞΌ , 1 2 ⁒ ΞΊ + 1 2 ⁒ ΞΌ ⁑ ( x 2 ) 1 Euler-Gamma 1 2 πœ‡ superscript subscript 0 2 π‘₯ 𝑑 superscript 𝑒 1 2 superscript 𝑑 2 superscript 𝑑 2 πœ‡ 1 Whittaker-confluent-hypergeometric-M πœ… πœ‡ superscript 𝑑 2 𝑑 πœ‹ superscript 𝑒 1 2 superscript π‘₯ 2 superscript π‘₯ πœ‡ πœ… 1 2 Euler-Gamma 1 2 πœ‡ πœ… Whittaker-confluent-hypergeometric-W 1 2 πœ… 3 2 πœ‡ 1 2 πœ… 1 2 πœ‡ superscript π‘₯ 2 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)}\int_{0}^{% \infty}\cos\left(2xt\right)e^{-\frac{1}{2}t^{2}}t^{-2\mu-1}M_{\kappa,\mu}\left% (t^{2}\right)\mathrm{d}t=\frac{\sqrt{\pi}e^{-\frac{1}{2}x^{2}}x^{\mu+\kappa-1}% }{2\Gamma\left(\frac{1}{2}+\mu+\kappa\right)}W_{\frac{1}{2}\kappa-\frac{3}{2}% \mu,\frac{1}{2}\kappa+\frac{1}{2}\mu}\left(x^{2}\right)}} (1)/(GAMMA(1 + 2*mu))*int(cos(2*x*t)*exp(-(1)/(2)*(t)^(2))*(t)^(- 2*mu - 1)* WhittakerM(kappa, mu, (t)^(2)), t = 0..infinity)=(sqrt(Pi)*exp(-(1)/(2)*(x)^(2))*(x)^(mu + kappa - 1))/(2*GAMMA((1)/(2)+ mu + kappa))*WhittakerW((1)/(2)*kappa -(3)/(2)*mu, (1)/(2)*kappa +(1)/(2)*mu, (x)^(2)) Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Cos[2*x*t]*Exp[-Divide[1,2]*(t)^(2)]*(t)^(- 2*\[Mu]- 1)* WhittakerM[\[Kappa], \[Mu], (t)^(2)], {t, 0, Infinity}]=Divide[Sqrt[Pi]*Exp[-Divide[1,2]*(x)^(2)]*(x)^(\[Mu]+ \[Kappa]- 1),2*Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[Divide[1,2]*\[Kappa]-Divide[3,2]*\[Mu], Divide[1,2]*\[Kappa]+Divide[1,2]*\[Mu], (x)^(2)] Failure Failure Skip Error
13.23.E9 ∫ 0 ∞ e - 1 2 ⁒ t ⁒ t ΞΌ - 1 2 ⁒ ( Ξ½ + 1 ) ⁒ M ΞΊ , ΞΌ ⁑ ( t ) ⁒ J Ξ½ ⁑ ( 2 ⁒ x ⁒ t ) ⁒ d t = Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) Ξ“ ⁑ ( 1 2 - ΞΌ + ΞΊ + Ξ½ ) ⁒ e - 1 2 ⁒ x ⁒ x 1 2 ⁒ ( ΞΊ - ΞΌ - 3 2 ) ⁒ M 1 2 ⁒ ( ΞΊ + 3 ⁒ ΞΌ - Ξ½ + 1 2 ) , 1 2 ⁒ ( ΞΊ - ΞΌ + Ξ½ - 1 2 ) ⁑ ( x ) superscript subscript 0 superscript 𝑒 1 2 𝑑 superscript 𝑑 πœ‡ 1 2 𝜈 1 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑑 Bessel-J 𝜈 2 π‘₯ 𝑑 𝑑 Euler-Gamma 1 2 πœ‡ Euler-Gamma 1 2 πœ‡ πœ… 𝜈 superscript 𝑒 1 2 π‘₯ superscript π‘₯ 1 2 πœ… πœ‡ 3 2 Whittaker-confluent-hypergeometric-M 1 2 πœ… 3 πœ‡ 𝜈 1 2 1 2 πœ… πœ‡ 𝜈 1 2 π‘₯ {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\mu-\frac{1}{% 