Results of Confluent Hypergeometric Functions

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
13.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z\deriv[2]{w}{z}+(b-z)\deriv{w}{z}-aw = 0} z*diff(w, [z$(2)])+(b - z)* diff(w, z)- a*w = 0 z*D[w, {z, 2}]+(b - z)* D[w, z]- a*w = 0 Failure Failure
Fail
-0.-3.999999998*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
-3.999999998-0.*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
-0.+3.999999998*I <- {a = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
3.999999998-0.*I <- {a = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[0.0, -4.0] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
-4.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 4.0] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
4.0 <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{a}{b}{z} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{a}{s}}{\Pochhammersym{b}{s}s!}z^{s}} KummerM(a, b, z)= sum((pochhammer(a, s))/(pochhammer(b, s)*factorial(s))*(z)^(s), s = 0..infinity) Hypergeometric1F1[a, b, z]= Sum[Divide[Pochhammer[a, s],Pochhammer[b, s]*(s)!]*(z)^(s), {s, 0, Infinity}] Successful Successful - -
13.2.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \OlverconfhyperM@{a}{b}{z} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{a}{s}}{\EulerGamma@{b+s}s!}z^{s}} KummerM(a, b, z)/GAMMA(b)= sum((pochhammer(a, s))/(GAMMA(b + s)*factorial(s))*(z)^(s), s = 0..infinity) Hypergeometric1F1Regularized[a, b, z]= Sum[Divide[Pochhammer[a, s],Gamma[b + s]*(s)!]*(z)^(s), {s, 0, Infinity}] Successful Successful - -
13.2.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{a}{b}{z} = \EulerGamma@{b}\OlverconfhyperM@{a}{b}{z}} KummerM(a, b, z)= GAMMA(b)*KummerM(a, b, z)/GAMMA(b) Hypergeometric1F1[a, b, z]= Gamma[b]*Hypergeometric1F1Regularized[a, b, z] Successful Successful - -
13.2.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{b\to-n}\frac{\KummerconfhyperM@{a}{b}{z}}{\EulerGamma@{b}} = \OlverconfhyperM@{a}{-n}{z}} limit((KummerM(a, b, z))/(GAMMA(b)), b = - n)= KummerM(a, - n, z)/GAMMA(- n) Limit[Divide[Hypergeometric1F1[a, b, z],Gamma[b]], b -> - n]= Hypergeometric1F1Regularized[a, - n, z] Successful Successful - -
13.2.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \OlverconfhyperM@{a}{-n}{z} = \frac{\Pochhammersym{a}{n+1}}{(n+1)!}z^{n+1}\KummerconfhyperM@{a+n+1}{n+2}{z}} KummerM(a, - n, z)/GAMMA(- n)=(pochhammer(a, n + 1))/(factorial(n + 1))*(z)^(n + 1)* KummerM(a + n + 1, n + 2, z) Hypergeometric1F1Regularized[a, - n, z]=Divide[Pochhammer[a, n + 1],(n + 1)!]*(z)^(n + 1)* Hypergeometric1F1[a + n + 1, n + 2, z] Failure Failure
Fail
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Successful
13.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{-m}{b}{z} = (-1)^{m}\Pochhammersym{b}{m}\KummerconfhyperM@{-m}{b}{z}} KummerU(- m, b, z)=(- 1)^(m)* pochhammer(b, m)*KummerM(- m, b, z) HypergeometricU[- m, b, z]=(- 1)^(m)* Pochhammer[b, m]*Hypergeometric1F1[- m, b, z] Failure Failure Skip Successful
13.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{m}\Pochhammersym{b}{m}\KummerconfhyperM@{-m}{b}{z} = (-1)^{m}\sum_{s=0}^{m}\binom{m}{s}\Pochhammersym{b+s}{m-s}(-z)^{s}} (- 1)^(m)* pochhammer(b, m)*KummerM(- m, b, z)=(- 1)^(m)* sum(binomial(m,s)*pochhammer(b + s, m - s)*(- z)^(s), s = 0..m) (- 1)^(m)* Pochhammer[b, m]*Hypergeometric1F1[- m, b, z]=(- 1)^(m)* Sum[Binomial[m,s]*Pochhammer[b + s, m - s]*(- z)^(s), {s, 0, m}] Successful Successful - -
13.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{a+n+1}{z} = \frac{(-1)^{n}\Pochhammersym{1-a-n}{n}}{z^{a+n}}\KummerconfhyperM@{-n}{1-a-n}{z}} KummerU(a, a + n + 1, z)=((- 1)^(n)* pochhammer(1 - a - n, n))/((z)^(a + n))*KummerM(- n, 1 - a - n, z) HypergeometricU[a, a + n + 1, z]=Divide[(- 1)^(n)* Pochhammer[1 - a - n, n],(z)^(a + n)]*Hypergeometric1F1[- n, 1 - a - n, z] Failure Failure Skip Successful
13.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{(-1)^{n}\Pochhammersym{1-a-n}{n}}{z^{a+n}}\KummerconfhyperM@{-n}{1-a-n}{z} = z^{-a}\sum_{s=0}^{n}\binom{n}{s}\Pochhammersym{a}{s}z^{-s}} ((- 1)^(n)* pochhammer(1 - a - n, n))/((z)^(a + n))*KummerM(- n, 1 - a - n, z)= (z)^(- a)* sum(binomial(n,s)*pochhammer(a, s)*(z)^(- s), s = 0..n) Divide[(- 1)^(n)* Pochhammer[1 - a - n, n],(z)^(a + n)]*Hypergeometric1F1[- n, 1 - a - n, z]= (z)^(- a)* Sum[Binomial[n,s]*Pochhammer[a, s]*(z)^(- s), {s, 0, n}] Failure Failure Skip Successful
13.2.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{n+1}{z} = \frac{(-1)^{n+1}}{n!\EulerGamma@{a-n}}\sum_{k=0}^{\infty}\frac{\Pochhammersym{a}{k}}{\Pochhammersym{n+1}{k}k!}z^{k}\left(\ln@@{z}+\digamma@{a+k}-\digamma@{1+k}-\digamma@{n+k+1}\right)+\frac{1}{\EulerGamma@{a}}\sum_{k=1}^{n}\frac{(k-1)!\Pochhammersym{1-a+k}{n-k}}{(n-k)!}z^{-k}} KummerU(a, n + 1, z)=((- 1)^(n + 1))/(factorial(n)*GAMMA(a - n))*sum((pochhammer(a, k))/(pochhammer(n + 1, k)*factorial(k))*(z)^(k)*(ln(z)+ Psi(a + k)- Psi(1 + k)- Psi(n + k + 1)), k = 0..infinity)+(1)/(GAMMA(a))*sum((factorial(k - 1)*pochhammer(1 - a + k, n - k))/(factorial(n - k))*(z)^(- k), k = 1..n) HypergeometricU[a, n + 1, z]=Divide[(- 1)^(n + 1),(n)!*Gamma[a - n]]*Sum[Divide[Pochhammer[a, k],Pochhammer[n + 1, k]*(k)!]*(z)^(k)*(Log[z]+ PolyGamma[a + k]- PolyGamma[1 + k]- PolyGamma[n + k + 1]), {k, 0, Infinity}]+Divide[1,Gamma[a]]*Sum[Divide[(k - 1)!*Pochhammer[1 - a + k, n - k],(n - k)!]*(z)^(- k), {k, 1, n}] Error Failure - Error
13.2.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{-m}{n+1}{z} = (-1)^{m}\Pochhammersym{n+1}{m}\KummerconfhyperM@{-m}{n+1}{z}} KummerU(- m, n + 1, z)=(- 1)^(m)* pochhammer(n + 1, m)*KummerM(- m, n + 1, z) HypergeometricU[- m, n + 1, z]=(- 1)^(m)* Pochhammer[n + 1, m]*Hypergeometric1F1[- m, n + 1, z] Failure Failure Successful Successful
13.2.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{m}\Pochhammersym{n+1}{m}\KummerconfhyperM@{-m}{n+1}{z} = (-1)^{m}\sum_{s=0}^{m}\binom{m}{s}\Pochhammersym{n+s+1}{m-s}(-z)^{s}} (- 1)^(m)* pochhammer(n + 1, m)*KummerM(- m, n + 1, z)=(- 1)^(m)* sum(binomial(m,s)*pochhammer(n + s + 1, m - s)*(- z)^(s), s = 0..m) (- 1)^(m)* Pochhammer[n + 1, m]*Hypergeometric1F1[- m, n + 1, z]=(- 1)^(m)* Sum[Binomial[m,s]*Pochhammer[n + s + 1, m - s]*(- z)^(s), {s, 0, m}] Successful Successful - -
13.2.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{-n}{z} = z^{n+1}\KummerconfhyperU@{a+n+1}{n+2}{z}} KummerU(a, - n, z)= (z)^(n + 1)* KummerU(a + n + 1, n + 2, z) HypergeometricU[a, - n, z]= (z)^(n + 1)* HypergeometricU[a + n + 1, n + 2, z] Successful Successful - -
13.2.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{ze^{2\pi\iunit m}} = \frac{2\pi\iunit e^{-\pi\iunit bm}\sin@{\pi bm}}{\EulerGamma@{1+a-b}\sin@{\pi b}}\OlverconfhyperM@{a}{b}{z}+e^{-2\pi\iunit bm}\KummerconfhyperU@{a}{b}{z}} KummerU(a, b, z*exp(2*Pi*I*m))=(2*Pi*I*exp(- Pi*I*b*m)*sin(Pi*b*m))/(GAMMA(1 + a - b)*sin(Pi*b))*KummerM(a, b, z)/GAMMA(b)+ exp(- 2*Pi*I*b*m)*KummerU(a, b, z) HypergeometricU[a, b, z*Exp[2*Pi*I*m]]=Divide[2*Pi*I*Exp[- Pi*I*b*m]*Sin[Pi*b*m],Gamma[1 + a - b]*Sin[Pi*b]]*Hypergeometric1F1Regularized[a, b, z]+ Exp[- 2*Pi*I*b*m]*HypergeometricU[a, b, z] Failure Failure
Fail
584.8702437+1098.665595*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 1}
448650.07-8984458.84*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 2}
-.361175805e11+.540703722e11*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 3}
1655.171849-5530.515123*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), m = 1}
... skip entries to safe data
Skip
13.2.E33 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\OlverconfhyperM@{a}{b}{z},z^{1-b}\OlverconfhyperM@{a-b+1}{2-b}{z}} = \sin@{\pi b}z^{-b}e^{z}/\pi} (KummerM(a, b, z)/GAMMA(b))*diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b))= sin(Pi*b)*(z)^(- b)* exp(z)/ Pi Wronskian[{Hypergeometric1F1Regularized[a, b, z], (z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z]}, z]= Sin[Pi*b]*(z)^(- b)* Exp[z]/ Pi Failure Failure Successful Skip
13.2.E34 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\OlverconfhyperM@{a}{b}{z},\KummerconfhyperU@{a}{b}{z}} = -\ifrac{z^{-b}e^{z}}{\EulerGamma@{a}}} (KummerM(a, b, z)/GAMMA(b))*diff(KummerU(a, b, z), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*(KummerU(a, b, z))= -((z)^(- b)* exp(z))/(GAMMA(a)) Wronskian[{Hypergeometric1F1Regularized[a, b, z], HypergeometricU[a, b, z]}, z]= -Divide[(z)^(- b)* Exp[z],Gamma[a]] Failure Failure Successful Skip
13.2.E35 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\OlverconfhyperM@{a}{b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{+\pi\iunit}z}} = \ifrac{e^{- b\pi\iunit}z^{-b}e^{z}}{\EulerGamma@{b-a}}} (KummerM(a, b, z)/GAMMA(b))*diff(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z))=(exp(- b*Pi*I)*(z)^(- b)* exp(z))/(GAMMA(b - a)) Wronskian[{Hypergeometric1F1Regularized[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z]}, z]=Divide[Exp[- b*Pi*I]*(z)^(- b)* Exp[z],Gamma[b - a]] Failure Failure Skip Skip
13.2.E35 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\OlverconfhyperM@{a}{b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{-\pi\iunit}z}} = \ifrac{e^{+ b\pi\iunit}z^{-b}e^{z}}{\EulerGamma@{b-a}}} (KummerM(a, b, z)/GAMMA(b))*diff(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z), z)-diff(KummerM(a, b, z)/GAMMA(b), z)*(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z))=(exp(+ b*Pi*I)*(z)^(- b)* exp(z))/(GAMMA(b - a)) Wronskian[{Hypergeometric1F1Regularized[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z]}, z]=Divide[Exp[+ b*Pi*I]*(z)^(- b)* Exp[z],Gamma[b - a]] Failure Failure Skip Skip
13.2.E36 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{z^{1-b}\OlverconfhyperM@{a-b+1}{2-b}{z},\KummerconfhyperU@{a}{b}{z}} = -\ifrac{z^{-b}e^{z}}{\EulerGamma@{a-b+1}}} ((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b))*diff(KummerU(a, b, z), z)-diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)*(KummerU(a, b, z))= -((z)^(- b)* exp(z))/(GAMMA(a - b + 1)) Wronskian[{(z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z], HypergeometricU[a, b, z]}, z]= -Divide[(z)^(- b)* Exp[z],Gamma[a - b + 1]] Failure Failure Skip Skip
13.2.E37 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{z^{1-b}\OlverconfhyperM@{a-b+1}{2-b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{+\pi\iunit}z}} = -\ifrac{z^{-b}e^{z}}{\EulerGamma@{1-a}}} ((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b))*diff(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z), z)-diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)*(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z))= -((z)^(- b)* exp(z))/(GAMMA(1 - a)) Wronskian[{(z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z], Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z]}, z]= -Divide[(z)^(- b)* Exp[z],Gamma[1 - a]] Failure Failure Skip Successful
13.2.E37 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{z^{1-b}\OlverconfhyperM@{a-b+1}{2-b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{-\pi\iunit}z}} = -\ifrac{z^{-b}e^{z}}{\EulerGamma@{1-a}}} ((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b))*diff(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z), z)-diff((z)^(1 - b)* KummerM(a - b + 1, 2 - b, z)/GAMMA(2 - b), z)*(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z))= -((z)^(- b)* exp(z))/(GAMMA(1 - a)) Wronskian[{(z)^(1 - b)* Hypergeometric1F1Regularized[a - b + 1, 2 - b, z], Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z]}, z]= -Divide[(z)^(- b)* Exp[z],Gamma[1 - a]] Failure Failure Skip Skip
13.2.E38 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\KummerconfhyperU@{a}{b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{+\pi\iunit}z}} = e^{+(a-b)\pi\iunit}z^{-b}e^{z}} (KummerU(a, b, z))*diff(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z), z)-diff(KummerU(a, b, z), z)*(exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z))= exp(+(a - b)* Pi*I)*(z)^(- b)* exp(z) Wronskian[{HypergeometricU[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z]}, z]= Exp[+(a - b)* Pi*I]*(z)^(- b)* Exp[z] Failure Failure Skip
Fail
Complex[1040.14465936905, 3523.550863963589] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[13.933478379950422, -18.985981055998398] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[16167.755810004226, 20483.57845334895] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-167.2507901552425, 2.9337620233109254] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.2.E38 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\KummerconfhyperU@{a}{b}{z},e^{z}\KummerconfhyperU@{b-a}{b}{e^{-\pi\iunit}z}} = e^{-(a-b)\pi\iunit}z^{-b}e^{z}} (KummerU(a, b, z))*diff(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z), z)-diff(KummerU(a, b, z), z)*(exp(z)*KummerU(b - a, b, exp(- Pi*I)*z))= exp(-(a - b)* Pi*I)*(z)^(- b)* exp(z) Wronskian[{HypergeometricU[a, b, z], Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z]}, z]= Exp[-(a - b)* Pi*I]*(z)^(- b)* Exp[z] Failure Failure Skip
Fail
Complex[-26409.287510504182, -21215.250458979182] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[17917.63845480152, -4449.098851771366] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[128856.58558615872, -203204.6357206061] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-130654.53246573739, 11199.95676626326] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.2.E39 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{a}{b}{z} = e^{z}\KummerconfhyperM@{b-a}{b}{-z}} KummerM(a, b, z)= exp(z)*KummerM(b - a, b, - z) Hypergeometric1F1[a, b, z]= Exp[z]*Hypergeometric1F1[b - a, b, - z] Failure Successful Successful -
13.2.E40 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = z^{1-b}\KummerconfhyperU@{a-b+1}{2-b}{z}} KummerU(a, b, z)= (z)^(1 - b)* KummerU(a - b + 1, 2 - b, z) HypergeometricU[a, b, z]= (z)^(1 - b)* HypergeometricU[a - b + 1, 2 - b, z] Successful Successful - -
13.2.E41 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{b}}\KummerconfhyperM@{a}{b}{z} = \frac{e^{- a\pi\iunit}}{\EulerGamma@{b-a}}\KummerconfhyperU@{a}{b}{z}+\frac{e^{+(b-a)\pi\iunit}}{\EulerGamma@{a}}e^{z}\KummerconfhyperU@{b-a}{b}{e^{+\pi\iunit}z}} (1)/(GAMMA(b))*KummerM(a, b, z)=(exp(- a*Pi*I))/(GAMMA(b - a))*KummerU(a, b, z)+(exp(+(b - a)* Pi*I))/(GAMMA(a))*exp(z)*KummerU(b - a, b, exp(+ Pi*I)*z) Divide[1,Gamma[b]]*Hypergeometric1F1[a, b, z]=Divide[Exp[- a*Pi*I],Gamma[b - a]]*HypergeometricU[a, b, z]+Divide[Exp[+(b - a)* Pi*I],Gamma[a]]*Exp[z]*HypergeometricU[b - a, b, Exp[+ Pi*I]*z] Failure Failure
Fail
17637856.16+44349536.15*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
78404.04567+70170.88583*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
23503366.51-739194412.4*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-413147.5251+1810381.777*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.2.E41 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{b}}\KummerconfhyperM@{a}{b}{z} = \frac{e^{+ a\pi\iunit}}{\EulerGamma@{b-a}}\KummerconfhyperU@{a}{b}{z}+\frac{e^{-(b-a)\pi\iunit}}{\EulerGamma@{a}}e^{z}\KummerconfhyperU@{b-a}{b}{e^{-\pi\iunit}z}} (1)/(GAMMA(b))*KummerM(a, b, z)=(exp(+ a*Pi*I))/(GAMMA(b - a))*KummerU(a, b, z)+(exp(-(b - a)* Pi*I))/(GAMMA(a))*exp(z)*KummerU(b - a, b, exp(- Pi*I)*z) Divide[1,Gamma[b]]*Hypergeometric1F1[a, b, z]=Divide[Exp[+ a*Pi*I],Gamma[b - a]]*HypergeometricU[a, b, z]+Divide[Exp[-(b - a)* Pi*I],Gamma[a]]*Exp[z]*HypergeometricU[b - a, b, Exp[- Pi*I]*z] Failure Failure
Fail
8.816149469+15.35727015*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
3.036467728-4.734652938*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