2}(\nu+1)}M_{\kappa,\mu}\left(t\right)J_{\nu}\left(2\sqrt{xt}\right)\mathrm{d}% t=\frac{\Gamma\left(1+2\mu\right)}{\Gamma\left(\frac{1}{2}-\mu+\kappa+\nu% \right)}\*e^{-\frac{1}{2}x}x^{\frac{1}{2}(\kappa-\mu-\frac{3}{2})}\*M_{\frac{1% }{2}(\kappa+3\mu-\nu+\frac{1}{2}),\frac{1}{2}(\kappa-\mu+\nu-\frac{1}{2})}% \left(x\right)}} int(exp(-(1)/(2)*t)*(t)^(mu -(1)/(2)*(nu + 1))* WhittakerM(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=(GAMMA(1 + 2*mu))/(GAMMA((1)/(2)- mu + kappa + nu))* exp(-(1)/(2)*x)*(x)^((1)/(2)*(kappa - mu -(3)/(2)))* WhittakerM((1)/(2)*(kappa + 3*mu - nu +(1)/(2)), (1)/(2)*(kappa - mu + nu -(1)/(2)), x) Integrate[Exp[-Divide[1,2]*t]*(t)^(\[Mu]-Divide[1,2]*(\[Nu]+ 1))* WhittakerM[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]+ \[Nu]]]* Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Kappa]- \[Mu]-Divide[3,2]))* WhittakerM[Divide[1,2]*(\[Kappa]+ 3*\[Mu]- \[Nu]+Divide[1,2]), Divide[1,2]*(\[Kappa]- \[Mu]+ \[Nu]-Divide[1,2]), x] Failure Failure Skip Error
13.23.E10 1 Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ ∫ 0 ∞ e - 1 2 ⁒ t ⁒ t 1 2 ⁒ ( Ξ½ - 1 ) - ΞΌ ⁒ M ΞΊ , ΞΌ ⁑ ( t ) ⁒ J Ξ½ ⁑ ( 2 ⁒ x ⁒ t ) ⁒ d t = e - 1 2 ⁒ x ⁒ x 1 2 ⁒ ( ΞΊ + ΞΌ - 3 2 ) Ξ“ ⁑ ( 1 2 + ΞΌ + ΞΊ ) ⁒ W 1 2 ⁒ ( ΞΊ - 3 ⁒ ΞΌ + Ξ½ + 1 2 ) , 1 2 ⁒ ( ΞΊ + ΞΌ - Ξ½ - 1 2 ) ⁑ ( x ) 1 Euler-Gamma 1 2 πœ‡ superscript subscript 0 superscript 𝑒 1 2 𝑑 superscript 𝑑 1 2 𝜈 1 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑑 Bessel-J 𝜈 2 π‘₯ 𝑑 𝑑 superscript 𝑒 1 2 π‘₯ superscript π‘₯ 1 2 πœ… πœ‡ 3 2 Euler-Gamma 1 2 πœ‡ πœ… Whittaker-confluent-hypergeometric-W 1 2 πœ… 3 πœ‡ 𝜈 1 2 1 2 πœ… πœ‡ 𝜈 1 2 π‘₯ {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)}\int_{0}^{% \infty}e^{-\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}M_{\kappa,\mu}\left(t\right)% J_{\nu}\left(2\sqrt{xt}\right)\mathrm{d}t=\frac{e^{-\frac{1}{2}x}x^{\frac{1}{2% }(\kappa+\mu-\frac{3}{2})}}{\Gamma\left(\frac{1}{2}+\mu+\kappa\right)}\*W_{% \frac{1}{2}(\kappa-3\mu+\nu+\frac{1}{2}),\frac{1}{2}(\kappa+\mu-\nu-\frac{1}{2% })}\left(x\right)}} (1)/(GAMMA(1 + 2*mu))*int(exp(-(1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerM(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=(exp(-(1)/(2)*x)*(x)^((1)/(2)*(kappa + mu -(3)/(2))))/(GAMMA((1)/(2)+ mu + kappa))* WhittakerW((1)/(2)*(kappa - 3*mu + nu +(1)/(2)), (1)/(2)*(kappa + mu - nu -(1)/(2)), x) Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Exp[-Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerM[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Kappa]+ \[Mu]-Divide[3,2])),Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]* WhittakerW[Divide[1,2]*(\[Kappa]- 3*\[Mu]+ \[Nu]+Divide[1,2]), Divide[1,2]*(\[Kappa]+ \[Mu]- \[Nu]-Divide[1,2]), x] Failure Failure Skip Error
13.23.E11 ∫ 0 ∞ e 1 2 ⁒ t ⁒ t 1 2 ⁒ ( Ξ½ - 1 ) - ΞΌ ⁒ W ΞΊ , ΞΌ ⁑ ( t ) ⁒ J Ξ½ ⁑ ( 2 ⁒ x ⁒ t ) ⁒ d t = Ξ“ ⁑ ( Ξ½ - 2 ⁒ ΞΌ + 1 ) Ξ“ ⁑ ( 1 2 + ΞΌ - ΞΊ ) ⁒ e 1 2 ⁒ x ⁒ x 1 2 ⁒ ( ΞΌ - ΞΊ - 3 2 ) ⁒ W 1 2 ⁒ ( ΞΊ + 3 ⁒ ΞΌ - Ξ½ - 1 2 ) , 1 2 ⁒ ( ΞΊ - ΞΌ + Ξ½ + 1 2 ) ⁑ ( x ) superscript subscript 0 superscript 𝑒 1 2 𝑑 superscript 𝑑 1 2 𝜈 1 πœ‡ Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑑 Bessel-J 𝜈 2 π‘₯ 𝑑 𝑑 Euler-Gamma 𝜈 2 πœ‡ 1 Euler-Gamma 1 2 πœ‡ πœ… superscript 𝑒 1 2 π‘₯ superscript π‘₯ 1 2 πœ‡ πœ… 3 2 Whittaker-confluent-hypergeometric-W 1 2 πœ… 3 πœ‡ 𝜈 1 2 1 2 πœ… πœ‡ 𝜈 1 2 π‘₯ {\displaystyle{\displaystyle\int_{0}^{\infty}e^{\frac{1}{2}t}t^{\frac{1}{2}(% \nu-1)-\mu}W_{\kappa,\mu}\left(t\right)J_{\nu}\left(2\sqrt{xt}\right)\mathrm{d% }t=\frac{\Gamma\left(\nu-2\mu+1\right)}{\Gamma\left(\frac{1}{2}+\mu-\kappa% \right)}\*e^{\frac{1}{2}x}x^{\frac{1}{2}(\mu-\kappa-\frac{3}{2})}\*W_{\frac{1}% {2}(\kappa+3\mu-\nu-\frac{1}{2}),\frac{1}{2}(\kappa-\mu+\nu+\frac{1}{2})}\left% (x\right)}} int(exp((1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerW(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=(GAMMA(nu - 2*mu + 1))/(GAMMA((1)/(2)+ mu - kappa))* exp((1)/(2)*x)*(x)^((1)/(2)*(mu - kappa -(3)/(2)))* WhittakerW((1)/(2)*(kappa + 3*mu - nu -(1)/(2)), (1)/(2)*(kappa - mu + nu +(1)/(2)), x) Integrate[Exp[Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerW[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[Gamma[\[Nu]- 2*\[Mu]+ 1],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Exp[Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Mu]- \[Kappa]-Divide[3,2]))* WhittakerW[Divide[1,2]*(\[Kappa]+ 3*\[Mu]- \[Nu]-Divide[1,2]), Divide[1,2]*(\[Kappa]- \[Mu]+ \[Nu]+Divide[1,2]), x] Failure Failure Skip Error