237.2244957-69.52948040*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
40.35920508+88.71475163*I <- {a = 2^(1/2)+I*2^(1/2), b = -2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Skip
13.2.E42 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = \frac{\EulerGamma@{1-b}}{\EulerGamma@{a-b+1}}\KummerconfhyperM@{a}{b}{z}+\frac{\EulerGamma@{b-1}}{\EulerGamma@{a}}z^{1-b}\KummerconfhyperM@{a-b+1}{2-b}{z}} KummerU(a, b, z)=(GAMMA(1 - b))/(GAMMA(a - b + 1))*KummerM(a, b, z)+(GAMMA(b - 1))/(GAMMA(a))*(z)^(1 - b)* KummerM(a - b + 1, 2 - b, z) HypergeometricU[a, b, z]=Divide[Gamma[1 - b],Gamma[a - b + 1]]*Hypergeometric1F1[a, b, z]+Divide[Gamma[b - 1],Gamma[a]]*(z)^(1 - b)* Hypergeometric1F1[a - b + 1, 2 - b, z] Successful Successful - -
13.3.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (b-a)\KummerconfhyperM@{a-1}{b}{z}+(2a-b+z)\KummerconfhyperM@{a}{b}{z}-a\KummerconfhyperM@{a+1}{b}{z} = 0} (b - a)* KummerM(a - 1, b, z)+(2*a - b + z)* KummerM(a, b, z)- a*KummerM(a + 1, b, z)= 0 (b - a)* Hypergeometric1F1[a - 1, b, z]+(2*a - b + z)* Hypergeometric1F1[a, b, z]- a*Hypergeometric1F1[a + 1, b, z]= 0 Successful Successful - -
13.3.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b(b-1)\KummerconfhyperM@{a}{b-1}{z}+b(1-b-z)\KummerconfhyperM@{a}{b}{z}+z(b-a)\KummerconfhyperM@{a}{b+1}{z} = 0} b*(b - 1)* KummerM(a, b - 1, z)+ b*(1 - b - z)* KummerM(a, b, z)+ z*(b - a)* KummerM(a, b + 1, z)= 0 b*(b - 1)* Hypergeometric1F1[a, b - 1, z]+ b*(1 - b - z)* Hypergeometric1F1[a, b, z]+ z*(b - a)* Hypergeometric1F1[a, b + 1, z]= 0 Successful Successful - -
13.3.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (a-b+1)\KummerconfhyperM@{a}{b}{z}-a\KummerconfhyperM@{a+1}{b}{z}+(b-1)\KummerconfhyperM@{a}{b-1}{z} = 0} (a - b + 1)* KummerM(a, b, z)- a*KummerM(a + 1, b, z)+(b - 1)* KummerM(a, b - 1, z)= 0 (a - b + 1)* Hypergeometric1F1[a, b, z]- a*Hypergeometric1F1[a + 1, b, z]+(b - 1)* Hypergeometric1F1[a, b - 1, z]= 0 Successful Successful - -
13.3.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b\KummerconfhyperM@{a}{b}{z}-b\KummerconfhyperM@{a-1}{b}{z}-z\KummerconfhyperM@{a}{b+1}{z} = 0} b*KummerM(a, b, z)- b*KummerM(a - 1, b, z)- z*KummerM(a, b + 1, z)= 0 b*Hypergeometric1F1[a, b, z]- b*Hypergeometric1F1[a - 1, b, z]- z*Hypergeometric1F1[a, b + 1, z]= 0 Successful Successful - -
13.3.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b(a+z)\KummerconfhyperM@{a}{b}{z}+z(a-b)\KummerconfhyperM@{a}{b+1}{z}-ab\KummerconfhyperM@{a+1}{b}{z} = 0} b*(a + z)* KummerM(a, b, z)+ z*(a - b)* KummerM(a, b + 1, z)- a*b*KummerM(a + 1, b, z)= 0 b*(a + z)* Hypergeometric1F1[a, b, z]+ z*(a - b)* Hypergeometric1F1[a, b + 1, z]- a*b*Hypergeometric1F1[a + 1, b, z]= 0 Successful Successful - -
13.3.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (a-1+z)\KummerconfhyperM@{a}{b}{z}+(b-a)\KummerconfhyperM@{a-1}{b}{z}+(1-b)\KummerconfhyperM@{a}{b-1}{z} = 0} (a - 1 + z)* KummerM(a, b, z)+(b - a)* KummerM(a - 1, b, z)+(1 - b)* KummerM(a, b - 1, z)= 0 (a - 1 + z)* Hypergeometric1F1[a, b, z]+(b - a)* Hypergeometric1F1[a - 1, b, z]+(1 - b)* Hypergeometric1F1[a, b - 1, z]= 0 Successful Successful - -
13.3.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a-1}{b}{z}+(b-2a-z)\KummerconfhyperU@{a}{b}{z}+a(a-b+1)\KummerconfhyperU@{a+1}{b}{z} = 0} KummerU(a - 1, b, z)+(b - 2*a - z)* KummerU(a, b, z)+ a*(a - b + 1)* KummerU(a + 1, b, z)= 0 HypergeometricU[a - 1, b, z]+(b - 2*a - z)* HypergeometricU[a, b, z]+ a*(a - b + 1)* HypergeometricU[a + 1, b, z]= 0 Successful Successful - -
13.3.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (b-a-1)\KummerconfhyperU@{a}{b-1}{z}+(1-b-z)\KummerconfhyperU@{a}{b}{z}+z\KummerconfhyperU@{a}{b+1}{z} = 0} (b - a - 1)* KummerU(a, b - 1, z)+(1 - b - z)* KummerU(a, b, z)+ z*KummerU(a, b + 1, z)= 0 (b - a - 1)* HypergeometricU[a, b - 1, z]+(1 - b - z)* HypergeometricU[a, b, z]+ z*HypergeometricU[a, b + 1, z]= 0 Successful Successful - -
13.3.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z}-a\KummerconfhyperU@{a+1}{b}{z}-\KummerconfhyperU@{a}{b-1}{z} = 0} KummerU(a, b, z)- a*KummerU(a + 1, b, z)- KummerU(a, b - 1, z)= 0 HypergeometricU[a, b, z]- a*HypergeometricU[a + 1, b, z]- HypergeometricU[a, b - 1, z]= 0 Successful Successful - -
13.3.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (b-a)\KummerconfhyperU@{a}{b}{z}+\KummerconfhyperU@{a-1}{b}{z}-z\KummerconfhyperU@{a}{b+1}{z} = 0} (b - a)* KummerU(a, b, z)+ KummerU(a - 1, b, z)- z*KummerU(a, b + 1, z)= 0 (b - a)* HypergeometricU[a, b, z]+ HypergeometricU[a - 1, b, z]- z*HypergeometricU[a, b + 1, z]= 0 Successful Successful - -
13.3.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (a+z)\KummerconfhyperU@{a}{b}{z}-z\KummerconfhyperU@{a}{b+1}{z}+a(b-a-1)\KummerconfhyperU@{a+1}{b}{z} = 0} (a + z)* KummerU(a, b, z)- z*KummerU(a, b + 1, z)+ a*(b - a - 1)* KummerU(a + 1, b, z)= 0 (a + z)* HypergeometricU[a, b, z]- z*HypergeometricU[a, b + 1, z]+ a*(b - a - 1)* HypergeometricU[a + 1, b, z]= 0 Successful Successful - -
13.3.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (a-1+z)\KummerconfhyperU@{a}{b}{z}-\KummerconfhyperU@{a-1}{b}{z}+(a-b+1)\KummerconfhyperU@{a}{b-1}{z} = 0} (a - 1 + z)* KummerU(a, b, z)- KummerU(a - 1, b, z)+(a - b + 1)* KummerU(a, b - 1, z)= 0 (a - 1 + z)* HypergeometricU[a, b, z]- HypergeometricU[a - 1, b, z]+(a - b + 1)* HypergeometricU[a, b - 1, z]= 0 Successful Successful - -
13.3.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (a+1)z\KummerconfhyperM@{a+2}{b+2}{z}+(b+1)(b-z)\KummerconfhyperM@{a+1}{b+1}{z}-b(b+1)\KummerconfhyperM@{a}{b}{z} = 0} (a + 1)* z*KummerM(a + 2, b + 2, z)+(b + 1)*(b - z)* KummerM(a + 1, b + 1, z)- b*(b + 1)* KummerM(a, b, z)= 0 (a + 1)* z*Hypergeometric1F1[a + 2, b + 2, z]+(b + 1)*(b - z)* Hypergeometric1F1[a + 1, b + 1, z]- b*(b + 1)* Hypergeometric1F1[a, b, z]= 0 Successful Successful - -
13.3.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (a+1)z\KummerconfhyperU@{a+2}{b+2}{z}+(z-b)\KummerconfhyperU@{a+1}{b+1}{z}-\KummerconfhyperU@{a}{b}{z} = 0} (a + 1)* z*KummerU(a + 2, b + 2, z)+(z - b)* KummerU(a + 1, b + 1, z)- KummerU(a, b, z)= 0 (a + 1)* z*HypergeometricU[a + 2, b + 2, z]+(z - b)* HypergeometricU[a + 1, b + 1, z]- HypergeometricU[a, b, z]= 0 Successful Successful - -
13.3.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{z}\KummerconfhyperM@{a}{b}{z} = \frac{a}{b}\KummerconfhyperM@{a+1}{b+1}{z}} diff(KummerM(a, b, z), z)=(a)/(b)*KummerM(a + 1, b + 1, z) D[Hypergeometric1F1[a, b, z], z]=Divide[a,b]*Hypergeometric1F1[a + 1, b + 1, z] Successful Successful - -
13.3.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\KummerconfhyperM@{a}{b}{z} = \frac{\Pochhammersym{a}{n}}{\Pochhammersym{b}{n}}\KummerconfhyperM@{a+n}{b+n}{z}} diff(KummerM(a, b, z), [z$(n)])=(pochhammer(a, n))/(pochhammer(b, n))*KummerM(a + n, b + n, z) D[Hypergeometric1F1[a, b, z], {z, n}]=Divide[Pochhammer[a, n],Pochhammer[b, n]]*Hypergeometric1F1[a + n, b + n, z] Successful Failure - Skip
13.3.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(z\deriv{}{z}z\right)^{n}\left(z^{a-1}\KummerconfhyperM@{a}{b}{z}\right) = \Pochhammersym{a}{n}z^{a+n-1}\KummerconfhyperM@{a+n}{b}{z}} (z*diff(z, z))^(n)*((z)^(a - 1)* KummerM(a, b, z))= pochhammer(a, n)*(z)^(a + n - 1)* KummerM(a + n, b, z) (z*D[z, z])^(n)*((z)^(a - 1)* Hypergeometric1F1[a, b, z])= Pochhammer[a, n]*(z)^(a + n - 1)* Hypergeometric1F1[a + n, b, z] Failure Failure
Fail
2.537884887+11.89104377*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
-123.7627467+81.19826795*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
-1555.783365-1131.870657*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
-1.589608076+60.84364464*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.3.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(z^{b-1}\KummerconfhyperM@{a}{b}{z}\right) = \Pochhammersym{b-n}{n}z^{b-n-1}\KummerconfhyperM@{a}{b-n}{z}} diff((z)^(b - 1)* KummerM(a, b, z), [z$(n)])= pochhammer(b - n, n)*(z)^(b - n - 1)* KummerM(a, b - n, z) D[(z)^(b - 1)* Hypergeometric1F1[a, b, z], {z, n}]= Pochhammer[b - n, n]*(z)^(b - n - 1)* Hypergeometric1F1[a, b - n, z] Failure Failure Successful Skip
13.3.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(z\deriv{}{z}z\right)^{n}\left(z^{b-a-1}e^{-z}\KummerconfhyperM@{a}{b}{z}\right) = \Pochhammersym{b-a}{n}z^{b-a+n-1}e^{-z}\KummerconfhyperM@{a-n}{b}{z}} (z*diff(z, z))^(n)*((z)^(b - a - 1)* exp(- z)*KummerM(a, b, z))= pochhammer(b - a, n)*(z)^(b - a + n - 1)* exp(- z)*KummerM(a - n, b, z) (z*D[z, z])^(n)*((z)^(b - a - 1)* Exp[- z]*Hypergeometric1F1[a, b, z])= Pochhammer[b - a, n]*(z)^(b - a + n - 1)* Exp[- z]*Hypergeometric1F1[a - n, b, z] Failure Failure
Fail
1.000000000+0.*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
0.+3.999999998*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
1.000000000+0.*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.3.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{-z}\KummerconfhyperM@{a}{b}{z}\right) = (-1)^{n}\frac{\Pochhammersym{b-a}{n}}{\Pochhammersym{b}{n}}e^{-z}\KummerconfhyperM@{a}{b+n}{z}} diff(exp(- z)*KummerM(a, b, z), [z$(n)])=(- 1)^(n)*(pochhammer(b - a, n))/(pochhammer(b, n))*exp(- z)*KummerM(a, b + n, z) D[Exp[- z]*Hypergeometric1F1[a, b, z], {z, n}]=(- 1)^(n)*Divide[Pochhammer[b - a, n],Pochhammer[b, n]]*Exp[- z]*Hypergeometric1F1[a, b + n, z] Failure Failure Successful Skip
13.3.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(z^{b-1}e^{-z}\KummerconfhyperM@{a}{b}{z}\right) = \Pochhammersym{b-n}{n}z^{b-n-1}e^{-z}\KummerconfhyperM@{a-n}{b-n}{z}} diff((z)^(b - 1)* exp(- z)*KummerM(a, b, z), [z$(n)])= pochhammer(b - n, n)*(z)^(b - n - 1)* exp(- z)*KummerM(a - n, b - n, z) D[(z)^(b - 1)* Exp[- z]*Hypergeometric1F1[a, b, z], {z, n}]= Pochhammer[b - n, n]*(z)^(b - n - 1)* Exp[- z]*Hypergeometric1F1[a - n, b - n, z] Failure Failure Skip Error
13.3.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{z}\KummerconfhyperU@{a}{b}{z} = -a\KummerconfhyperU@{a+1}{b+1}{z}} diff(KummerU(a, b, z), z)= - a*KummerU(a + 1, b + 1, z) D[HypergeometricU[a, b, z], z]= - a*HypergeometricU[a + 1, b + 1, z] Successful Successful - -
13.3.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\KummerconfhyperU@{a}{b}{z} = (-1)^{n}\Pochhammersym{a}{n}\KummerconfhyperU@{a+n}{b+n}{z}} diff(KummerU(a, b, z), [z$(n)])=(- 1)^(n)* pochhammer(a, n)*KummerU(a + n, b + n, z) D[HypergeometricU[a, b, z], {z, n}]=(- 1)^(n)* Pochhammer[a, n]*HypergeometricU[a + n, b + n, z] Failure Successful Skip -
13.3.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(z\deriv{}{z}z\right)^{n}\left(z^{a-1}\KummerconfhyperU@{a}{b}{z}\right) = \Pochhammersym{a}{n}\Pochhammersym{a-b+1}{n}z^{a+n-1}\KummerconfhyperU@{a+n}{b}{z}} (z*diff(z, z))^(n)*((z)^(a - 1)* KummerU(a, b, z))= pochhammer(a, n)*pochhammer(a - b + 1, n)*(z)^(a + n - 1)* KummerU(a + n, b, z) (z*D[z, z])^(n)*((z)^(a - 1)* HypergeometricU[a, b, z])= Pochhammer[a, n]*Pochhammer[a - b + 1, n]*(z)^(a + n - 1)* HypergeometricU[a + n, b, z] Failure Failure
Fail
.3178044521-.5812355890e-1*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
.5638915996+.3833395878*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
.2833587160+.898459259*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
.2659178351-.5754539144*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.3.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(z^{b-1}\KummerconfhyperU@{a}{b}{z}\right) = (-1)^{n}\Pochhammersym{a-b+1}{n}z^{b-n-1}\KummerconfhyperU@{a}{b-n}{z}} diff((z)^(b - 1)* KummerU(a, b, z), [z$(n)])=(- 1)^(n)* pochhammer(a - b + 1, n)*(z)^(b - n - 1)* KummerU(a, b - n, z) D[(z)^(b - 1)* HypergeometricU[a, b, z], {z, n}]=(- 1)^(n)* Pochhammer[a - b + 1, n]*(z)^(b - n - 1)* HypergeometricU[a, b - n, z] Failure Failure Skip Skip
13.3.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(z\deriv{}{z}z\right)^{n}\left(z^{b-a-1}e^{-z}\KummerconfhyperU@{a}{b}{z}\right) = (-1)^{n}z^{b-a+n-1}e^{-z}\KummerconfhyperU@{a-n}{b}{z}} (z*diff(z, z))^(n)*((z)^(b - a - 1)* exp(- z)*KummerU(a, b, z))=(- 1)^(n)* (z)^(b - a + n - 1)* exp(- z)*KummerU(a - n, b, z) (z*D[z, z])^(n)*((z)^(b - a - 1)* Exp[- z]*HypergeometricU[a, b, z])=(- 1)^(n)* (z)^(b - a + n - 1)* Exp[- z]*HypergeometricU[a - n, b, z] Failure Failure
Fail
-.6426838098-.1638932643*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
-2.885602225+1.867279788*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
-8.024434137+19.17405510*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
.5784828818e-1+.5986041895e-1*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.3.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{-z}\KummerconfhyperU@{a}{b}{z}\right) = (-1)^{n}e^{-z}\KummerconfhyperU@{a}{b+n}{z}} diff(exp(- z)*KummerU(a, b, z), [z$(n)])=(- 1)^(n)* exp(- z)*KummerU(a, b + n, z) D[Exp[- z]*HypergeometricU[a, b, z], {z, n}]=(- 1)^(n)* Exp[- z]*HypergeometricU[a, b + n, z] Failure Failure Skip Skip
13.3.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(z^{b-1}e^{-z}\KummerconfhyperU@{a}{b}{z}\right) = (-1)^{n}z^{b-n-1}e^{-z}\KummerconfhyperU@{a-n}{b-n}{z}} diff((z)^(b - 1)* exp(- z)*KummerU(a, b, z), [z$(n)])=(- 1)^(n)* (z)^(b - n - 1)* exp(- z)*KummerU(a - n, b - n, z) D[(z)^(b - 1)* Exp[- z]*HypergeometricU[a, b, z], {z, n}]=(- 1)^(n)* (z)^(b - n - 1)* Exp[- z]*HypergeometricU[a - n, b - n, z] Error Failure - Error
13.3.E29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(z\deriv{}{z}z\right)^{n} = z^{n}\deriv[n]{}{z}z^{n}} (z*diff(z, z))^(n)= (z)^(n)* diff((z)^(n), [z$(n)]) (z*D[z, z])^(n)= (z)^(n)* D[(z)^(n), {z, n}] Failure Failure
Fail
28.28427122-28.28427122*I <- {z = 2^(1/2)+I*2^(1/2), n = 3}
28.28427122+28.28427122*I <- {z = 2^(1/2)-I*2^(1/2), n = 3}
-28.28427122+28.28427122*I <- {z = -2^(1/2)-I*2^(1/2), n = 3}
-28.28427122-28.28427122*I <- {z = -2^(1/2)+I*2^(1/2), n = 3}
Fail
Complex[28.284271247461902, -28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[28.284271247461902, 28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-28.284271247461902, 28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-28.284271247461902, -28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \OlverconfhyperM@{a}{b}{z} = \frac{1}{\EulerGamma@{a}\EulerGamma@{b-a}}\int_{0}^{1}e^{zt}t^{a-1}(1-t)^{b-a-1}\diff{t}} KummerM(a, b, z)/GAMMA(b)=(1)/(GAMMA(a)*GAMMA(b - a))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = 0..1) Hypergeometric1F1Regularized[a, b, z]=Divide[1,Gamma[a]*Gamma[b - a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, 0, 1}] Successful Failure - Skip
13.4.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \OlverconfhyperM@{a}{b}{z} = \frac{1}{\EulerGamma@{b-c}}\int_{0}^{1}\OlverconfhyperM@{a}{c}{zt}t^{c-1}(1-t)^{b-c-1}\diff{t}} KummerM(a, b, z)/GAMMA(b)=(1)/(GAMMA(b - c))*int(KummerM(a, c, z*t)/GAMMA(c)*(t)^(c - 1)*(1 - t)^(b - c - 1), t = 0..1) Hypergeometric1F1Regularized[a, b, z]=Divide[1,Gamma[b - c]]*Integrate[Hypergeometric1F1Regularized[a, c, z*t]*(t)^(c - 1)*(1 - t)^(b - c - 1), {t, 0, 1}] Successful Failure - Skip
13.4.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \OlverconfhyperM@{a}{b}{-z} = \frac{z^{\frac{1}{2}-\frac{1}{2}b}}{\EulerGamma@{a}}\int_{0}^{\infty}e^{-t}t^{a-\frac{1}{2}b-\frac{1}{2}}\BesselJ{b-1}@{2\sqrt{zt}}\diff{t}} KummerM(a, b, - z)/GAMMA(b)=((z)^((1)/(2)-(1)/(2)*b))/(GAMMA(a))*int(exp(- t)*(t)^(a -(1)/(2)*b -(1)/(2))* BesselJ(b - 1, 2*sqrt(z*t)), t = 0..infinity) Hypergeometric1F1Regularized[a, b, - z]=Divide[(z)^(Divide[1,2]-Divide[1,2]*b),Gamma[a]]*Integrate[Exp[- t]*(t)^(a -Divide[1,2]*b -Divide[1,2])* BesselJ[b - 1, 2*Sqrt[z*t]], {t, 0, Infinity}] Failure Failure Skip Error