13.23.E12 ∫ 0 ∞ e - 1 2 ⁒ t ⁒ t 1 2 ⁒ ( Ξ½ - 1 ) - ΞΌ ⁒ W ΞΊ , ΞΌ ⁑ ( t ) ⁒ J Ξ½ ⁑ ( 2 ⁒ x ⁒ t ) ⁒ d t = Ξ“ ⁑ ( Ξ½ - 2 ⁒ ΞΌ + 1 ) Ξ“ ⁑ ( 3 2 - ΞΌ - ΞΊ + Ξ½ ) ⁒ e - 1 2 ⁒ x ⁒ x 1 2 ⁒ ( ΞΌ + ΞΊ - 3 2 ) ⁒ M 1 2 ⁒ ( ΞΊ - 3 ⁒ ΞΌ + Ξ½ + 1 2 ) , 1 2 ⁒ ( Ξ½ - ΞΌ - ΞΊ + 1 2 ) ⁑ ( x ) superscript subscript 0 superscript 𝑒 1 2 𝑑 superscript 𝑑 1 2 𝜈 1 πœ‡ Whittaker-confluent-hypergeometric-W πœ… πœ‡ 𝑑 Bessel-J 𝜈 2 π‘₯ 𝑑 𝑑 Euler-Gamma 𝜈 2 πœ‡ 1 Euler-Gamma 3 2 πœ‡ πœ… 𝜈 superscript 𝑒 1 2 π‘₯ superscript π‘₯ 1 2 πœ‡ πœ… 3 2 Whittaker-confluent-hypergeometric-M 1 2 πœ… 3 πœ‡ 𝜈 1 2 1 2 𝜈 πœ‡ πœ… 1 2 π‘₯ {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\frac{1}{2}(% \nu-1)-\mu}W_{\kappa,\mu}\left(t\right)J_{\nu}\left(2\sqrt{xt}\right)\mathrm{d% }t=\frac{\Gamma\left(\nu-2\mu+1\right)}{\Gamma\left(\frac{3}{2}-\mu-\kappa+\nu% \right)}\*e^{-\frac{1}{2}x}x^{\frac{1}{2}(\mu+\kappa-\frac{3}{2})}\*M_{\frac{1% }{2}(\kappa-3\mu+\nu+\frac{1}{2}),\frac{1}{2}(\nu-\mu-\kappa+\frac{1}{2})}% \left(x\right)}} int(exp(-(1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerW(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=(GAMMA(nu - 2*mu + 1))/(GAMMA((3)/(2)- mu - kappa + nu))* exp(-(1)/(2)*x)*(x)^((1)/(2)*(mu + kappa -(3)/(2)))* WhittakerM((1)/(2)*(kappa - 3*mu + nu +(1)/(2)), (1)/(2)*(nu - mu - kappa +(1)/(2)), x) Integrate[Exp[-Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerW[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[Gamma[\[Nu]- 2*\[Mu]+ 1],Gamma[Divide[3,2]- \[Mu]- \[Kappa]+ \[Nu]]]* Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Mu]+ \[Kappa]-Divide[3,2]))* WhittakerM[Divide[1,2]*(\[Kappa]- 3*\[Mu]+ \[Nu]+Divide[1,2]), Divide[1,2]*(\[Nu]- \[Mu]- \[Kappa]+Divide[1,2]), x] Failure Failure Skip Error
13.24.E1 M ΞΊ , ΞΌ ⁑ ( z ) = Ξ“ ⁑ ( ΞΊ + ΞΌ ) ⁒ 2 2 ⁒ ΞΊ + 2 ⁒ ΞΌ ⁒ z 1 2 - ΞΊ ⁒ βˆ‘ s = 0 ∞ ( - 1 ) s ⁒ ( 2 ⁒ ΞΊ + 2 ⁒ ΞΌ ) s ⁒ ( 2 ⁒ ΞΊ ) s ( 1 + 2 ⁒ ΞΌ ) s ⁒ s ! ⁒ ( ΞΊ + ΞΌ + s ) ⁒ I ΞΊ + ΞΌ + s ⁑ ( 1 2 ⁒ z ) Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Euler-Gamma πœ… πœ‡ superscript 2 2 πœ… 2 πœ‡ superscript 𝑧 1 2 πœ… superscript subscript 𝑠 0 superscript 1 𝑠 Pochhammer 2 πœ… 2 πœ‡ 𝑠 Pochhammer 2 πœ… 𝑠 Pochhammer 1 2 πœ‡ 𝑠 𝑠 πœ… πœ‡ 𝑠 modified-Bessel-first-kind πœ… πœ‡ 𝑠 1 2 𝑧 {\displaystyle{\displaystyle M_{\kappa,\mu}\left(z\right)=\Gamma\left(\kappa+% \mu\right)2^{2\kappa+2\mu}z^{\frac{1}{2}-\kappa}\*\sum_{s=0}^{\infty}(-1)^{s}% \frac{{\left(2\kappa+2\mu\right)_{s}}{\left(2\kappa\right)_{s}}}{{\left(1+2\mu% \right)_{s}}s!