13.4.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = \frac{1}{\EulerGamma@{a}}\int_{0}^{\infty}e^{-zt}t^{a-1}(1+t)^{b-a-1}\diff{t}} KummerU(a, b, z)=(1)/(GAMMA(a))*int(exp(- z*t)*(t)^(a - 1)*(1 + t)^(b - a - 1), t = 0..infinity) HypergeometricU[a, b, z]=Divide[1,Gamma[a]]*Integrate[Exp[- z*t]*(t)^(a - 1)*(1 + t)^(b - a - 1), {t, 0, Infinity}] Successful Failure - Error
13.4.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = \frac{z^{1-a}}{\EulerGamma@{a}\EulerGamma@{1+a-b}}\int_{0}^{\infty}\frac{\KummerconfhyperU@{b-a}{b}{t}e^{-t}t^{a-1}}{t+z}\diff{t}} KummerU(a, b, z)=((z)^(1 - a))/(GAMMA(a)*GAMMA(1 + a - b))*int((KummerU(b - a, b, t)*exp(- t)*(t)^(a - 1))/(t + z), t = 0..infinity) HypergeometricU[a, b, z]=Divide[(z)^(1 - a),Gamma[a]*Gamma[1 + a - b]]*Integrate[Divide[HypergeometricU[b - a, b, t]*Exp[- t]*(t)^(a - 1),t + z], {t, 0, Infinity}] Failure Failure Skip Error
13.4.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = \frac{(-1)^{n}z^{1-b-n}}{\EulerGamma@{1+a-b}}\int_{0}^{\infty}\frac{\OlverconfhyperM@{b-a}{b}{t}e^{-t}t^{b+n-1}}{t+z}\diff{t}} KummerU(a, b, z)=((- 1)^(n)* (z)^(1 - b - n))/(GAMMA(1 + a - b))*int((KummerM(b - a, b, t)/GAMMA(b)*exp(- t)*(t)^(b + n - 1))/(t + z), t = 0..infinity) HypergeometricU[a, b, z]=Divide[(- 1)^(n)* (z)^(1 - b - n),Gamma[1 + a - b]]*Integrate[Divide[Hypergeometric1F1Regularized[b - a, b, t]*Exp[- t]*(t)^(b + n - 1),t + z], {t, 0, Infinity}] Failure Failure Skip Error
13.4.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = \frac{2z^{\frac{1}{2}-\frac{1}{2}b}}{\EulerGamma@{a}\EulerGamma@{a-b+1}}\*\int_{0}^{\infty}e^{-t}t^{a-\frac{1}{2}b-\frac{1}{2}}\modBesselK{b-1}@{2\sqrt{zt}}\diff{t}} KummerU(a, b, z)=(2*(z)^((1)/(2)-(1)/(2)*b))/(GAMMA(a)*GAMMA(a - b + 1))* int(exp(- t)*(t)^(a -(1)/(2)*b -(1)/(2))* BesselK(b - 1, 2*sqrt(z*t)), t = 0..infinity) HypergeometricU[a, b, z]=Divide[2*(z)^(Divide[1,2]-Divide[1,2]*b),Gamma[a]*Gamma[a - b + 1]]* Integrate[Exp[- t]*(t)^(a -Divide[1,2]*b -Divide[1,2])* BesselK[b - 1, 2*Sqrt[z*t]], {t, 0, Infinity}] Successful Failure - Error
13.4.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = z^{c-a}\*\int_{0}^{\infty}e^{-zt}t^{c-1}\genhyperOlverF{2}{1}@{a,a-b+1}{c}{-t}\diff{t}} KummerU(a, b, z)= (z)^(c - a)* int(exp(- z*t)*(t)^(c - 1)* hypergeom([a , a - b + 1], [c], - t), t = 0..infinity) HypergeometricU[a, b, z]= (z)^(c - a)* Integrate[Exp[- z*t]*(t)^(c - 1)* HypergeometricPFQRegularized[{a , a - b + 1}, {c}, - t], {t, 0, Infinity}] Failure Failure Skip Error
13.4.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \OlverconfhyperM@{a}{b}{z} = \frac{\EulerGamma@{1+a-b}}{2\pi\iunit\EulerGamma@{a}}\int_{0}^{(1+)}e^{zt}t^{a-1}{(t-1)^{b-a-1}}\diff{t}} KummerM(a, b, z)/GAMMA(b)=(GAMMA(1 + a - b))/(2*Pi*I*GAMMA(a))*int(exp(z*t)*(t)^(a - 1)*(t - 1)^(b - a - 1), t = 0..(1 +)) Hypergeometric1F1Regularized[a, b, z]=Divide[Gamma[1 + a - b],2*Pi*I*Gamma[a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(t - 1)^(b - a - 1), {t, 0, (1 +)}] Error Failure - Error
13.4.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \OlverconfhyperM@{a}{b}{z} = e^{-a\pi\iunit}\frac{\EulerGamma@{1-a}}{2\pi\iunit\EulerGamma@{b-a}}\int_{1}^{(0+)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\diff{t}} KummerM(a, b, z)/GAMMA(b)= exp(- a*Pi*I)*(GAMMA(1 - a))/(2*Pi*I*GAMMA(b - a))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = 1..(0 +)) Hypergeometric1F1Regularized[a, b, z]= Exp[- a*Pi*I]*Divide[Gamma[1 - a],2*Pi*I*Gamma[b - a]]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, 1, (0 +)}] Error Failure - Error
13.4.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \OlverconfhyperM@{a}{b}{z} = e^{-b\pi\iunit}\EulerGamma@{1-a}\EulerGamma@{1+a-b}\*\frac{1}{4\pi^{2}}\int_{\alpha}^{(0+,1+,0-,1-)}e^{zt}t^{a-1}{(1-t)^{b-a-1}}\diff{t}} KummerM(a, b, z)/GAMMA(b)= exp(- b*Pi*I)*GAMMA(1 - a)*GAMMA(1 + a - b)*(1)/(4*(Pi)^(2))*int(exp(z*t)*(t)^(a - 1)*(1 - t)^(b - a - 1), t = alpha..(0 + , 1 + , 0 - , 1 -)) Hypergeometric1F1Regularized[a, b, z]= Exp[- b*Pi*I]*Gamma[1 - a]*Gamma[1 + a - b]*Divide[1,4*(Pi)^(2)]*Integrate[Exp[z*t]*(t)^(a - 1)*(1 - t)^(b - a - 1), {t, \[Alpha], (0 + , 1 + , 0 - , 1 -)}] Error Failure - Error
13.4.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \OlverconfhyperM@{a}{c}{z} = \frac{\EulerGamma@{b}}{2\pi\iunit}z^{1-b}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}\genhyperOlverF{2}{1}@{a,b}{c}{\ifrac{1}{t}}\diff{t}} KummerM(a, c, z)/GAMMA(c)=(GAMMA(b))/(2*Pi*I)*(z)^(1 - b)* int(exp(z*t)*(t)^(- b)* hypergeom([a , b], [c], (1)/(t)), t = - infinity..(0 + , 1 +)) Hypergeometric1F1Regularized[a, c, z]=Divide[Gamma[b],2*Pi*I]*(z)^(1 - b)* Integrate[Exp[z*t]*(t)^(- b)* HypergeometricPFQRegularized[{a , b}, {c}, Divide[1,t]], {t, - Infinity, (0 + , 1 +)}] Error Failure - Error
13.4.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \OlverconfhyperM@{a}{b}{z} = \frac{z^{1-b}}{2\pi\iunit}\int_{-\infty}^{(0+,1+)}e^{zt}t^{-b}\!\left(1-\frac{1}{t}\right)^{-a}\diff{t}} KummerM(a, b, z)/GAMMA(b)=((z)^(1 - b))/(2*Pi*I)*int(exp(z*t)*(t)^(- b)*(1 -(1)/(t))^(- a), t = - infinity..(0 + , 1 +)) Hypergeometric1F1Regularized[a, b, z]=Divide[(z)^(1 - b),2*Pi*I]*Integrate[Exp[z*t]*(t)^(- b)*(1 -Divide[1,t])^(- a), {t, - Infinity, (0 + , 1 +)}] Error Failure - Error
13.4.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = e^{-a\pi\iunit}\frac{\EulerGamma@{1-a}}{2\pi\iunit}\int_{\infty}^{(0+)}e^{-zt}t^{a-1}{(1+t)^{b-a-1}}\diff{t}} KummerU(a, b, z)= exp(- a*Pi*I)*(GAMMA(1 - a))/(2*Pi*I)*int(exp(- z*t)*(t)^(a - 1)*(1 + t)^(b - a - 1), t = infinity..(0 +)) HypergeometricU[a, b, z]= Exp[- a*Pi*I]*Divide[Gamma[1 - a],2*Pi*I]*Integrate[Exp[- z*t]*(t)^(a - 1)*(1 + t)^(b - a - 1), {t, Infinity, (0 +)}] Error Failure - Error
13.4.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\KummerconfhyperU@{a}{b}{z}}{\EulerGamma@{c}\EulerGamma@{c-b+1}} = \frac{z^{1-c}}{2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt}t^{-c}\genhyperOlverF{2}{1}@{a,c}{a+c-b+1}{1-\frac{1}{t}}\diff{t}} (KummerU(a, b, z))/(GAMMA(c)*GAMMA(c - b + 1))=((z)^(1 - c))/(2*Pi*I)*int(exp(z*t)*(t)^(- c)* hypergeom([a , c], [a + c - b + 1], 1 -(1)/(t)), t = - infinity..(0 +)) Divide[HypergeometricU[a, b, z],Gamma[c]*Gamma[c - b + 1]]=Divide[(z)^(1 - c),2*Pi*I]*Integrate[Exp[z*t]*(t)^(- c)* HypergeometricPFQRegularized[{a , c}, {a + c - b + 1}, 1 -Divide[1,t]], {t, - Infinity, (0 +)}] Error Failure - Error
13.4.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \OlverconfhyperM@{a}{b}{-z} = \frac{1}{2\pi\iunit\EulerGamma@{a}}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{a+t}\EulerGamma@{-t}}{\EulerGamma@{b+t}}z^{t}\diff{t}} KummerM(a, b, - z)/GAMMA(b)=(1)/(2*Pi*I*GAMMA(a))*int((GAMMA(a + t)*GAMMA(- t))/(GAMMA(b + t))*(z)^(t), t = - I*infinity..I*infinity) Hypergeometric1F1Regularized[a, b, - z]=Divide[1,2*Pi*I*Gamma[a]]*Integrate[Divide[Gamma[a + t]*Gamma[- t],Gamma[b + t]]*(z)^(t), {t, - I*Infinity, I*Infinity}] Failure Failure Skip Error
13.4.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = \frac{z^{-a}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{a+t}\EulerGamma@{1+a-b+t}\EulerGamma@{-t}}{\EulerGamma@{a}\EulerGamma@{1+a-b}}z^{-t}\diff{t}} KummerU(a, b, z)=((z)^(- a))/(2*Pi*I)*int((GAMMA(a + t)*GAMMA(1 + a - b + t)*GAMMA(- t))/(GAMMA(a)*GAMMA(1 + a - b))*(z)^(- t), t = - I*infinity..I*infinity) HypergeometricU[a, b, z]=Divide[(z)^(- a),2*Pi*I]*Integrate[Divide[Gamma[a + t]*Gamma[1 + a - b + t]*Gamma[- t],Gamma[a]*Gamma[1 + a - b]]*(z)^(- t), {t, - I*Infinity, I*Infinity}] Failure Failure Skip Error
13.4.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = \frac{z^{1-b}e^{z}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{b-1+t}\EulerGamma@{t}}{\EulerGamma@{a+t}}z^{-t}\diff{t}} KummerU(a, b, z)=((z)^(1 - b)* exp(z))/(2*Pi*I)*int((GAMMA(b - 1 + t)*GAMMA(t))/(GAMMA(a + t))*(z)^(- t), t = - I*infinity..I*infinity) HypergeometricU[a, b, z]=Divide[(z)^(1 - b)* Exp[z],2*Pi*I]*Integrate[Divide[Gamma[b - 1 + t]*Gamma[t],Gamma[a + t]]*(z)^(- t), {t, - I*Infinity, I*Infinity}] Failure Failure Skip Error
13.6.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{a}{a}{z} = e^{z}} KummerM(a, a, z)= exp(z) Hypergeometric1F1[a, a, z]= Exp[z] Successful Successful - -
13.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{1}{2}{2z} = \frac{e^{z}}{z}\sinh@@{z}} KummerM(1, 2, 2*z)=(exp(z))/(z)*sinh(z) Hypergeometric1F1[1, 2, 2*z]=Divide[Exp[z],z]*Sinh[z] Successful Successful - -
13.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{0}{b}{z} = \KummerconfhyperU@{0}{b}{z}} KummerM(0, b, z)= KummerU(0, b, z) Hypergeometric1F1[0, b, z]= HypergeometricU[0, b, z] Successful Successful - -
13.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{0}{b}{z} = 1} KummerU(0, b, z)= 1 HypergeometricU[0, b, z]= 1 Successful Successful - -
13.6.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{a+1}{z} = z^{-a}} KummerU(a, a + 1, z)= (z)^(- a) HypergeometricU[a, a + 1, z]= (z)^(- a) Failure Successful Successful -
13.6.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{a}{a+1}{-z} = e^{-z}\KummerconfhyperM@{1}{a+1}{z}} KummerM(a, a + 1, - z)= exp(- z)*KummerM(1, a + 1, z) Hypergeometric1F1[a, a + 1, - z]= Exp[- z]*Hypergeometric1F1[1, a + 1, z] Successful Successful - -
13.6.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-z}\KummerconfhyperM@{1}{a+1}{z} = az^{-a}\incgamma@{a}{z}} exp(- z)*KummerM(1, a + 1, z)= a*(z)^(- a)* GAMMA(a)-GAMMA(a, z) Exp[- z]*Hypergeometric1F1[1, a + 1, z]= a*(z)^(- a)* Gamma[a, 0, z] Failure Successful
Fail
-.577162386e-1+.3563618752*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.4492199205+.4890257481*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
21.39901789+84.08885044*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
10.80783636-3.379514632*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
-
13.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{a}{z} = z^{1-a}\KummerconfhyperU@{1}{2-a}{z}} KummerU(a, a, z)= (z)^(1 - a)* KummerU(1, 2 - a, z) HypergeometricU[a, a, z]= (z)^(1 - a)* HypergeometricU[1, 2 - a, z] Successful Successful - -
13.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{1-a}\KummerconfhyperU@{1}{2-a}{z} = z^{1-a}e^{z}\genexpintE{a}@{z}} (z)^(1 - a)* KummerU(1, 2 - a, z)= (z)^(1 - a)* exp(z)*Ei(a, z) (z)^(1 - a)* HypergeometricU[1, 2 - a, z]= (z)^(1 - a)* Exp[z]*ExpIntegralE[a, z] Successful Successful - -
13.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{1-a}e^{z}\genexpintE{a}@{z} = e^{z}\incGamma@{1-a}{z}} (z)^(1 - a)* exp(z)*Ei(a, z)= exp(z)*GAMMA(1 - a, z) (z)^(1 - a)* Exp[z]*ExpIntegralE[a, z]= Exp[z]*Gamma[1 - a, z] Successful Successful - -
13.6.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{\sqrt{\pi}}{2z}\erf@{z}} KummerM((1)/(2), (3)/(2), - (z)^(2))=(sqrt(Pi))/(2*z)*erf(z) Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)]=Divide[Sqrt[Pi],2*z]*Erf[z] Successful Successful - -
13.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \sqrt{\pi}e^{z^{2}}\erfc@{z}} KummerU((1)/(2), (1)/(2), (z)^(2))=sqrt(Pi)*exp((z)^(2))*erfc(z) HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)]=Sqrt[Pi]*Exp[(z)^(2)]*Erfc[z] Failure Failure
Fail
3.075886301+2.075744094*I <- {z = -2^(1/2)-I*2^(1/2)}
3.075886301-2.075744094*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[3.0758862951142576, 2.0757440991874905] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.0758862951142576, -2.0757440991874905] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.6.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \EulerGamma@{1+\nu}e^{z}\left(\ifrac{z}{2}\right)^{-\nu}\modBesselI{\nu}@{z}} KummerM(nu +(1)/(2), 2*nu + 1, 2*z)= GAMMA(1 + nu)*exp(z)*((z)/(2))^(- nu)* BesselI(nu, z) Hypergeometric1F1[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z]= Gamma[1 + \[Nu]]*Exp[z]*(Divide[z,2])^(- \[Nu])* BesselI[\[Nu], z] Successful Successful - -
13.6.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{\nu+\tfrac{1}{2}}{2\nu+1}{2z} = \frac{1}{\sqrt{\pi}}e^{z}\left(2z\right)^{-\nu}\modBesselK{\nu}@{z}} KummerU(nu +(1)/(2), 2*nu + 1, 2*z)=(1)/(sqrt(Pi))*exp(z)*(2*z)^(- nu)* BesselK(nu, z) HypergeometricU[\[Nu]+Divide[1,2], 2*\[Nu]+ 1, 2*z]=Divide[1,Sqrt[Pi]]*Exp[z]*(2*z)^(- \[Nu])* BesselK[\[Nu], z] Successful Successful - -
13.6.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{\tfrac{5}{6}}{\tfrac{5}{3}}{\tfrac{4}{3}z^{3/2}} = \sqrt{\pi}\frac{3^{5/6}\exp@{\tfrac{2}{3}z^{3/2}}}{2^{2/3}z}\AiryAi@{z}} KummerU((5)/(6), (5)/(3), (4)/(3)*(z)^(3/ 2))=sqrt(Pi)*((3)^(5/ 6)* exp((2)/(3)*(z)^(3/ 2)))/((2)^(2/ 3)* z)*AiryAi(z) HypergeometricU[Divide[5,6], Divide[5,3], Divide[4,3]*(z)^(3/ 2)]=Sqrt[Pi]*Divide[(3)^(5/ 6)* Exp[Divide[2,3]*(z)^(3/ 2)],(2)^(2/ 3)* z]*AiryAi[z] Failure Failure
Fail
.1287113381-.3250284300*I <- {z = -2^(1/2)-I*2^(1/2)}
.1287113381+.3250284300*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.12871133806471044, -0.32502842978110724] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.12871133806471044, 0.32502842978110724] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.6.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{1}{4}}e^{\frac{1}{4}z^{2}}\paraU@{a}{z}} KummerU((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a +(1)/(4))* exp((1)/(4)*(z)^(2))*CylinderU(a, z) HypergeometricU[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a +Divide[1,4])* Exp[Divide[1,4]*(z)^(2)]*ParabolicCylinderD[-a - 1/2, z] Failure Failure
Fail
5.265954080+2.598925556*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
16.95026320+24.47160682*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
16.95026320-24.47160682*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
5.265954080-2.598925556*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[5.265954078844872, 2.598925568096585] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[16.95026324285485, 24.471606828175403] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[16.95026324285485, -24.471606828175403] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[5.265954078844872, -2.598925568096585] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.6.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a+\frac{3}{4}}\frac{e^{\frac{1}{4}z^{2}}}{z}\paraU@{a}{z}} KummerU((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a +(3)/(4))*(exp((1)/(4)*(z)^(2)))/(z)*CylinderU(a, z) HypergeometricU[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a +Divide[3,4])*Divide[Exp[Divide[1,4]*(z)^(2)],z]*ParabolicCylinderD[-a - 1/2, z] Failure Failure
Fail
-4.996298330+.8383991143*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
3.915433252-20.40791018*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
3.915433252+20.40791018*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-4.996298330-.8383991143*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-4.996298332347829, 0.8383991090064162] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.9154332288113323, -20.407910193592727] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.9154332288113323, 20.407910193592727] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.996298332347829, -0.8383991090064162] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.6.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{3}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}e^{\frac{1}{4}z^{2}}}{\sqrt{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)} KummerM((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2))=((2)^((1)/(2)*a -(3)/(4))* GAMMA((1)/(2)*a +(3)/(4))*exp((1)/(4)*(z)^(2)))/(sqrt(Pi))*(CylinderU(a, z)+ CylinderU(a, - z)) Hypergeometric1F1[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)]=Divide[(2)^(Divide[1,2]*a -Divide[3,4])* Gamma[Divide[1,2]*a +Divide[3,4]]*Exp[Divide[1,4]*(z)^(2)],Sqrt[Pi]]*(ParabolicCylinderD[-a - 1/2, z]+ ParabolicCylinderD[-a - 1/2, - z]) Successful Successful - -
13.6.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = \frac{2^{\frac{1}{2}a-\frac{5}{4}}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}e^{\frac{1}{4}z^{2}}}{z\sqrt{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)} KummerM((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2))=((2)^((1)/(2)*a -(5)/(4))* GAMMA((1)/(2)*a +(1)/(4))*exp((1)/(4)*(z)^(2)))/(z*sqrt(Pi))*(CylinderU(a, - z)- CylinderU(a, z)) Hypergeometric1F1[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)]=Divide[(2)^(Divide[1,2]*a -Divide[5,4])* Gamma[Divide[1,2]*a +Divide[1,4]]*Exp[Divide[1,4]*(z)^(2)],z*Sqrt[Pi]]*(ParabolicCylinderD[-a - 1/2, - z]- ParabolicCylinderD[-a - 1/2, z]) Successful Successful - -
13.6.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{-n}{\tfrac{1}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}\HermitepolyH{2n}@{z}} KummerM(- n, (1)/(2), (z)^(2))=(- 1)^(n)*(factorial(n))/(factorial(2*n))*HermiteH(2*n, z) Hypergeometric1F1[- n, Divide[1,2], (z)^(2)]=(- 1)^(n)*Divide[(n)!,(2*n)!]*HermiteH[2*n, z] Failure Failure Successful Successful
13.6.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{-n}{\tfrac{3}{2}}{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!2z}\HermitepolyH{2n+1}@{z}} KummerM(- n, (3)/(2), (z)^(2))=(- 1)^(n)*(factorial(n))/(factorial(2*n + 1)*2*z)*HermiteH(2*n + 1, z) Hypergeometric1F1[- n, Divide[3,2], (z)^(2)]=(- 1)^(n)*Divide[(n)!,(2*n + 1)!*2*z]*HermiteH[2*n + 1, z] Failure Failure Successful Successful
13.6.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{\tfrac{1}{2}-\tfrac{1}{2}n}{\tfrac{3}{2}}{z^{2}} = 2^{-n}z^{-1}\HermitepolyH{n}@{z}} KummerU((1)/(2)-(1)/(2)*n, (3)/(2), (z)^(2))= (2)^(- n)* (z)^(- 1)* HermiteH(n, z) HypergeometricU[Divide[1,2]-Divide[1,2]*n, Divide[3,2], (z)^(2)]= (2)^(- n)* (z)^(- 1)* HermiteH[n, z] Failure Failure
Fail
2.474873733+3.181980514*I <- {z = -2^(1/2)-I*2^(1/2), n = 2}
2.474873733-3.181980514*I <- {z = -2^(1/2)+I*2^(1/2), n = 2}
Fail
Complex[2.4748737341529163, 3.181980515339464] <- {Rule[n, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.474873734152916, -3.181980515339464] <- {Rule[n, 2], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.6.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{-n}{\alpha+1}{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\KummerconfhyperM@{-n}{\alpha+1}{z}} KummerU(- n, alpha + 1, z)=(- 1)^(n)* pochhammer(alpha + 1, n)*KummerM(- n, alpha + 1, z) HypergeometricU[- n, \[Alpha]+ 1, z]=(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*Hypergeometric1F1[- n, \[Alpha]+ 1, z] Failure Failure Successful Successful
13.6.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{-n}{z-n+1}{a} = \Pochhammersym{-z}{n}\KummerconfhyperM@{-n}{z-n+1}{a}} KummerU(- n, z - n + 1, a)= pochhammer(- z, n)*KummerM(- n, z - n + 1, a) HypergeometricU[- n, z - n + 1, a]= Pochhammer[- z, n]*Hypergeometric1F1[- n, z - n + 1, a] Failure Failure Skip Successful
13.6.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = z^{-a}\genhyperF{2}{0}@{a,a-b+1}{-}{-z^{-1}}} KummerU(a, b, z)= (z)^(- a)* hypergeom([a , a - b + 1], [-], - (z)^(- 1)) HypergeometricU[a, b, z]= (z)^(- a)* HypergeometricPFQ[{a , a - b + 1}, {-}, - (z)^(- 1)] Error Failure - Error
13.7.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = z^{-a}\sum_{s=0}^{n-1}\frac{\Pochhammersym{a}{s}\Pochhammersym{a-b+1}{s}}{s!}(-z)^{-s}+\varepsilon_{n}(z)} KummerU(a, b, z)= (z)^(- a)* sum((pochhammer(a, s)*pochhammer(a - b + 1, s))/(factorial(s))*(- z)^(- s), s = 0..n - 1)+ varepsilon[n]*(z) HypergeometricU[a, b, z]= (z)^(- a)* Sum[Divide[Pochhammer[a, s]*Pochhammer[a - b + 1, s],(s)!]*(- z)^(- s), {s, 0, n - 1}]+ Subscript[\[CurlyEpsilon], n]*(z) Failure Failure Skip Skip
13.7#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \chi(n) = \sqrt{\pi}\EulerGamma@{\tfrac{1}{2}n+1}/\EulerGamma@{\tfrac{1}{2}n+\tfrac{1}{2}}} chi*(n)=sqrt(Pi)*GAMMA((1)/(2)*n + 1)/ GAMMA((1)/(2)*n +(1)/(2)) \[Chi]*(n)=Sqrt[Pi]*Gamma[Divide[1,2]*n + 1]/ Gamma[Divide[1,2]*n +Divide[1,2]] Failure Failure
Fail
-.156582765+1.414213562*I <- {chi = 2^(1/2)+I*2^(1/2), n = 1}
.828427124+2.828427124*I <- {chi = 2^(1/2)+I*2^(1/2), n = 2}
1.886446196+4.242640686*I <- {chi = 2^(1/2)+I*2^(1/2), n = 3}
-.156582765-1.414213562*I <- {chi = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Fail
Complex[-0.1565827644218014, 1.4142135623730951] <- {Rule[n, 1], Rule[χ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.8284271247461903, 2.8284271247461903] <- {Rule[n, 2], Rule[χ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.8864461969269408, 4.242640687119286] <- {Rule[n, 3], Rule[χ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.1565827644218014, -1.4142135623730951] <- {Rule[n, 1], Rule[χ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.7.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = z^{-a}\sum_{s=0}^{n-1}\frac{\Pochhammersym{a}{s}\Pochhammersym{a-b+1}{s}}{s!}(-z)^{-s}+R_{n}(a,b,z)} KummerU(a, b, z)= (z)^(- a)* sum((pochhammer(a, s)*pochhammer(a - b + 1, s))/(factorial(s))*(- z)^(- s), s = 0..n - 1)+ R[n]*(a , b , z) HypergeometricU[a, b, z]= (z)^(- a)* Sum[Divide[Pochhammer[a, s]*Pochhammer[a - b + 1, s],(s)!]*(- z)^(- s), {s, 0, n - 1}]+ Subscript[R, n]*(a , b , z) Failure Failure Skip Error
13.8.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(e^{t}-1\right)^{a-1}\exp@{t+z(1-e^{-t})} = \sum_{s=0}^{\infty}q_{s}(z,a)t^{s+a-1}} (exp(t)- 1)^(a - 1)* exp(t + z*(1 - exp(- t)))= sum(q[s]*(z , a)* (t)^(s + a - 1), s = 0..infinity) (Exp[t]- 1)^(a - 1)* Exp[t + z*(1 - Exp[- t])]= Sum[Subscript[q, s]*(z , a)* (t)^(s + a - 1), {s, 0, Infinity}] Error Failure - Error
13.8#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{k}(z) = \sum_{s=0}^{k}\binom{k}{s}\Pochhammersym{1-b+s}{k-s}z^{s}c_{k+s}(z)} p[k]*(z)= sum(binomial(k,s)*pochhammer(1 - b + s, k - s)*(z)^(s)* c[k + s]*(z), s = 0..k) Subscript[p, k]*(z)= Sum[Binomial[k,s]*Pochhammer[1 - b + s, k - s]*(z)^(s)* Subscript[c, k + s]*(z), {s, 0, k}] Failure Failure Skip Skip
13.8#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q_{k}(z) = \sum_{s=0}^{k}\binom{k}{s}\Pochhammersym{2-b+s}{k-s}z^{s}c_{k+s+1}(z)} q[k]*(z)= sum(binomial(k,s)*pochhammer(2 - b + s, k - s)*(z)^(s)* c[k + s + 1]*(z), s = 0..k) Subscript[q, k]*(z)= Sum[Binomial[k,s]*Pochhammer[2 - b + s, k - s]*(z)^(s)* Subscript[c, k + s + 1]*(z), {s, 0, k}] Failure Failure Skip Skip
13.8.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (k+1)c_{k+1}(z)+\sum_{s=0}^{k}\left(\frac{b\BernoullinumberB{s+1}}{(s+1)!}+\frac{z(s+1)\BernoullinumberB{s+2}}{(s+2)!}\right)c_{k-s}(z) = 0} (k + 1)* c[k + 1]*(z)+ sum(((b*bernoulli(s + 1))/(factorial(s + 1))+(z*(s + 1)* bernoulli(s + 2))/(factorial(s + 2)))* c[k - s]*(z), s = 0..k)= 0 (k + 1)* Subscript[c, k + 1]*(z)+ Sum[(Divide[b*BernoulliB[s + 1],(s + 1)!]+Divide[z*(s + 1)* BernoulliB[s + 2],(s + 2)!])* Subscript[c, k - s]*(z), {s, 0, k}]= 0 Failure Failure Skip Successful
13.8#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{f}{t} = \left(b\left(\frac{1}{t}-\frac{1}{e^{t}-1}\right)-z\left(\frac{1}{t^{2}}-\frac{e^{t}}{\left(e^{t}-1\right)^{2}}\right)\right)f} diff(f, t)=(b*((1)/(t)-(1)/(exp(t)- 1))- z*((1)/((t)^(2))-(exp(t))/((exp(t)- 1)^(2))))* f D[f, t]=(b*(Divide[1,t]-Divide[1,Exp[t]- 1])- z*(Divide[1,(t)^(2)]-Divide[Exp[t],(Exp[t]- 1)^(2)]))* f Failure Failure
Fail
-.3721020438-1.177486994*I <- {b = 2^(1/2)+I*2^(1/2), f = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.1143697985-1.565636569*I <- {b = 2^(1/2)+I*2^(1/2), f = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.5025193734-1.823368814*I <- {b = 2^(1/2)+I*2^(1/2), f = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.7602516187-1.435219239*I <- {b = 2^(1/2)+I*2^(1/2), f = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.9.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p(a,b) = \ceiling{-a}} p*(a , b)= ceil(- a) p*(a , b)= Ceiling[- a] Failure Failure Error Error
13.9.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p(a,b) = \floor{-\tfrac{1}{2}b}-\floor{-\tfrac{1}{2}(b+1)}} p*(a , b)= floor(-(1)/(2)*b)- floor(-(1)/(2)*(b + 1)) p*(a , b)= Floor[-Divide[1,2]*b]- Floor[-Divide[1,2]*(b + 1)] Failure Failure Error Error
13.9.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p(a,b) = \ceiling{-a}-\ceiling{-b}} p*(a , b)= ceil(- a)- ceil(- b) p*(a , b)= Ceiling[- a]- Ceiling[- b] Failure Failure Skip Error
13.9.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p(a,b) = \floor{\tfrac{1}{2}\left(\ceiling{-b}-\ceiling{-a}+1\right)}-\floor{\tfrac{1}{2}\left(\ceiling{-b}-\ceiling{-a}\right)}} p*(a , b)= floor((1)/(2)*(ceil(- b)- ceil(- a)+ 1))- floor((1)/(2)*(ceil(- b)- ceil(- a))) p*(a , b)= Floor[Divide[1,2]*(Ceiling[- b]- Ceiling[- a]+ 1)]- Floor[Divide[1,2]*(Ceiling[- b]- Ceiling[- a])] Failure Failure Skip Error
13.9.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle T(a,b) = \floor{-a}+1} T*(a , b)= floor(- a)+ 1 T*(a , b)= Floor[- a]+ 1 Error Failure - Error
13.9.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle T(a,b) = \floor{-a}} T*(a , b)= floor(- a) T*(a , b)= Floor[- a] Error Failure - Error
13.9.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle P(a,b) = \ceiling{b-a-1}} P*(a , b)= ceil(b - a - 1) P*(a , b)= Ceiling[b - a - 1] Failure Failure Skip Error
13.10.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\OlverconfhyperM@{a}{b}{z}\diff{z} = \frac{1}{a-1}\OlverconfhyperM@{a-1}{b-1}{z}} int(KummerM(a, b, z)/GAMMA(b), z)=(1)/(a - 1)*KummerM(a - 1, b - 1, z)/GAMMA(b - 1) Integrate[Hypergeometric1F1Regularized[a, b, z], z]=Divide[1,a - 1]*Hypergeometric1F1Regularized[a - 1, b - 1, z] Successful Failure - Skip
13.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\KummerconfhyperU@{a}{b}{z}\diff{z} = -\frac{1}{a-1}\KummerconfhyperU@{a-1}{b-1}{z}} int(KummerU(a, b, z), z)= -(1)/(a - 1)*KummerU(a - 1, b - 1, z) Integrate[HypergeometricU[a, b, z], z]= -Divide[1,a - 1]*HypergeometricU[a - 1, b - 1, z] Successful Successful - -
13.10.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-zt}t^{b-1}\OlverconfhyperM@{a}{c}{kt}\diff{t} = \EulerGamma@{b}z^{-b}\genhyperOlverF{2}{1}@{a,b}{c}{\ifrac{k}{z}}} int(exp(- z*t)*(t)^(b - 1)* KummerM(a, c, k*t)/GAMMA(c), t = 0..infinity)= GAMMA(b)*(z)^(- b)* hypergeom([a , b], [c], (k)/(z)) Integrate[Exp[- z*t]*(t)^(b - 1)* Hypergeometric1F1Regularized[a, c, k*t], {t, 0, Infinity}]= Gamma[b]*(z)^(- b)* HypergeometricPFQRegularized[{a , b}, {c}, Divide[k,z]] Failure Failure Skip Error
13.10.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-zt}t^{b-1}\OlverconfhyperM@{a}{b}{t}\diff{t} = z^{-b}\left(1-\frac{1}{z}\right)^{-a}} int(exp(- z*t)*(t)^(b - 1)* KummerM(a, b, t)/GAMMA(b), t = 0..infinity)= (z)^(- b)*(1 -(1)/(z))^(- a) Integrate[Exp[- z*t]*(t)^(b - 1)* Hypergeometric1F1Regularized[a, b, t], {t, 0, Infinity}]= (z)^(- b)*(1 -Divide[1,z])^(- a) Failure Failure Skip Error
13.10.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-t}t^{b-1}\OlverconfhyperM@{a}{c}{t}\diff{t} = \frac{\EulerGamma@{b}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}} int(exp(- t)*(t)^(b - 1)* KummerM(a, c, t)/GAMMA(c), t = 0..infinity)=(GAMMA(b)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b)) Integrate[Exp[- t]*(t)^(b - 1)* Hypergeometric1F1Regularized[a, c, t], {t, 0, Infinity}]=Divide[Gamma[b]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]] Failure Failure Skip Error
13.10.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-zt-t^{2}}t^{2b-2}\OlverconfhyperM@{a}{b}{t^{2}}\diff{t} = \tfrac{1}{2}\pi^{-\frac{1}{2}}\EulerGamma@{b-\tfrac{1}{2}}\KummerconfhyperU@{b-\tfrac{1}{2}}{a+\tfrac{1}{2}}{\tfrac{1}{4}z^{2}}} int(exp(- z*t - (t)^(2))*(t)^(2*b - 2)* KummerM(a, b, (t)^(2))/GAMMA(b), t = 0..infinity)=(1)/(2)*(Pi)^(-(1)/(2))* GAMMA(b -(1)/(2))*KummerU(b -(1)/(2), a +(1)/(2), (1)/(4)*(z)^(2)) Integrate[Exp[- z*t - (t)^(2)]*(t)^(2*b - 2)* Hypergeometric1F1Regularized[a, b, (t)^(2)], {t, 0, Infinity}]=Divide[1,2]*(Pi)^(-Divide[1,2])* Gamma[b -Divide[1,2]]*HypergeometricU[b -Divide[1,2], a +Divide[1,2], Divide[1,4]*(z)^(2)] Failure Failure Skip Error
13.10.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-zt}t^{b-1}\KummerconfhyperU@{a}{c}{t}\diff{t} = \EulerGamma@{b}\EulerGamma@{b-c+1}\*z^{-b}\genhyperOlverF{2}{1}@{a,b}{a+b-c+1}{1-\frac{1}{z}}} int(exp(- z*t)*(t)^(b - 1)* KummerU(a, c, t), t = 0..infinity)= GAMMA(b)*GAMMA(b - c + 1)* (z)^(- b)* hypergeom([a , b], [a + b - c + 1], 1 -(1)/(z)) Integrate[Exp[- z*t]*(t)^(b - 1)* HypergeometricU[a, c, t], {t, 0, Infinity}]= Gamma[b]*Gamma[b - c + 1]* (z)^(- b)* HypergeometricPFQRegularized[{a , b}, {a + b - c + 1}, 1 -Divide[1,z]] Failure Failure Skip Error
13.10.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2\pi\iunit}\int_{-\infty}^{(0+)}e^{tz}t^{-a}\OlverconfhyperM@{a}{b}{\ifrac{y}{t}}\diff{t} = \frac{1}{\EulerGamma@{a}}z^{\frac{1}{2}(2a-b-1)}y^{\frac{1}{2}(1-b)}\modBesselI{b-1}@{2\sqrt{zy}}} (1)/(2*Pi*I)*int(exp(t*z)*(t)^(- a)* KummerM(a, b, (y)/(t))/GAMMA(b), t = - infinity..(0 +))=(1)/(GAMMA(a))*(z)^((1)/(2)*(2*a - b - 1))* (y)^((1)/(2)*(1 - b))* BesselI(b - 1, 2*sqrt(z*y)) Divide[1,2*Pi*I]*Integrate[Exp[t*z]*(t)^(- a)* Hypergeometric1F1Regularized[a, b, Divide[y,t]], {t, - Infinity, (0 +)}]=Divide[1,Gamma[a]]*(z)^(Divide[1,2]*(2*a - b - 1))* (y)^(Divide[1,2]*(1 - b))* BesselI[b - 1, 2*Sqrt[z*y]] Error Failure - Error
13.10.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2\pi\iunit}\int_{-\infty}^{(0+)}e^{tz}t^{-a}\KummerconfhyperU@{a}{b}{\ifrac{y}{t}}\diff{t} = \frac{2z^{\frac{1}{2}(2a-b-1)}y^{\frac{1}{2}(1-b)}}{\EulerGamma@{a}\EulerGamma@{a-b+1}}\modBesselK{b-1}@{2\sqrt{zy}}} (1)/(2*Pi*I)*int(exp(t*z)*(t)^(- a)* KummerU(a, b, (y)/(t)), t = - infinity..(0 +))=(2*(z)^((1)/(2)*(2*a - b - 1))* (y)^((1)/(2)*(1 - b)))/(GAMMA(a)*GAMMA(a - b + 1))*BesselK(b - 1, 2*sqrt(z*y)) Divide[1,2*Pi*I]*Integrate[Exp[t*z]*(t)^(- a)* HypergeometricU[a, b, Divide[y,t]], {t, - Infinity, (0 +)}]=Divide[2*(z)^(Divide[1,2]*(2*a - b - 1))* (y)^(Divide[1,2]*(1 - b)),Gamma[a]*Gamma[a - b + 1]]*BesselK[b - 1, 2*Sqrt[z*y]] Error Failure - Error
13.10.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\lambda-1}\OlverconfhyperM@{a}{b}{-t}\diff{t} = \frac{\EulerGamma@{\lambda}\EulerGamma@{a-\lambda}}{\EulerGamma@{a}\EulerGamma@{b-\lambda}}} int((t)^(lambda - 1)* KummerM(a, b, - t)/GAMMA(b), t = 0..infinity)=(GAMMA(lambda)*GAMMA(a - lambda))/(GAMMA(a)*GAMMA(b - lambda)) Integrate[(t)^(\[Lambda]- 1)* Hypergeometric1F1Regularized[a, b, - t], {t, 0, Infinity}]=Divide[Gamma[\[Lambda]]*Gamma[a - \[Lambda]],Gamma[a]*Gamma[b - \[Lambda]]] Successful Failure - Error
13.10.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\lambda-1}\KummerconfhyperU@{a}{b}{t}\diff{t} = \frac{\EulerGamma@{\lambda}\EulerGamma@{a-\lambda}\EulerGamma@{\lambda-b+1}}{\EulerGamma@{a}\EulerGamma@{a-b+1}}} int((t)^(lambda - 1)* KummerU(a, b, t), t = 0..infinity)=(GAMMA(lambda)*GAMMA(a - lambda)*GAMMA(lambda - b + 1))/(GAMMA(a)*GAMMA(a - b + 1)) Integrate[(t)^(\[Lambda]- 1)* HypergeometricU[a, b, t], {t, 0, Infinity}]=Divide[Gamma[\[Lambda]]*Gamma[a - \[Lambda]]*Gamma[\[Lambda]- b + 1],Gamma[a]*Gamma[a - b + 1]] Successful Failure - Error
13.10.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\cos@{2xt}\OlverconfhyperM@{a}{b}{-t^{2}}\diff{t} = \frac{\sqrt{\pi}}{2\EulerGamma@{a}}x^{2a-1}e^{-x^{2}}\KummerconfhyperU@{b-\tfrac{1}{2}}{a+\tfrac{1}{2}}{x^{2}}} int(cos(2*x*t)*KummerM(a, b, - (t)^(2))/GAMMA(b), t = 0..infinity)=(sqrt(Pi))/(2*GAMMA(a))*(x)^(2*a - 1)* exp(- (x)^(2))*KummerU(b -(1)/(2), a +(1)/(2), (x)^(2)) Integrate[Cos[2*x*t]*Hypergeometric1F1Regularized[a, b, - (t)^(2)], {t, 0, Infinity}]=Divide[Sqrt[Pi],2*Gamma[a]]*(x)^(2*a - 1)* Exp[- (x)^(2)]*HypergeometricU[b -Divide[1,2], a +Divide[1,2], (x)^(2)] Failure Failure Skip Error