}\*\left(\kappa+\mu+s\right)I_{\kappa+\mu+s}\left(\tfrac{1}{2}z% \right)}} WhittakerM(kappa, mu, z)= GAMMA(kappa + mu)*(2)^(2*kappa + 2*mu)* (z)^((1)/(2)- kappa)* sum((- 1)^(s)*(pochhammer(2*kappa + 2*mu, s)*pochhammer(2*kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(kappa + mu + s)* BesselI(kappa + mu + s, (1)/(2)*z), s = 0..infinity) WhittakerM[\[Kappa], \[Mu], z]= Gamma[\[Kappa]+ \[Mu]]*(2)^(2*\[Kappa]+ 2*\[Mu])* (z)^(Divide[1,2]- \[Kappa])* Sum[(- 1)^(s)*Divide[Pochhammer[2*\[Kappa]+ 2*\[Mu], s]*Pochhammer[2*\[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(\[Kappa]+ \[Mu]+ s)* BesselI[\[Kappa]+ \[Mu]+ s, Divide[1,2]*z], {s, 0, Infinity}] Failure Failure Skip Skip
13.24.E2 1 Ξ“ ⁑ ( 1 + 2 ⁒ ΞΌ ) ⁒ M ΞΊ , ΞΌ ⁑ ( z ) = 2 2 ⁒ ΞΌ ⁒ z ΞΌ + 1 2 ⁒ βˆ‘ s = 0 ∞ p s ( ΞΌ ) ⁒ ( z ) ⁒ ( 2 ⁒ ΞΊ ⁒ z ) - 2 ⁒ ΞΌ - s ⁒ J 2 ⁒ ΞΌ + s ⁑ ( 2 ⁒ ΞΊ ⁒ z ) 1 Euler-Gamma 1 2 πœ‡ Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 superscript 2 2 πœ‡ superscript 𝑧 πœ‡ 1 2 superscript subscript 𝑠 0 superscript subscript 𝑝 𝑠 πœ‡ 𝑧 superscript 2 πœ… 𝑧 2 πœ‡ 𝑠 Bessel-J 2 πœ‡ 𝑠 2 πœ… 𝑧 {\displaystyle{\displaystyle\frac{1}{\Gamma\left(1+2\mu\right)}M_{\kappa,\mu}% \left(z\right)=2^{2\mu}z^{\mu+\frac{1}{2}}\sum_{s=0}^{\infty}p_{s}^{(\mu)}(z)% \left(2\sqrt{\kappa z}\right)^{-2\mu-s}J_{2\mu+s}\left(2\sqrt{\kappa z}\right)}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z)= (2)^(2*mu)* sum(p(p[s])^(mu)*(z)*(2*sqrt(kappa*z))^(- 2*mu - s)* BesselJ(2*mu + s, 2*sqrt(kappa*z)), s = 0..infinity) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]= (2)^(2*\[Mu])* Sum[p(Subscript[p, s])^(\[Mu])*(z)*(2*Sqrt[\[Kappa]*z])^(- 2*\[Mu]- s)* BesselJ[2*\[Mu]+ s, 2*Sqrt[\[Kappa]*z]], {s, 0, Infinity}] Failure Failure Skip Skip
13.24.E3 exp ⁑ ( - 1 2 ⁒ z ⁒ ( coth ⁑ t - 1 t ) ) ⁒ ( t sinh ⁑ t ) 1 - 2 ⁒ ΞΌ = βˆ‘ s = 0 ∞ p s ( ΞΌ ) ⁒ ( z ) ⁒ ( - t z ) s 1 2 𝑧 hyperbolic-cotangent 𝑑 1 𝑑 superscript 𝑑 𝑑 1 2 πœ‡ superscript subscript 𝑠 0 superscript subscript 𝑝 𝑠 πœ‡ 𝑧 superscript 𝑑 𝑧 𝑠 {\displaystyle{\displaystyle\exp\left(-\tfrac{1}{2}z\left(\coth t-\frac{1}{t}% \right)\right)\left(\frac{t}{\sinh t}\right)^{1-2\mu}=\sum_{s=0}^{\infty}p_{s}% ^{(\mu)}(z)\left(-\frac{t}{z}\right)^{s}}} exp(-(1)/(2)*z*(coth(t)-(1)/(t)))*((t)/(sinh(t)))^(1 - 2*mu)sum(p(p[s])^(mu)*(z)*(-(t)/(z))^(s), s = 0..infinity) Exp[-Divide[1,2]*z*(Coth[t]-Divide[1,t])]*(Divide[t,Sinh[t]])^(1 - 2*\[Mu])Sum[p(Subscript[p, s])^(\[Mu])*(z)*(-Divide[t,z])^(s), {s, 0, Infinity}] Failure Failure Skip Skip
13.25.E1 M ΞΊ , ΞΌ ⁑ ( z ) ⁒ M ΞΊ , - ΞΌ - 1 ⁑ ( z ) + ( 1 2 + ΞΌ + ΞΊ ) ⁒ ( 1 2 + ΞΌ - ΞΊ ) 4 ⁒ ΞΌ ⁒ ( 1 + ΞΌ ) ⁒ ( 1 + 2 ⁒ ΞΌ ) 2 ⁒ M ΞΊ , ΞΌ + 1 ⁑ ( z ) ⁒ M ΞΊ , - ΞΌ ⁑ ( z ) = 1 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 1 𝑧 1 2 πœ‡ πœ… 1 2 πœ‡ πœ… 4 πœ‡ 1 πœ‡ superscript 1 2 πœ‡ 2 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 1 𝑧 Whittaker-confluent-hypergeometric-M πœ… πœ‡ 𝑧 1 {\displaystyle{\displaystyle M_{\kappa,\mu}\left(z\right)M_{\kappa,-\mu-1}% \left(z\right)+\frac{(\frac{1}{2}+\mu+\kappa)(\frac{1}{2}+\mu-\kappa)}{4\mu(1+% \mu)(1+2\mu)^{2}}M_{\kappa,\mu+1}\left(z\right)M_{\kappa,-\mu}\left(z\right)=1}} WhittakerM(kappa, mu, z)*WhittakerM(kappa, - mu - 1, z)+(((1)/(2)+ mu + kappa)*((1)/(2)+ mu - kappa))/(4*mu*(1 + mu)*(1 + 2*mu)^(2))*WhittakerM(kappa, mu + 1, z)*WhittakerM(kappa, - mu, z)= 1 WhittakerM[\[Kappa], \[Mu], z]*WhittakerM[\[Kappa], - \[Mu]- 1, z]+Divide[(Divide[1,2]+ \[Mu]+ \[Kappa])*(Divide[1,2]+ \[Mu]- \[Kappa]),4*\[Mu]*(1 + \[Mu])*(1 + 2*\[Mu])^(2)]*WhittakerM[\[Kappa], \[Mu]+ 1, z]*WhittakerM[\[Kappa], - \[Mu], z]= 1 Failure Failure Successful Successful
13.28#Ex1 f 1 ⁒ ( ΞΎ ) = ΞΎ - 1 2 ⁒ V ΞΊ , 1 2 ⁒ p ( 1 ) ⁒ ( 2 ⁒ i ⁒ k ⁒ ΞΎ ) subscript 𝑓 1 πœ‰ superscript πœ‰ 1 2 superscript subscript 𝑉 πœ… 1 2 𝑝 1 2 imaginary-unit π‘˜ πœ‰ {\displaystyle{\displaystyle f_{1}(\xi)=\xi^{-\frac{1}{2}}V_{\kappa,\frac{1}{2% }p}^{(1)}(2\mathrm{i}k\xi)}} f[1]*(xi)= (xi)^(-(1)/(2))* (V[kappa ,(1)/(2)*p])^(1)*(2*I*k*xi) Subscript[f, 1]*(\[Xi])= (\[Xi])^(-Divide[1,2])* (Subscript[V, \[Kappa],Divide[1,2]*p])^(1)*(2*I*k*\[Xi]) Failure Failure
Fail
5.226251858+1.835215598*I <- {xi = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[1] = 2^(1/2)+I*2^(1/2), k = 1}
10.45250372-.329568802*I <- {xi = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[1] = 2^(1/2)+I*2^(1/2), k = 2}
15.67875557-2.494353202*I <- {xi = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[1] = 2^(1/2)+I*2^(1/2), k = 3}
9.226251856-2.164784400*I <- {xi = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[1] = 2^(1/2)-I*2^(1/2), k = 1}
... skip entries to safe data
Fail