13.10.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-t}t^{b-1-\frac{1}{2}\nu}\OlverconfhyperM@{a}{b}{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = x^{-a+\frac{1}{2}\nu}e^{-x}\OlverconfhyperM@{\nu-b+1}{\nu-a+1}{x}} int(exp(- t)*(t)^(b - 1 -(1)/(2)*nu)* KummerM(a, b, t)/GAMMA(b)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)= (x)^(- a +(1)/(2)*nu)* exp(- x)*KummerM(nu - b + 1, nu - a + 1, x)/GAMMA(nu - a + 1) Integrate[Exp[- t]*(t)^(b - 1 -Divide[1,2]*\[Nu])* Hypergeometric1F1Regularized[a, b, t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]= (x)^(- a +Divide[1,2]*\[Nu])* Exp[- x]*Hypergeometric1F1Regularized[\[Nu]- b + 1, \[Nu]- a + 1, x] Failure Failure Skip Error
13.10.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-t}t^{\frac{1}{2}\nu}\OlverconfhyperM@{a}{b}{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{x^{\frac{1}{2}\nu}e^{-x}}{\EulerGamma@{b-a}}\KummerconfhyperU@{a}{a-b+\nu+2}{x}} int(exp(- t)*(t)^((1)/(2)*nu)* KummerM(a, b, t)/GAMMA(b)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=((x)^((1)/(2)*nu)* exp(- x))/(GAMMA(b - a))*KummerU(a, a - b + nu + 2, x) Integrate[Exp[- t]*(t)^(Divide[1,2]*\[Nu])* Hypergeometric1F1Regularized[a, b, t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[(x)^(Divide[1,2]*\[Nu])* Exp[- x],Gamma[b - a]]*HypergeometricU[a, a - b + \[Nu]+ 2, x] Failure Failure Skip Error
13.10.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{\frac{1}{2}\nu}\KummerconfhyperU@{a}{b}{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{\nu-b+2}}{\EulerGamma@{a}}x^{\frac{1}{2}\nu}\KummerconfhyperU@{\nu-b+2}{\nu-a+2}{x}} int((t)^((1)/(2)*nu)* KummerU(a, b, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=(GAMMA(nu - b + 2))/(GAMMA(a))*(x)^((1)/(2)*nu)* KummerU(nu - b + 2, nu - a + 2, x) Integrate[(t)^(Divide[1,2]*\[Nu])* HypergeometricU[a, b, t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[Gamma[\[Nu]- b + 2],Gamma[a]]*(x)^(Divide[1,2]*\[Nu])* HypergeometricU[\[Nu]- b + 2, \[Nu]- a + 2, x] Failure Failure Skip Error
13.10.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-t}t^{\frac{1}{2}\nu}\KummerconfhyperU@{a}{b}{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \EulerGamma@{\nu-b+2}x^{\frac{1}{2}\nu}e^{-x}\OlverconfhyperM@{a}{a-b+\nu+2}{x}} int(exp(- t)*(t)^((1)/(2)*nu)* KummerU(a, b, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)= GAMMA(nu - b + 2)*(x)^((1)/(2)*nu)* exp(- x)*KummerM(a, a - b + nu + 2, x)/GAMMA(a - b + nu + 2) Integrate[Exp[- t]*(t)^(Divide[1,2]*\[Nu])* HypergeometricU[a, b, t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]= Gamma[\[Nu]- b + 2]*(x)^(Divide[1,2]*\[Nu])* Exp[- x]*Hypergeometric1F1Regularized[a, a - b + \[Nu]+ 2, x] Failure Failure Skip Error
13.11.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{a}{b}{z} = \EulerGamma@{a-\tfrac{1}{2}}e^{\frac{1}{2}z}\left(\tfrac{1}{4}z\right)^{\frac{1}{2}-a}\*\sum_{s=0}^{\infty}\frac{\Pochhammersym{2a-1}{s}\Pochhammersym{2a-b}{s}}{\Pochhammersym{b}{s}s!}\*\left(a-\tfrac{1}{2}+s\right)\*\modBesselI{a-\frac{1}{2}+s}@{\tfrac{1}{2}z}} KummerM(a, b, z)= GAMMA(a -(1)/(2))*exp((1)/(2)*z)*((1)/(4)*z)^((1)/(2)- a)* sum((pochhammer(2*a - 1, s)*pochhammer(2*a - b, s))/(pochhammer(b, s)*factorial(s))*(a -(1)/(2)+ s)* BesselI(a -(1)/(2)+ s, (1)/(2)*z), s = 0..infinity) Hypergeometric1F1[a, b, z]= Gamma[a -Divide[1,2]]*Exp[Divide[1,2]*z]*(Divide[1,4]*z)^(Divide[1,2]- a)* Sum[Divide[Pochhammer[2*a - 1, s]*Pochhammer[2*a - b, s],Pochhammer[b, s]*(s)!]*(a -Divide[1,2]+ s)* BesselI[a -Divide[1,2]+ s, Divide[1,2]*z], {s, 0, Infinity}] Error Failure - Skip
13.12.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{a}{b}{z}\KummerconfhyperM@{-a}{-b}{-z}+\frac{a(a-b)z^{2}}{b^{2}(1-b^{2})}\KummerconfhyperM@{1+a}{2+b}{z}\KummerconfhyperM@{1-a}{2-b}{-z} = 1} KummerM(a, b, z)*KummerM(- a, - b, - z)+(a*(a - b)* (z)^(2))/((b)^(2)*(1 - (b)^(2)))*KummerM(1 + a, 2 + b, z)*KummerM(1 - a, 2 - b, - z)= 1 Hypergeometric1F1[a, b, z]*Hypergeometric1F1[- a, - b, - z]+Divide[a*(a - b)* (z)^(2),(b)^(2)*(1 - (b)^(2))]*Hypergeometric1F1[1 + a, 2 + b, z]*Hypergeometric1F1[1 - a, 2 - b, - z]= 1 Failure Failure Successful Skip
13.14.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{W}{z}+\left(-\frac{1}{4}+\frac{\kappa}{z}+\frac{\frac{1}{4}-\mu^{2}}{z^{2}}\right)W = 0} diff(W, [z$(2)])+(-(1)/(4)+(kappa)/(z)+((1)/(4)- (mu)^(2))/((z)^(2)))* W = 0 D[W, {z, 2}]+(-Divide[1,4]+Divide[\[Kappa],z]+Divide[Divide[1,4]- (\[Mu])^(2),(z)^(2)])* W = 0 Failure Failure
Fail
-.2651650428-.4419417382*I <- {W = 2^(1/2)+I*2^(1/2), kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.4419417381+2.563262081*I <- {W = 2^(1/2)+I*2^(1/2), kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-3.093592167-3.270368862*I <- {W = 2^(1/2)+I*2^(1/2), kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
2.386485386-.2651650429*I <- {W = 2^(1/2)+I*2^(1/2), kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.2651650429449553, -0.44194173824159216] <- {Rule[W, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.5632620818012346, 2.3864853865045976] <- {Rule[W, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.2651650429449553, -0.44194173824159216] <- {Rule[W, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.5632620818012346, 2.3864853865045976] <- {Rule[W, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\KummerconfhyperM@{\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{z}} WhittakerM(kappa, mu, z)= exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* KummerM((1)/(2)+ mu - kappa, 1 + 2*mu, z) WhittakerM[\[Kappa], \[Mu], z]= Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Hypergeometric1F1[Divide[1,2]+ \[Mu]- \[Kappa], 1 + 2*\[Mu], z] Successful Successful - -
13.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\KummerconfhyperU@{\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{z}} WhittakerW(kappa, mu, z)= exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* KummerU((1)/(2)+ mu - kappa, 1 + 2*mu, z) WhittakerW[\[Kappa], \[Mu], z]= Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* HypergeometricU[Divide[1,2]+ \[Mu]- \[Kappa], 1 + 2*\[Mu], z] Successful Successful - -
13.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{a}{b}{z} = e^{\frac{1}{2}z}z^{-\frac{1}{2}b}\WhittakerconfhyperM{\frac{1}{2}b-a}{\frac{1}{2}b-\frac{1}{2}}@{z}} KummerM(a, b, z)= exp((1)/(2)*z)*(z)^(-(1)/(2)*b)* WhittakerM((1)/(2)*b - a, (1)/(2)*b -(1)/(2), z) Hypergeometric1F1[a, b, z]= Exp[Divide[1,2]*z]*(z)^(-Divide[1,2]*b)* WhittakerM[Divide[1,2]*b - a, Divide[1,2]*b -Divide[1,2], z] Successful Successful - -
13.14.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperU@{a}{b}{z} = e^{\frac{1}{2}z}z^{-\frac{1}{2}b}\WhittakerconfhyperW{\frac{1}{2}b-a}{\frac{1}{2}b-\frac{1}{2}}@{z}} KummerU(a, b, z)= exp((1)/(2)*z)*(z)^(-(1)/(2)*b)* WhittakerW((1)/(2)*b - a, (1)/(2)*b -(1)/(2), z) HypergeometricU[a, b, z]= Exp[Divide[1,2]*z]*(z)^(-Divide[1,2]*b)* WhittakerW[Divide[1,2]*b - a, Divide[1,2]*b -Divide[1,2], z] Successful Successful - -
13.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\sum_{s=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}z^{s}} WhittakerM(kappa, mu, z)= exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* sum((pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(z)^(s), s = 0..infinity) WhittakerM[\[Kappa], \[Mu], z]= Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Sum[Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(z)^(s), {s, 0, Infinity}] Successful Successful - -
13.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-\frac{1}{2}z}z^{\frac{1}{2}+\mu}\sum_{s=0}^{\infty}\frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}z^{s} = z^{\frac{1}{2}+\mu}\sum_{n=0}^{\infty}\genhyperF{2}{1}@@{-n,\tfrac{1}{2}+\mu-\kappa}{1+2\mu}{2}\frac{\left(-\tfrac{1}{2}z\right)^{n}}{n!}} exp(-(1)/(2)*z)*(z)^((1)/(2)+ mu)* sum((pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(z)^(s), s = 0..infinity)= (z)^((1)/(2)+ mu)* sum(hypergeom([- n ,(1)/(2)+ mu - kappa], [1 + 2*mu], 2)*((-(1)/(2)*z)^(n))/(factorial(n)), n = 0..infinity) Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]+ \[Mu])* Sum[Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(z)^(s), {s, 0, Infinity}]= (z)^(Divide[1,2]+ \[Mu])* Sum[HypergeometricPFQ[{- n ,Divide[1,2]+ \[Mu]- \[Kappa]}, {1 + 2*\[Mu]}, 2]*Divide[(-Divide[1,2]*z)^(n),(n)!], {n, 0, Infinity}] Failure Failure Skip Skip
13.14.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\Pochhammersym{-\frac{1}{2}n-\kappa}{n+1}}{(n+1)!}\WhittakerconfhyperM{\kappa}{\frac{1}{2}(n+1)}@{z} = e^{-\frac{1}{2}z}z^{-\frac{1}{2}n}\sum_{s=n+1}^{\infty}\frac{\Pochhammersym{-\frac{1}{2}n-\kappa}{s}}{\EulerGamma@{s-n}s!}z^{s}} (pochhammer(-(1)/(2)*n - kappa, n + 1))/(factorial(n + 1))*WhittakerM(kappa, (1)/(2)*(n + 1), z)= exp(-(1)/(2)*z)*(z)^(-(1)/(2)*n)* sum((pochhammer(-(1)/(2)*n - kappa, s))/(GAMMA(s - n)*factorial(s))*(z)^(s), s = n + 1..infinity) Divide[Pochhammer[-Divide[1,2]*n - \[Kappa], n + 1],(n + 1)!]*WhittakerM[\[Kappa], Divide[1,2]*(n + 1), z]= Exp[-Divide[1,2]*z]*(z)^(-Divide[1,2]*n)* Sum[Divide[Pochhammer[-Divide[1,2]*n - \[Kappa], s],Gamma[s - n]*(s)!]*(z)^(s), {s, n + 1, Infinity}] Successful Successful - -
13.14.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\mu}@{ze^{+\pi\iunit}} = +\iunit e^{+\mu\pi\iunit}\WhittakerconfhyperM{-\kappa}{\mu}@{z}} WhittakerM(kappa, mu, z*exp(+ Pi*I))= + I*exp(+ mu*Pi*I)*WhittakerM(- kappa, mu, z) WhittakerM[\[Kappa], \[Mu], z*Exp[+ Pi*I]]= + I*Exp[+ \[Mu]*Pi*I]*WhittakerM[- \[Kappa], \[Mu], z] Failure Failure
Fail
-170.7233278-52.66673233*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
5.614866181-.1961391743*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-253.7484615-500.5136150*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
4338.981046-2443.697049*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-170.7233281137989, -52.66673241325771] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-253.74846171929062, -500.51361552060405] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-27.726012706068122, -46.132000771477266] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-52.00289849528395, 25.53895774298251] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.14.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\mu}@{ze^{-\pi\iunit}} = -\iunit e^{-\mu\pi\iunit}\WhittakerconfhyperM{-\kappa}{\mu}@{z}} WhittakerM(kappa, mu, z*exp(- Pi*I))= - I*exp(- mu*Pi*I)*WhittakerM(- kappa, mu, z) WhittakerM[\[Kappa], \[Mu], z*Exp[- Pi*I]]= - I*Exp[- \[Mu]*Pi*I]*WhittakerM[- \[Kappa], \[Mu], z] Failure Failure
Fail
-1336.329299+1299.001005*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
4031.109392-3933.985765*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-156.7833633-147.7697510*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
17.75799389-.6206610589*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-1336.3293012153467, 1299.0010073665994] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-156.7833635417097, -147.76975126580453] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.6144703540529446, -5.648276978861849] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[13.567482135419885, 36.936365970710575] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[κ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.14.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\mu}@{ze^{2m\pi\iunit}} = (-1)^{m}e^{2m\mu\pi\iunit}\WhittakerconfhyperM{\kappa}{\mu}@{z}} WhittakerM(kappa, mu, z*exp(2*m*Pi*I))=(- 1)^(m)* exp(2*m*mu*Pi*I)*WhittakerM(kappa, mu, z) WhittakerM[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]]=(- 1)^(m)* Exp[2*m*\[Mu]*Pi*I]*WhittakerM[\[Kappa], \[Mu], z] Failure Failure
Fail
-.1992563118+.7533300151*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 1}
-.1992264798+.7534336021*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 2}
-.1992264621+.7534336186*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 3}
5.614866174-.1961391695*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), m = 1}
... skip entries to safe data
Skip
13.14.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\mu}@{ze^{2m\pi\iunit}} = \frac{(-1)^{m+1}2\pi\iunit\sin@{2\pi\mu m}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}\EulerGamma@{1+2\mu}\sin@{2\pi\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z}+(-1)^{m}e^{-2m\mu\pi\iunit}\WhittakerconfhyperW{\kappa}{\mu}@{z}} WhittakerW(kappa, mu, z*exp(2*m*Pi*I))=((- 1)^(m + 1)* 2*Pi*I*sin(2*Pi*mu*m))/(GAMMA((1)/(2)- mu - kappa)*GAMMA(1 + 2*mu)*sin(2*Pi*mu))*WhittakerM(kappa, mu, z)+(- 1)^(m)* exp(- 2*m*mu*Pi*I)*WhittakerW(kappa, mu, z) WhittakerW[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]]=Divide[(- 1)^(m + 1)* 2*Pi*I*Sin[2*Pi*\[Mu]*m],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]*Gamma[1 + 2*\[Mu]]*Sin[2*Pi*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]+(- 1)^(m)* Exp[- 2*m*\[Mu]*Pi*I]*WhittakerW[\[Kappa], \[Mu], z] Failure Failure
Fail
4888.973639-5758.546940*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 1}
51701593.85-17588478.17*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 2}
.3859873546e12+.827147997e11*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 3}
339.062648-414.78030*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), m = 1}
... skip entries to safe data
Skip
13.14.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{m}\WhittakerconfhyperW{\kappa}{\mu}@{ze^{2m\pi\iunit}} = -\frac{e^{2\kappa\pi\iunit}\sin@{2m\mu\pi}+\sin@{(2m-2)\mu\pi}}{\sin@{2\mu\pi}}\WhittakerconfhyperW{\kappa}{\mu}@{z}-\frac{\sin@{2m\mu\pi}2\pi\iunit e^{\kappa\pi\iunit}}{\sin@{2\mu\pi}\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{ze^{\pi\iunit}}} (- 1)^(m)* WhittakerW(kappa, mu, z*exp(2*m*Pi*I))= -(exp(2*kappa*Pi*I)*sin(2*m*mu*Pi)+ sin((2*m - 2)* mu*Pi))/(sin(2*mu*Pi))*WhittakerW(kappa, mu, z)-(sin(2*m*mu*Pi)*2*Pi*I*exp(kappa*Pi*I))/(sin(2*mu*Pi)*GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*WhittakerW(- kappa, mu, z*exp(Pi*I)) (- 1)^(m)* WhittakerW[\[Kappa], \[Mu], z*Exp[2*m*Pi*I]]= -Divide[Exp[2*\[Kappa]*Pi*I]*Sin[2*m*\[Mu]*Pi]+ Sin[(2*m - 2)* \[Mu]*Pi],Sin[2*\[Mu]*Pi]]*WhittakerW[\[Kappa], \[Mu], z]-Divide[Sin[2*m*\[Mu]*Pi]*2*Pi*I*Exp[\[Kappa]*Pi*I],Sin[2*\[Mu]*Pi]*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], z*Exp[Pi*I]] Failure Failure
Fail
-.3787433625+.42488234e-1*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 1}
9903.313865-3475.249377*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 2}
-74336427.26-15180270.02*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 3}
-339.0626695+414.7802897*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), m = 1}
... skip entries to safe data
Skip
13.14.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperM{\kappa}{-\mu}@{z}} = -2\mu} (WhittakerM(kappa, mu, z))*diff(WhittakerM(kappa, - mu, z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerM(kappa, - mu, z))= - 2*mu Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerM[\[Kappa], - \[Mu], z]}, z]= - 2*\[Mu] Failure Failure Successful Successful
13.14.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{\kappa}{\mu}@{z}} = -\frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}} (WhittakerM(kappa, mu, z))*diff(WhittakerW(kappa, mu, z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(kappa, mu, z))= -(GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu - kappa)) Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[\[Kappa], \[Mu], z]}, z]= -Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]] Failure Failure Successful Skip