Complex[5.226251859505505, 1.8352155994152124] <- {Rule[k, 1], Rule[ΞΎ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, ΞΊ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[10.45250371901101, -0.3295688011695752] <- {Rule[k, 2], Rule[ΞΎ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, ΞΊ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[15.678755578516517, -2.4943532017543637] <- {Rule[k, 3], Rule[ΞΎ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, ΞΊ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.164784400584788, -1.2262518595055054] <- {Rule[k, 1], Rule[ΞΎ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, ΞΊ, Times[Rational[1, 2], p]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.28#Ex2 f 2 ⁒ ( Ξ· ) = Ξ· - 1 2 ⁒ V ΞΊ , 1 2 ⁒ p ( 2 ) ⁒ ( - 2 ⁒ i ⁒ k ⁒ Ξ· ) subscript 𝑓 2 πœ‚ superscript πœ‚ 1 2 superscript subscript 𝑉 πœ… 1 2 𝑝 2 2 imaginary-unit π‘˜ πœ‚ {\displaystyle{\displaystyle f_{2}(\eta)=\eta^{-\frac{1}{2}}V_{\kappa,\frac{1}% {2}p}^{(2)}(-2\mathrm{i}k\eta)}} f[2]*(eta)= (eta)^(-(1)/(2))* (V[kappa ,(1)/(2)*p])^(2)*(- 2*I*k*eta) Subscript[f, 2]*(\[Eta])= (\[Eta])^(-Divide[1,2])* (Subscript[V, \[Kappa],Divide[1,2]*p])^(2)*(- 2*I*k*\[Eta]) Failure Failure
Fail
-10.45250371-.329568800*I <- {eta = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[2] = 2^(1/2)+I*2^(1/2), k = 1}
-20.90500742-4.659137598*I <- {eta = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[2] = 2^(1/2)+I*2^(1/2), k = 2}
-31.35751114-8.988706392*I <- {eta = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[2] = 2^(1/2)+I*2^(1/2), k = 3}
-6.452503712-4.329568798*I <- {eta = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[2] = 2^(1/2)-I*2^(1/2), k = 1}
... skip entries to safe data
Fail
Complex[-10.45250371901101, -0.3295688011695752] <- {Rule[k, 1], Rule[Ξ·, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, ΞΊ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-20.90500743802202, -4.65913760233915] <- {Rule[k, 2], Rule[Ξ·, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, ΞΊ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-31.35751115703303, -8.988706403508727] <- {Rule[k, 3], Rule[Ξ·, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, ΞΊ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[10.45250371901101, 8.329568801169575] <- {Rule[k, 1], Rule[Ξ·, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, ΞΊ, Times[Rational[1, 2], p]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.29.E3 e - 1 2 ⁒ z = βˆ‘ s = 0 ∞ ( 2 ⁒ ΞΌ ) s ⁒ ( 1 2 + ΞΌ - ΞΊ ) s ( 2 ⁒ ΞΌ ) 2 ⁒ s ⁒ s ! ⁒ ( - z ) s ⁒ y ⁒ ( s ) superscript 𝑒 1 2 𝑧 superscript subscript 𝑠 0 Pochhammer 2 πœ‡ 𝑠 Pochhammer 1 2 πœ‡ πœ… 𝑠 Pochhammer 2 πœ‡ 2 𝑠 𝑠 superscript 𝑧 𝑠 𝑦 𝑠 {\displaystyle{\displaystyle e^{-\frac{1}{2}z}=\sum_{s=0}^{\infty}\frac{{\left% (2\mu\right)_{s}}{\left(\frac{1}{2}+\mu-\kappa\right)_{s}}}{{\left(2\mu\right)% _{2s}}s!}(-z)^{s}y(s)}} exp(-(1)/(2)*z)= sum((pochhammer(2*mu, s)*pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(2*mu, 2*s)*factorial(s))*(- z)^(s)* y*(s), s = 0..infinity) Exp[-Divide[1,2]*z]= Sum[Divide[Pochhammer[2*\[Mu], s]*Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[2*\[Mu], 2*s]*(s)!]*(- z)^(s)* y*(s), {s, 0, Infinity}] Failure Failure Skip Skip
13.29.E6 w ⁒ ( n ) = ( a ) n ⁒ U ⁑ ( n + a , b , z ) 𝑀 𝑛 Pochhammer π‘Ž 𝑛 Kummer-confluent-hypergeometric-U 𝑛 π‘Ž 𝑏 𝑧 {\displaystyle{\displaystyle w(n)={\left(a\right)_{n}}U\left(n+a,b,z\right)}} w*(n)= pochhammer(a, n)*KummerU(n + a, b, z) w*(n)= Pochhammer[a, n]*HypergeometricU[n + a, b, z] Failure Failure
Fail
1.520419005+1.650199040*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
2.873866917+2.939587822*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
4.267041895+4.298527135*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
1.371726075+1.394092488*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.29.E7 z - a = βˆ‘ s = 0 ∞ ( a - b + 1 ) s s ! ⁒ w ⁒ ( s ) superscript 𝑧 π‘Ž superscript subscript 𝑠 0 Pochhammer π‘Ž 𝑏 1 𝑠 𝑠 𝑀 𝑠 {\displaystyle{\displaystyle z^{-a}=\sum_{s=0}^{\infty}\frac{{\left(a-b+1% \right)_{s}}}{s!}w(s)}} (z)^(- a)= sum((pochhammer(a - b + 1, s))/(factorial(s))*w*(s), s = 0..infinity) (z)^(- a)= Sum[Divide[Pochhammer[a - b + 1, s],(s)!]*w*(s), {s, 0, Infinity}] Failure Failure Skip Skip
13.31.E3 z a ⁒ U ⁑ ( a , 1 + a - b , z ) = lim n β†’ ∞ ⁑ A n ⁒ ( z ) B n ⁒ ( z ) superscript 𝑧 π‘Ž Kummer-confluent-hypergeometric-U π‘Ž 1 π‘Ž 𝑏 𝑧 subscript β†’ 𝑛 subscript 𝐴 𝑛 𝑧 subscript 𝐡 𝑛 𝑧 {\displaystyle{\displaystyle z^{a}U\left(a,1+a-b,z\right)=\lim_{n\to\infty}% \frac{A_{n}(z)}{B_{n}(z)}}} (z)^(a)* KummerU(a, 1 + a - b, z)= limit((A[n]*(z))/(B[n]*(z)), n = infinity) (z)^(a)* HypergeometricU[a, 1 + a - b, z]= Limit[Divide[Subscript[A, n]*(z),Subscript[B, n]*(z)], n -> Infinity] Failure Failure Skip Skip