13.14.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}e^{-(\frac{1}{2}+\mu)\pi\iunit}} (WhittakerM(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z))=(GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu + kappa))*exp(-((1)/(2)+ mu)* Pi*I) Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z]=Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Exp[-(Divide[1,2]+ \[Mu])* Pi*I] Failure Failure
Fail
-139.4018328-103.8422707*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-139.4018328-103.8422707*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-34.52500080+37.00315934*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-34.52500081+37.00315938*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\WhittakerconfhyperM{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}e^{+(\frac{1}{2}+\mu)\pi\iunit}} (WhittakerM(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerM(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z))=(GAMMA(1 + 2*mu))/(GAMMA((1)/(2)+ mu + kappa))*exp(+((1)/(2)+ mu)* Pi*I) Wronskian[{WhittakerM[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z]=Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Exp[+(Divide[1,2]+ \[Mu])* Pi*I] Failure Failure
Fail
139.4018325+103.8422705*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
139.4018324+103.8422705*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
34.52500091-37.00315940*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
34.52500091-37.00315940*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{\kappa}{\mu}@{z}} = -\frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}}} (WhittakerM(kappa, - mu, z))*diff(WhittakerW(kappa, mu, z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(kappa, mu, z))= -(GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu - kappa)) Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[\[Kappa], \[Mu], z]}, z]= -Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]] Failure Failure Successful Skip
13.14.E29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = \frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa}}e^{-(\frac{1}{2}-\mu)\pi\iunit}} (WhittakerM(kappa, - mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z))=(GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu + kappa))*exp(-((1)/(2)- mu)* Pi*I) Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z]=Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]]]*Exp[-(Divide[1,2]- \[Mu])* Pi*I] Failure Failure
Fail
.3494764582e-2+.1012865874*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.3494764522e-2+.1012865875*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.5639963652+6.066610734*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.5639963652+6.066610734*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\WhittakerconfhyperM{\kappa}{-\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = \frac{\EulerGamma@{1-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa}}e^{+(\frac{1}{2}-\mu)\pi\iunit}} (WhittakerM(kappa, - mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerM(kappa, - mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z))=(GAMMA(1 - 2*mu))/(GAMMA((1)/(2)- mu + kappa))*exp(+((1)/(2)- mu)* Pi*I) Wronskian[{WhittakerM[\[Kappa], - \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z]=Divide[Gamma[1 - 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]]]*Exp[+(Divide[1,2]- \[Mu])* Pi*I] Failure Failure
Fail
-.3494764696e-2-.1012865889*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.3494764619e-2-.1012865875*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.5639963688-6.066610726*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.5639963668-6.066610729*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\WhittakerconfhyperW{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} = e^{-\kappa\pi\iunit}} (WhittakerW(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(+ Pi*I)*z), z)-diff(WhittakerW(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(+ Pi*I)*z))= exp(- kappa*Pi*I) Wronskian[{WhittakerW[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z]}, z]= Exp[- \[Kappa]*Pi*I] Failure Failure
Fail
22.63381635-81.96203695*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
22.63381635-81.96203695*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
22.63381635-81.96203695*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
22.63381635-81.96203695*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\WhittakerconfhyperW{\kappa}{\mu}@{z},\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} = e^{+\kappa\pi\iunit}} (WhittakerW(kappa, mu, z))*diff(WhittakerW(- kappa, mu, exp(- Pi*I)*z), z)-diff(WhittakerW(kappa, mu, z), z)*(WhittakerW(- kappa, mu, exp(- Pi*I)*z))= exp(+ kappa*Pi*I) Wronskian[{WhittakerW[\[Kappa], \[Mu], z], WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z]}, z]= Exp[+ \[Kappa]*Pi*I] Failure Failure
Fail
-22.63381633+81.96203683*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-22.63381632+81.96203679*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-22.63381646+81.96203679*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-22.63381644+81.96203672*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E31 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\mu}@{z} = \WhittakerconfhyperW{\kappa}{-\mu}@{z}} WhittakerW(kappa, mu, z)= WhittakerW(kappa, - mu, z) WhittakerW[\[Kappa], \[Mu], z]= WhittakerW[\[Kappa], - \[Mu], z] Successful Successful - -
13.14.E32 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{e^{+(\kappa-\mu-\frac{1}{2})\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\kappa}{\mu}@{z}+\frac{e^{+\kappa\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{e^{+\pi\iunit}z}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z)=(exp(+(kappa - mu -(1)/(2))* Pi*I))/(GAMMA((1)/(2)+ mu + kappa))*WhittakerW(kappa, mu, z)+(exp(+ kappa*Pi*I))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerW(- kappa, mu, exp(+ Pi*I)*z) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]=Divide[Exp[+(\[Kappa]- \[Mu]-Divide[1,2])* Pi*I],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[\[Kappa], \[Mu], z]+Divide[Exp[+ \[Kappa]*Pi*I],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], Exp[+ Pi*I]*z] Failure Failure
Fail
1.298497732-.1938713855e-1*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.187122752-1.346515592*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-9.654177833-4.981936798*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
34.26140886+126.3803650*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E32 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{e^{-(\kappa-\mu-\frac{1}{2})\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\kappa}{\mu}@{z}+\frac{e^{-\kappa\pi\iunit}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperW{-\kappa}{\mu}@{e^{-\pi\iunit}z}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z)=(exp(-(kappa - mu -(1)/(2))* Pi*I))/(GAMMA((1)/(2)+ mu + kappa))*WhittakerW(kappa, mu, z)+(exp(- kappa*Pi*I))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerW(- kappa, mu, exp(- Pi*I)*z) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]=Divide[Exp[-(\[Kappa]- \[Mu]-Divide[1,2])* Pi*I],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[\[Kappa], \[Mu], z]+Divide[Exp[- \[Kappa]*Pi*I],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerW[- \[Kappa], \[Mu], Exp[- Pi*I]*z] Failure Failure
Fail
579.6433793+324.2736386*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
201.3880428-41.30381202*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-8591.170394-81467.17807*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-198894.9185-2104750.118*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Skip
13.14.E33 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{\EulerGamma@{-2\mu}}{\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\WhittakerconfhyperM{\kappa}{\mu}@{z}+\frac{\EulerGamma@{2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\WhittakerconfhyperM{\kappa}{-\mu}@{z}} WhittakerW(kappa, mu, z)=(GAMMA(- 2*mu))/(GAMMA((1)/(2)- mu - kappa))*WhittakerM(kappa, mu, z)+(GAMMA(2*mu))/(GAMMA((1)/(2)+ mu - kappa))*WhittakerM(kappa, - mu, z) WhittakerW[\[Kappa], \[Mu], z]=Divide[Gamma[- 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*WhittakerM[\[Kappa], \[Mu], z]+Divide[Gamma[2*\[Mu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*WhittakerM[\[Kappa], - \[Mu], z] Successful Failure - Skip
13.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperM{\kappa-1}{\mu}@{z}+(z-2\kappa)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\WhittakerconfhyperM{\kappa+1}{\mu}@{z} = 0} (kappa - mu -(1)/(2))* WhittakerM(kappa - 1, mu, z)+(z - 2*kappa)* WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))* WhittakerM(kappa + 1, mu, z)= 0 (\[Kappa]- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa]- 1, \[Mu], z]+(z - 2*\[Kappa])* WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])* WhittakerM[\[Kappa]+ 1, \[Mu], z]= 0 Successful Successful - -
13.15.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(z+2\mu)(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0} 2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)-(z + 2*mu)*(1 + 2*mu)* WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))*sqrt(z)*WhittakerM(kappa +(1)/(2), mu +(1)/(2), z)= 0 2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(z + 2*\[Mu])*(1 + 2*\[Mu])* WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Successful
13.15.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa}{\mu}@{z}-(\kappa+\mu+\tfrac{1}{2})\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0} (kappa - mu -(1)/(2))* WhittakerM(kappa -(1)/(2), mu +(1)/(2), z)+(1 + 2*mu)*sqrt(z)*WhittakerM(kappa, mu, z)-(kappa + mu +(1)/(2))* WhittakerM(kappa +(1)/(2), mu +(1)/(2), z)= 0 (\[Kappa]- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]+(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa], \[Mu], z]-(\[Kappa]+ \[Mu]+Divide[1,2])* WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Successful
13.15.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\mu\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-2\mu\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperM{\kappa}{\mu}@{z} = 0} 2*mu*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)- 2*mu*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)-sqrt(z)*WhittakerM(kappa, mu, z)= 0 2*\[Mu]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]- 2*\[Mu]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]-Sqrt[z]*WhittakerM[\[Kappa], \[Mu], z]= 0 Successful Failure - Successful
13.15.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\mu(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}-2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0} 2*mu*(1 + 2*mu)* WhittakerM(kappa, mu, z)- 2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa -(1)/(2), mu -(1)/(2), z)-(kappa - mu -(1)/(2))*sqrt(z)*WhittakerM(kappa -(1)/(2), mu +(1)/(2), z)= 0 2*\[Mu]*(1 + 2*\[Mu])* WhittakerM[\[Kappa], \[Mu], z]- 2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Successful
13.15.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}+(z-2\mu)(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0} 2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)+(z - 2*mu)*(1 + 2*mu)* WhittakerM(kappa, mu, z)+(kappa - mu -(1)/(2))*sqrt(z)*WhittakerM(kappa -(1)/(2), mu +(1)/(2), z)= 0 2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]+(z - 2*\[Mu])*(1 + 2*\[Mu])* WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Successful
13.15.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\mu(1+2\mu)\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-2\mu(1+2\mu)\WhittakerconfhyperM{\kappa}{\mu}@{z}+(\kappa+\mu+\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperM{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0} 2*mu*(1 + 2*mu)*sqrt(z)*WhittakerM(kappa +(1)/(2), mu -(1)/(2), z)- 2*mu*(1 + 2*mu)* WhittakerM(kappa, mu, z)+(kappa + mu +(1)/(2))*sqrt(z)*WhittakerM(kappa +(1)/(2), mu +(1)/(2), z)= 0 2*\[Mu]*(1 + 2*\[Mu])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]- 2*\[Mu]*(1 + 2*\[Mu])* WhittakerM[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]+Divide[1,2])*Sqrt[z]*WhittakerM[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Successful
13.15.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0} WhittakerW(kappa +(1)/(2), mu +(1)/(2), z)-sqrt(z)*WhittakerW(kappa, mu, z)+(kappa - mu -(1)/(2))* WhittakerW(kappa -(1)/(2), mu +(1)/(2), z)= 0 WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]-Sqrt[z]*WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])* WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa+\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0} WhittakerW(kappa +(1)/(2), mu -(1)/(2), z)-sqrt(z)*WhittakerW(kappa, mu, z)+(kappa + mu -(1)/(2))* WhittakerW(kappa -(1)/(2), mu -(1)/(2), z)= 0 WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]-Sqrt[z]*WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]+ \[Mu]-Divide[1,2])* WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\mu\WhittakerconfhyperW{\kappa}{\mu}@{z}-\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0} 2*mu*WhittakerW(kappa, mu, z)-sqrt(z)*WhittakerW(kappa +(1)/(2), mu +(1)/(2), z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu -(1)/(2), z)= 0 2*\[Mu]*WhittakerW[\[Kappa], \[Mu], z]-Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa+1}{\mu}@{z}+(2\kappa-z)\WhittakerconfhyperW{\kappa}{\mu}@{z}+(\kappa-\mu-\tfrac{1}{2})(\kappa+\mu-\tfrac{1}{2})\WhittakerconfhyperW{\kappa-1}{\mu}@{z} = 0} WhittakerW(kappa + 1, mu, z)+(2*kappa - z)* WhittakerW(kappa, mu, z)+(kappa - mu -(1)/(2))*(kappa + mu -(1)/(2))* WhittakerW(kappa - 1, mu, z)= 0 WhittakerW[\[Kappa]+ 1, \[Mu], z]+(2*\[Kappa]- z)* WhittakerW[\[Kappa], \[Mu], z]+(\[Kappa]- \[Mu]-Divide[1,2])*(\[Kappa]+ \[Mu]-Divide[1,2])* WhittakerW[\[Kappa]- 1, \[Mu], z]= 0 Successful Successful - -
13.15.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}+2\mu\WhittakerconfhyperW{\kappa}{\mu}@{z}-(\kappa+\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0} (kappa - mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu +(1)/(2), z)+ 2*mu*WhittakerW(kappa, mu, z)-(kappa + mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu -(1)/(2), z)= 0 (\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]+ 2*\[Mu]*WhittakerW[\[Kappa], \[Mu], z]-(\[Kappa]+ \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\kappa+\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu-\frac{1}{2}}@{z}-(z+2\mu)\WhittakerconfhyperW{\kappa}{\mu}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu+\frac{1}{2}}@{z} = 0} (kappa + mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu -(1)/(2), z)-(z + 2*mu)* WhittakerW(kappa, mu, z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu +(1)/(2), z)= 0 (\[Kappa]+ \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]-Divide[1,2], z]-(z + 2*\[Mu])* WhittakerW[\[Kappa], \[Mu], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]+Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\kappa-\mu-\tfrac{1}{2})\sqrt{z}\WhittakerconfhyperW{\kappa-\frac{1}{2}}{\mu+\frac{1}{2}}@{z}-(z-2\mu)\WhittakerconfhyperW{\kappa}{\mu}@{z}+\sqrt{z}\WhittakerconfhyperW{\kappa+\frac{1}{2}}{\mu-\frac{1}{2}}@{z} = 0} (kappa - mu -(1)/(2))*sqrt(z)*WhittakerW(kappa -(1)/(2), mu +(1)/(2), z)-(z - 2*mu)* WhittakerW(kappa, mu, z)+sqrt(z)*WhittakerW(kappa +(1)/(2), mu -(1)/(2), z)= 0 (\[Kappa]- \[Mu]-Divide[1,2])*Sqrt[z]*WhittakerW[\[Kappa]-Divide[1,2], \[Mu]+Divide[1,2], z]-(z - 2*\[Mu])* WhittakerW[\[Kappa], \[Mu], z]+Sqrt[z]*WhittakerW[\[Kappa]+Divide[1,2], \[Mu]-Divide[1,2], z]= 0 Successful Failure - Skip
13.15.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{-2\mu}{n}e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa-\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}} diff(exp((1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)])=(- 1)^(n)* pochhammer(- 2*mu, n)*exp((1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerM(kappa -(1)/(2)*n, mu -(1)/(2)*n, z) D[Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Pochhammer[- 2*\[Mu], n]*Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]-Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \frac{\Pochhammersym{\frac{1}{2}+\mu-\kappa}{n}}{\Pochhammersym{1+2\mu}{n}}e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa-\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}} diff(exp((1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)])=(pochhammer((1)/(2)+ mu - kappa, n))/(pochhammer(1 + 2*mu, n))*exp((1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerM(kappa -(1)/(2)*n, mu +(1)/(2)*n, z) D[Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}]=Divide[Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n],Pochhammer[1 + 2*\[Mu], n]]*Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]-Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(z\deriv{}{z}z\right)^{n}\left(e^{\frac{1}{2}z}z^{-\kappa-1}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}e^{\frac{1}{2}z}z^{n-\kappa-1}\WhittakerconfhyperM{\kappa-n}{\mu}@{z}} (z*diff(z, z))^(n)*(exp((1)/(2)*z)*(z)^(- kappa - 1)* WhittakerM(kappa, mu, z))= pochhammer((1)/(2)+ mu - kappa, n)*exp((1)/(2)*z)*(z)^(n - kappa - 1)* WhittakerM(kappa - n, mu, z) (z*D[z, z])^(n)*(Exp[Divide[1,2]*z]*(z)^(- \[Kappa]- 1)* WhittakerM[\[Kappa], \[Mu], z])= Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(n - \[Kappa]- 1)* WhittakerM[\[Kappa]- n, \[Mu], z] Failure Failure
Fail
.422889411+.400864309e-1*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
.3423332190-2.928704994*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
28.78460329-27.79294397*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
.8091469094-.1815739427*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.15.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{-2\mu}{n}e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperM{\kappa+\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}} diff(exp(-(1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)])=(- 1)^(n)* pochhammer(- 2*mu, n)*exp(-(1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerM(kappa +(1)/(2)*n, mu -(1)/(2)*n, z) D[Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Pochhammer[- 2*\[Mu], n]*Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]+Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = (-1)^{n}\frac{\Pochhammersym{\frac{1}{2}+\mu+\kappa}{n}}{\Pochhammersym{1+2\mu}{n}}e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperM{\kappa+\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}} diff(exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerM(kappa, mu, z), [z$(n)])=(- 1)^(n)*(pochhammer((1)/(2)+ mu + kappa, n))/(pochhammer(1 + 2*mu, n))*exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerM(kappa +(1)/(2)*n, mu +(1)/(2)*n, z) D[Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)*Divide[Pochhammer[Divide[1,2]+ \[Mu]+ \[Kappa], n],Pochhammer[1 + 2*\[Mu], n]]*Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerM[\[Kappa]+Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(z\deriv{}{z}z\right)^{n}\left(e^{-\frac{1}{2}z}z^{\kappa-1}\WhittakerconfhyperM{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu+\kappa}{n}e^{-\frac{1}{2}z}z^{\kappa+n-1}\*\WhittakerconfhyperM{\kappa+n}{\mu}@{z}} (z*diff(z, z))^(n)*(exp(-(1)/(2)*z)*(z)^(kappa - 1)* WhittakerM(kappa, mu, z))= pochhammer((1)/(2)+ mu + kappa, n)*exp(-(1)/(2)*z)*(z)^(kappa + n - 1)* WhittakerM(kappa + n, mu, z) (z*D[z, z])^(n)*(Exp[-Divide[1,2]*z]*(z)^(\[Kappa]- 1)* WhittakerM[\[Kappa], \[Mu], z])= Pochhammer[Divide[1,2]+ \[Mu]+ \[Kappa], n]*Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ n - 1)* WhittakerM[\[Kappa]+ n, \[Mu], z] Failure Failure
Fail
.3651560696+.5317892033*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
-2.267246204+4.379959380*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
-31.10787298-.100038800*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
29.73991513-87.25229264*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.15.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}e^{\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperW{\kappa-\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}} diff(exp((1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)])=(- 1)^(n)* pochhammer((1)/(2)+ mu - kappa, n)*exp((1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerW(kappa -(1)/(2)*n, mu +(1)/(2)*n, z) D[Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]-Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}\Pochhammersym{\tfrac{1}{2}-\mu-\kappa}{n}e^{\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\*\WhittakerconfhyperW{\kappa-\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}} diff(exp((1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)])=(- 1)^(n)* pochhammer((1)/(2)- mu - kappa, n)*exp((1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerW(kappa -(1)/(2)*n, mu -(1)/(2)*n, z) D[Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Pochhammer[Divide[1,2]- \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]-Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(z\deriv{}{z}z\right)^{n}\left(e^{\frac{1}{2}z}z^{-\kappa-1}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = \Pochhammersym{\tfrac{1}{2}+\mu-\kappa}{n}\Pochhammersym{\tfrac{1}{2}-\mu-\kappa}{n}e^{\frac{1}{2}z}z^{n-\kappa-1}\WhittakerconfhyperW{\kappa-n}{\mu}@{z}} (z*diff(z, z))^(n)*(exp((1)/(2)*z)*(z)^(- kappa - 1)* WhittakerW(kappa, mu, z))= pochhammer((1)/(2)+ mu - kappa, n)*pochhammer((1)/(2)- mu - kappa, n)*exp((1)/(2)*z)*(z)^(n - kappa - 1)* WhittakerW(kappa - n, mu, z) (z*D[z, z])^(n)*(Exp[Divide[1,2]*z]*(z)^(- \[Kappa]- 1)* WhittakerW[\[Kappa], \[Mu], z])= Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], n]*Pochhammer[Divide[1,2]- \[Mu]- \[Kappa], n]*Exp[Divide[1,2]*z]*(z)^(n - \[Kappa]- 1)* WhittakerW[\[Kappa]- n, \[Mu], z] Failure Failure
Fail
2.287537999+5.448901962*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
12.33305908+8.582530455*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
22.68496902-17.41418341*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
.1675216432+.4056625244*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.15.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{-\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperW{\kappa+\frac{1}{2}n}{\mu+\frac{1}{2}n}@{z}} diff(exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)])=(- 1)^(n)* exp(-(1)/(2)*z)*(z)^(- mu -(1)/(2)*(n + 1))* WhittakerW(kappa +(1)/(2)*n, mu +(1)/(2)*n, z) D[Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(- \[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]+Divide[1,2]*n, \[Mu]+Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{\mu-\frac{1}{2}(n+1)}\WhittakerconfhyperW{\kappa+\frac{1}{2}n}{\mu-\frac{1}{2}n}@{z}} diff(exp(-(1)/(2)*z)*(z)^(mu -(1)/(2))* WhittakerW(kappa, mu, z), [z$(n)])=(- 1)^(n)* exp(-(1)/(2)*z)*(z)^(mu -(1)/(2)*(n + 1))* WhittakerW(kappa +(1)/(2)*n, mu -(1)/(2)*n, z) D[Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2])* WhittakerW[\[Kappa], \[Mu], z], {z, n}]=(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(\[Mu]-Divide[1,2]*(n + 1))* WhittakerW[\[Kappa]+Divide[1,2]*n, \[Mu]-Divide[1,2]*n, z] Failure Failure Skip Skip
13.15.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(z\deriv{}{z}z\right)^{n}\left(e^{-\frac{1}{2}z}z^{\kappa-1}\WhittakerconfhyperW{\kappa}{\mu}@{z}\right) = (-1)^{n}e^{-\frac{1}{2}z}z^{\kappa+n-1}\WhittakerconfhyperW{\kappa+n}{\mu}@{z}} (z*diff(z, z))^(n)*(exp(-(1)/(2)*z)*(z)^(kappa - 1)* WhittakerW(kappa, mu, z))=(- 1)^(n)* exp(-(1)/(2)*z)*(z)^(kappa + n - 1)* WhittakerW(kappa + n, mu, z) (z*D[z, z])^(n)*(Exp[-Divide[1,2]*z]*(z)^(\[Kappa]- 1)* WhittakerW[\[Kappa], \[Mu], z])=(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ n - 1)* WhittakerW[\[Kappa]+ n, \[Mu], z] Failure Failure
Fail
-.2720350864+.1235096327*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
-1.238205578-.8204474278*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
6.403097481-9.930704107*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
44.88142838-1.79519457*I <- {kappa = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.16.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\EulerGamma@{1+2\mu}z^{\mu+\frac{1}{2}}2^{-2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\*\int_{-1}^{1}e^{\frac{1}{2}zt}(1+t)^{\mu-\frac{1}{2}-\kappa}(1-t)^{\mu-\frac{1}{2}+\kappa}\diff{t}} WhittakerM(kappa, mu, z)=(GAMMA(1 + 2*mu)*(z)^(mu +(1)/(2))* (2)^(- 2*mu))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)+ mu + kappa))* int(exp((1)/(2)*z*t)*(1 + t)^(mu -(1)/(2)- kappa)*(1 - t)^(mu -(1)/(2)+ kappa), t = - 1..1) WhittakerM[\[Kappa], \[Mu], z]=Divide[Gamma[1 + 2*\[Mu]]*(z)^(\[Mu]+Divide[1,2])* (2)^(- 2*\[Mu]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]* Integrate[Exp[Divide[1,2]*z*t]*(1 + t)^(\[Mu]-Divide[1,2]- \[Kappa])*(1 - t)^(\[Mu]-Divide[1,2]+ \[Kappa]), {t, - 1, 1}] Failure Failure Skip Error
13.16.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\EulerGamma@{1+2\mu}z^{\lambda}}{\EulerGamma@{1+2\mu-2\lambda}\EulerGamma@{2\lambda}}\*\int_{0}^{1}\WhittakerconfhyperM{\kappa-\lambda}{\mu-\lambda}@{zt}e^{\frac{1}{2}z(t-1)}t^{\mu-\lambda-\frac{1}{2}}{(1-t)^{2\lambda-1}}\diff{t}} WhittakerM(kappa, mu, z)=(GAMMA(1 + 2*mu)*(z)^(lambda))/(GAMMA(1 + 2*mu - 2*lambda)*GAMMA(2*lambda))* int(WhittakerM(kappa - lambda, mu - lambda, z*t)*exp((1)/(2)*z*(t - 1))*(t)^(mu - lambda -(1)/(2))*(1 - t)^(2*lambda - 1), t = 0..1) WhittakerM[\[Kappa], \[Mu], z]=Divide[Gamma[1 + 2*\[Mu]]*(z)^(\[Lambda]),Gamma[1 + 2*\[Mu]- 2*\[Lambda]]*Gamma[2*\[Lambda]]]* Integrate[WhittakerM[\[Kappa]- \[Lambda], \[Mu]- \[Lambda], z*t]*Exp[Divide[1,2]*z*(t - 1)]*(t)^(\[Mu]- \[Lambda]-Divide[1,2])*(1 - t)^(2*\[Lambda]- 1), {t, 0, 1}] Failure Failure Skip Error
13.16.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\sqrt{z}e^{\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\int_{0}^{\infty}e^{-t}t^{\kappa-\frac{1}{2}}\BesselJ{2\mu}@{2\sqrt{zt}}\diff{t}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z)=(sqrt(z)*exp((1)/(2)*z))/(GAMMA((1)/(2)+ mu + kappa))*int(exp(- t)*(t)^(kappa -(1)/(2))* BesselJ(2*mu, 2*sqrt(z*t)), t = 0..infinity) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]=Divide[Sqrt[z]*Exp[Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*Integrate[Exp[- t]*(t)^(\[Kappa]-Divide[1,2])* BesselJ[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}] Successful Failure - Error
13.16.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = \frac{\sqrt{z}e^{-\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{0}^{\infty}e^{-t}t^{-\kappa-\frac{1}{2}}\modBesselI{2\mu}@{2\sqrt{zt}}\diff{t}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z)=(sqrt(z)*exp(-(1)/(2)*z))/(GAMMA((1)/(2)+ mu - kappa))* int(exp(- t)*(t)^(- kappa -(1)/(2))* BesselI(2*mu, 2*sqrt(z*t)), t = 0..infinity) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]=Divide[Sqrt[z]*Exp[-Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Exp[- t]*(t)^(- \[Kappa]-Divide[1,2])* BesselI[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}] Failure Failure Skip Successful
13.16.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{z^{\mu+\frac{1}{2}}2^{-2\mu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{1}^{\infty}e^{-\frac{1}{2}zt}(t-1)^{\mu-\frac{1}{2}-\kappa}(t+1)^{\mu-\frac{1}{2}+\kappa}\diff{t}} WhittakerW(kappa, mu, z)=((z)^(mu +(1)/(2))* (2)^(- 2*mu))/(GAMMA((1)/(2)+ mu - kappa))* int(exp(-(1)/(2)*z*t)*(t - 1)^(mu -(1)/(2)- kappa)*(t + 1)^(mu -(1)/(2)+ kappa), t = 1..infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[(z)^(\[Mu]+Divide[1,2])* (2)^(- 2*\[Mu]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Exp[-Divide[1,2]*z*t]*(t - 1)^(\[Mu]-Divide[1,2]- \[Kappa])*(t + 1)^(\[Mu]-Divide[1,2]+ \[Kappa]), {t, 1, Infinity}] Failure Failure Skip Error
13.16.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{-\frac{1}{2}z}z^{\kappa+1}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}\frac{\WhittakerconfhyperW{-\kappa}{\mu}@{t}e^{-\frac{1}{2}t}t^{-\kappa-1}}{t+z}\diff{t}} WhittakerW(kappa, mu, z)=(exp(-(1)/(2)*z)*(z)^(kappa + 1))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))* int((WhittakerW(- kappa, mu, t)*exp(-(1)/(2)*t)*(t)^(- kappa - 1))/(t + z), t = 0..infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ 1),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Divide[WhittakerW[- \[Kappa], \[Mu], t]*Exp[-Divide[1,2]*t]*(t)^(- \[Kappa]- 1),t + z], {t, 0, Infinity}] Failure Failure Skip Error
13.16.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{(-1)^{n}e^{-\frac{1}{2}z}z^{\frac{1}{2}-\mu-n}}{\EulerGamma@{1+2\mu}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}\frac{\WhittakerconfhyperM{-\kappa}{\mu}@{t}e^{-\frac{1}{2}t}t^{n+\mu-\frac{1}{2}}}{t+z}\diff{t}} WhittakerW(kappa, mu, z)=((- 1)^(n)* exp(-(1)/(2)*z)*(z)^((1)/(2)- mu - n))/(GAMMA(1 + 2*mu)*GAMMA((1)/(2)- mu - kappa))* int((WhittakerM(- kappa, mu, t)*exp(-(1)/(2)*t)*(t)^(n + mu -(1)/(2)))/(t + z), t = 0..infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[(- 1)^(n)* Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu]- n),Gamma[1 + 2*\[Mu]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Divide[WhittakerM[- \[Kappa], \[Mu], t]*Exp[-Divide[1,2]*t]*(t)^(n + \[Mu]-Divide[1,2]),t + z], {t, 0, Infinity}] Failure Failure Skip Error
13.16.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{2\sqrt{z}e^{-\frac{1}{2}z}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\*\int_{0}^{\infty}e^{-t}t^{-\kappa-\frac{1}{2}}\modBesselK{2\mu}@{2\sqrt{zt}}\diff{t}} WhittakerW(kappa, mu, z)=(2*sqrt(z)*exp(-(1)/(2)*z))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))* int(exp(- t)*(t)^(- kappa -(1)/(2))* BesselK(2*mu, 2*sqrt(z*t)), t = 0..infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[2*Sqrt[z]*Exp[-Divide[1,2]*z],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]* Integrate[Exp[- t]*(t)^(- \[Kappa]-Divide[1,2])* BesselK[2*\[Mu], 2*Sqrt[z*t]], {t, 0, Infinity}] Successful Failure - Error
13.16.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\mu}@{z} = e^{-\frac{1}{2}z}z^{\kappa+c}\*\int_{0}^{\infty}e^{-zt}t^{c-1}\genhyperOlverF{2}{1}@@{\tfrac{1}{2}+\mu-\kappa,\tfrac{1}{2}-\mu-\kappa}{c}{-t}\diff{t}} WhittakerW(kappa, mu, z)= exp(-(1)/(2)*z)*(z)^(kappa + c)* int(exp(- z*t)*(t)^(c - 1)* hypergeom([(1)/(2)+ mu - kappa ,(1)/(2)- mu - kappa], [c], - t), t = 0..infinity) WhittakerW[\[Kappa], \[Mu], z]= Exp[-Divide[1,2]*z]*(z)^(\[Kappa]+ c)* Integrate[Exp[- z*t]*(t)^(c - 1)* HypergeometricPFQRegularized[{Divide[1,2]+ \[Mu]- \[Kappa],Divide[1,2]- \[Mu]- \[Kappa]}, {c}, - t], {t, 0, Infinity}] Failure Failure Skip Error
13.16.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{e^{+\pi\iunit}z} = \frac{e^{\frac{1}{2}z+(\frac{1}{2}+\mu)\pi\iunit}}{2\pi\iunit\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{t-\kappa}\EulerGamma@{\frac{1}{2}+\mu-t}}{\EulerGamma@{\frac{1}{2}+\mu+t}}z^{t}\diff{t}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, exp(+ Pi*I)*z)=(exp((1)/(2)*z +((1)/(2)+ mu)* Pi*I))/(2*Pi*I*GAMMA((1)/(2)+ mu - kappa))* int((GAMMA(t - kappa)*GAMMA((1)/(2)+ mu - t))/(GAMMA((1)/(2)+ mu + t))*(z)^(t), t = - I*infinity..I*infinity) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], Exp[+ Pi*I]*z]=Divide[Exp[Divide[1,2]*z +(Divide[1,2]+ \[Mu])* Pi*I],2*Pi*I*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Divide[Gamma[t - \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- t],Gamma[Divide[1,2]+ \[Mu]+ t]]*(z)^(t), {t, - I*Infinity, I*Infinity}] Error Failure - Error
13.16.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{e^{-\pi\iunit}z} = \frac{e^{\frac{1}{2}z-(\frac{1}{2}+\mu)\pi\iunit}}{2\pi\iunit\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{t-\kappa}\EulerGamma@{\frac{1}{2}+\mu-t}}{\EulerGamma@{\frac{1}{2}+\mu+t}}z^{t}\diff{t}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, exp(- Pi*I)*z)=(exp((1)/(2)*z -((1)/(2)+ mu)* Pi*I))/(2*Pi*I*GAMMA((1)/(2)+ mu - kappa))* int((GAMMA(t - kappa)*GAMMA((1)/(2)+ mu - t))/(GAMMA((1)/(2)+ mu + t))*(z)^(t), t = - I*infinity..I*infinity) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], Exp[- Pi*I]*z]=Divide[Exp[Divide[1,2]*z -(Divide[1,2]+ \[Mu])* Pi*I],2*Pi*I*Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Integrate[Divide[Gamma[t - \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- t],Gamma[Divide[1,2]+ \[Mu]+ t]]*(z)^(t), {t, - I*Infinity, I*Infinity}] Error Failure - Error
13.16.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{-\frac{1}{2}z}}{2\pi\iunit}\*\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{\frac{1}{2}+\mu+t}\EulerGamma@{\frac{1}{2}-\mu+t}\EulerGamma@{-\kappa-t}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}z^{-t}\diff{t}} WhittakerW(kappa, mu, z)=(exp(-(1)/(2)*z))/(2*Pi*I)* int((GAMMA((1)/(2)+ mu + t)*GAMMA((1)/(2)- mu + t)*GAMMA(- kappa - t))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*(z)^(- t), t = - I*infinity..I*infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[Exp[-Divide[1,2]*z],2*Pi*I]* Integrate[Divide[Gamma[Divide[1,2]+ \[Mu]+ t]*Gamma[Divide[1,2]- \[Mu]+ t]*Gamma[- \[Kappa]- t],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*(z)^(- t), {t, - I*Infinity, I*Infinity}] Error Failure - Error
13.16.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\mu}@{z} = \frac{e^{\frac{1}{2}z}}{2\pi\iunit}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{\frac{1}{2}+\mu+t}\EulerGamma@{\frac{1}{2}-\mu+t}}{\EulerGamma@{1-\kappa+t}}z^{-t}\diff{t}} WhittakerW(kappa, mu, z)=(exp((1)/(2)*z))/(2*Pi*I)*int((GAMMA((1)/(2)+ mu + t)*GAMMA((1)/(2)- mu + t))/(GAMMA(1 - kappa + t))*(z)^(- t), t = - I*infinity..I*infinity) WhittakerW[\[Kappa], \[Mu], z]=Divide[Exp[Divide[1,2]*z],2*Pi*I]*Integrate[Divide[Gamma[Divide[1,2]+ \[Mu]+ t]*Gamma[Divide[1,2]- \[Mu]+ t],Gamma[1 - \[Kappa]+ t]]*(z)^(- t), {t, - I*Infinity, I*Infinity}] Failure Failure Skip Error
13.18.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{0}{\frac{1}{2}}@{2z} = 2\sinh@@{z}} WhittakerM(0, (1)/(2), 2*z)= 2*sinh(z) WhittakerM[0, Divide[1,2], 2*z]= 2*Sinh[z] Successful Successful - -
13.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z}} WhittakerM(kappa, kappa -(1)/(2), z)= WhittakerW(kappa, kappa -(1)/(2), z) WhittakerM[\[Kappa], \[Kappa]-Divide[1,2], z]= WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z] Successful Successful - -
13.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{\kappa-\frac{1}{2}}@{z} = \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z}} WhittakerW(kappa, kappa -(1)/(2), z)= WhittakerW(kappa, - kappa +(1)/(2), z) WhittakerW[\[Kappa], \[Kappa]-Divide[1,2], z]= WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z] Failure Successful Successful -
13.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\kappa}{-\kappa+\frac{1}{2}}@{z} = e^{-\frac{1}{2}z}z^{\kappa}} WhittakerW(kappa, - kappa +(1)/(2), z)= exp(-(1)/(2)*z)*(z)^(kappa) WhittakerW[\[Kappa], - \[Kappa]+Divide[1,2], z]= Exp[-Divide[1,2]*z]*(z)^(\[Kappa]) Failure Successful Skip -
13.18.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{-\kappa-\frac{1}{2}}@{z} = e^{\frac{1}{2}z}z^{-\kappa}} WhittakerM(kappa, - kappa -(1)/(2), z)= exp((1)/(2)*z)*(z)^(- kappa) WhittakerM[\[Kappa], - \[Kappa]-Divide[1,2], z]= Exp[Divide[1,2]*z]*(z)^(- \[Kappa]) Successful Successful - -
13.18.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\mu-\frac{1}{2}}{\mu}@{z} = 2\mu e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incgamma@{2\mu}{z}} WhittakerM(mu -(1)/(2), mu, z)= 2*mu*exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu)-GAMMA(2*mu, z) WhittakerM[\[Mu]-Divide[1,2], \[Mu], z]= 2*\[Mu]*Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], 0, z] Failure Successful
Fail
4.200609167-1.330017252*I <- {mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.614512827-1.289496767*I <- {mu = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
2101.588542-3319.229912*I <- {mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-3.931276422-11.62291844*I <- {mu = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
-
13.18.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\mu-\frac{1}{2}}{\mu}@{z} = e^{\frac{1}{2}z}z^{\frac{1}{2}-\mu}\incGamma@{2\mu}{z}} WhittakerW(mu -(1)/(2), mu, z)= exp((1)/(2)*z)*(z)^((1)/(2)- mu)* GAMMA(2*mu, z) WhittakerW[\[Mu]-Divide[1,2], \[Mu], z]= Exp[Divide[1,2]*z]*(z)^(Divide[1,2]- \[Mu])* Gamma[2*\[Mu], z] Successful Successful - -
13.18.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{-\frac{1}{4}}{\frac{1}{4}}@{z^{2}} = \tfrac{1}{2}e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erf@{z}} WhittakerM(-(1)/(4), (1)/(4), (z)^(2))=(1)/(2)*exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erf(z) WhittakerM[-Divide[1,4], Divide[1,4], (z)^(2)]=Divide[1,2]*Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erf[z] Failure Failure
Fail
.4198419251+1.807257668*I <- {z = -2^(1/2)-I*2^(1/2)}
.4198419251-1.807257668*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.4198419223374512, 1.8072576674879106] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.4198419223374512, -1.8072576674879106] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.18.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{-\frac{1}{4}}{+\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}} WhittakerW(-(1)/(4), +(1)/(4), (z)^(2))= exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z) WhittakerW[-Divide[1,4], +Divide[1,4], (z)^(2)]= Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z] Failure Failure
Fail
-4.382229868-3.743892002*I <- {z = -2^(1/2)-I*2^(1/2)}
-4.382229868+3.743892002*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-4.38222986299419, -3.7438920038513093] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.38222986299419, 3.7438920038513093] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.18.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{-\frac{1}{4}}{-\frac{1}{4}}@{z^{2}} = e^{\frac{1}{2}z^{2}}\sqrt{\pi z}\erfc@{z}} WhittakerW(-(1)/(4), -(1)/(4), (z)^(2))= exp((1)/(2)*(z)^(2))*sqrt(Pi*z)*erfc(z) WhittakerW[-Divide[1,4], -Divide[1,4], (z)^(2)]= Exp[Divide[1,2]*(z)^(2)]*Sqrt[Pi*z]*Erfc[z] Failure Failure
Fail
-4.382229868-3.743892002*I <- {z = -2^(1/2)-I*2^(1/2)}
-4.382229868+3.743892002*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-4.382229862994191, -3.7438920038513093] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.382229862994191, 3.7438920038513093] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.18.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{0}{\nu}@{2z} = 2^{2\nu+\frac{1}{2}}\EulerGamma@{1+\nu}\sqrt{z}\modBesselI{\nu}@{z}} WhittakerM(0, nu, 2*z)= (2)^(2*nu +(1)/(2))* GAMMA(1 + nu)*sqrt(z)*BesselI(nu, z) WhittakerM[0, \[Nu], 2*z]= (2)^(2*\[Nu]+Divide[1,2])* Gamma[1 + \[Nu]]*Sqrt[z]*BesselI[\[Nu], z] Successful Successful - -
13.18.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{0}{\nu}@{2z} = \sqrt{\ifrac{2z}{\pi}}\modBesselK{\nu}@{z}} WhittakerW(0, nu, 2*z)=sqrt((2*z)/(Pi))*BesselK(nu, z) WhittakerW[0, \[Nu], 2*z]=Sqrt[Divide[2*z,Pi]]*BesselK[\[Nu], z] Successful Successful - -
13.18.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{0}{\frac{1}{3}}@{\tfrac{4}{3}z^{\frac{3}{2}}} = 2\sqrt{\pi}z^{\frac{1}{4}}\AiryAi@{z}} WhittakerW(0, (1)/(3), (4)/(3)*(z)^((3)/(2)))= 2*sqrt(Pi)*(z)^((1)/(4))* AiryAi(z) WhittakerW[0, Divide[1,3], Divide[4,3]*(z)^(Divide[3,2])]= 2*Sqrt[Pi]*(z)^(Divide[1,4])* AiryAi[z] Failure Failure
Fail
-.111157710+.128876647*I <- {z = -2^(1/2)-I*2^(1/2)}
-.111157710-.128876647*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.11115770699234684, 0.12887664550372602] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.11115770699234684, -0.12887664550372602] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
13.18.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{-\frac{1}{2}a}{+\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a}\sqrt{z}\paraU(a,z)} WhittakerW(-(1)/(2)*a, +(1)/(4), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a)*sqrt(z)*CylinderU(a , z, $1) WhittakerW[-Divide[1,2]*a, +Divide[1,4], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a)*Sqrt[z]*ParabolicCylinderD[-a , z - 1/2, $1] Error Error - -
13.18.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a}\sqrt{z}\paraU(a,z)} WhittakerW(-(1)/(2)*a, -(1)/(4), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a)*sqrt(z)*CylinderU(a , z, $1) WhittakerW[-Divide[1,2]*a, -Divide[1,4], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a)*Sqrt[z]*ParabolicCylinderD[-a , z - 1/2, $1] Error Error - -
13.18.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-1}\EulerGamma@{\tfrac{1}{2}a+\tfrac{3}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{z}+\paraU@{a}{-z}\right)} WhittakerM(-(1)/(2)*a, -(1)/(4), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a - 1)* GAMMA((1)/(2)*a +(3)/(4))*sqrt((z)/(Pi))*(CylinderU(a, z)+ CylinderU(a, - z)) WhittakerM[-Divide[1,2]*a, -Divide[1,4], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a - 1)* Gamma[Divide[1,2]*a +Divide[3,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[-a - 1/2, z]+ ParabolicCylinderD[-a - 1/2, - z]) Failure Failure
Fail
-1.595813139-1.786229512*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-6.548449077-7.324160790*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-6.548449077+7.324160790*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.595813139+1.786229512*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-1.5958131384127743, -1.7862295136979531] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-6.548449089259156, -7.324160795019219] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-6.548449089259156, 7.324160795019219] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5958131384127743, 1.7862295136979531] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.18.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{-\frac{1}{2}a}{\frac{1}{4}}@{\tfrac{1}{2}z^{2}} = 2^{\frac{1}{2}a-2}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{4}}\sqrt{\ifrac{z}{\pi}}\*\left(\paraU@{a}{-z}-\paraU@{a}{z}\right)} WhittakerM(-(1)/(2)*a, (1)/(4), (1)/(2)*(z)^(2))= (2)^((1)/(2)*a - 2)* GAMMA((1)/(2)*a +(1)/(4))*sqrt((z)/(Pi))*(CylinderU(a, - z)- CylinderU(a, z)) WhittakerM[-Divide[1,2]*a, Divide[1,4], Divide[1,2]*(z)^(2)]= (2)^(Divide[1,2]*a - 2)* Gamma[Divide[1,2]*a +Divide[1,4]]*Sqrt[Divide[z,Pi]]*(ParabolicCylinderD[-a - 1/2, - z]- ParabolicCylinderD[-a - 1/2, z]) Failure Failure
Fail
-.2924843841+.9350194047*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
2.175978499-4.464282068*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
2.175978499+4.464282068*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.2924843841-.9350194047*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.29248438571599344, 0.9350194045102764] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.175978498735585, -4.464282074060343] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.175978498735585, 4.464282074060343] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.29248438571599344, -0.9350194045102764] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.18.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\frac{1}{4}+n}{-\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n)!}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{2n}@{z}} WhittakerM((1)/(4)+ n, -(1)/(4), (z)^(2))=(- 1)^(n)*(factorial(n))/(factorial(2*n))*exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(2*n, z) WhittakerM[Divide[1,4]+ n, -Divide[1,4], (z)^(2)]=(- 1)^(n)*Divide[(n)!,(2*n)!]*Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[2*n, z] Failure Failure
Fail
-10.35742410-12.35814572*I <- {z = -2^(1/2)-I*2^(1/2), n = 1}
-51.12520045+7.99947819*I <- {z = -2^(1/2)-I*2^(1/2), n = 2}
-70.94025645+106.0858980*I <- {z = -2^(1/2)-I*2^(1/2), n = 3}
-10.35742410+12.35814572*I <- {z = -2^(1/2)+I*2^(1/2), n = 1}
... skip entries to safe data
Fail
Complex[-10.357424118634546, -12.358145719594317] <- {Rule[n, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-51.125200492418, 7.999478257226418] <- {Rule[n, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-70.9402563798825, 106.08589822655182] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-10.357424118634546, 12.358145719594317] <- {Rule[n, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.18.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\frac{3}{4}+n}{\frac{1}{4}}@{z^{2}} = (-1)^{n}\frac{n!}{(2n+1)!}\frac{e^{-\frac{1}{2}z^{2}}\sqrt{z}}{2}\HermitepolyH{2n+1}@{z}} WhittakerM((3)/(4)+ n, (1)/(4), (z)^(2))=(- 1)^(n)*(factorial(n))/(factorial(2*n + 1))*(exp(-(1)/(2)*(z)^(2))*sqrt(z))/(2)*HermiteH(2*n + 1, z) WhittakerM[Divide[3,4]+ n, Divide[1,4], (z)^(2)]=(- 1)^(n)*Divide[(n)!,(2*n + 1)!]*Divide[Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z],2]*HermiteH[2*n + 1, z] Failure Failure
Fail
-10.80554626-3.608039299*I <- {z = -2^(1/2)-I*2^(1/2), n = 1}
-20.84223327+13.83655303*I <- {z = -2^(1/2)-I*2^(1/2), n = 2}
-10.76427954+47.62458665*I <- {z = -2^(1/2)-I*2^(1/2), n = 3}
-10.80554626+3.608039299*I <- {z = -2^(1/2)+I*2^(1/2), n = 1}
... skip entries to safe data
Fail
Complex[-10.805546272663701, -3.6080392912358032] <- {Rule[n, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-20.84223327255954, 13.836553078751255] <- {Rule[n, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-10.764279468212877, 47.6245867445262] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-10.805546272663701, 3.6080392912358032] <- {Rule[n, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.18.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\frac{1}{4}+\frac{1}{2}n}{\frac{1}{4}}@{z^{2}} = 2^{-n}e^{-\frac{1}{2}z^{2}}\sqrt{z}\HermitepolyH{n}@{z}} WhittakerW((1)/(4)+(1)/(2)*n, (1)/(4), (z)^(2))= (2)^(- n)* exp(-(1)/(2)*(z)^(2))*sqrt(z)*HermiteH(n, z) WhittakerW[Divide[1,4]+Divide[1,2]*n, Divide[1,4], (z)^(2)]= (2)^(- n)* Exp[-Divide[1,2]*(z)^(2)]*Sqrt[z]*HermiteH[n, z] Failure Failure
Fail
-.145985934-3.997335125*I <- {z = -2^(1/2)-I*2^(1/2), n = 1}
5.178712051+6.179072864*I <- {z = -2^(1/2)-I*2^(1/2), n = 2}
16.20831939+5.412058949*I <- {z = -2^(1/2)-I*2^(1/2), n = 3}
-.145985934+3.997335125*I <- {z = -2^(1/2)+I*2^(1/2), n = 1}
... skip entries to safe data
Fail
Complex[-0.1459859378673154, -3.997335125548645] <- {Rule[n, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[5.178712059317274, 6.179072859797158] <- {Rule[n, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[16.208319408995553, 5.412058936853704] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.1459859378673154, 3.997335125548645] <- {Rule[n, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.18.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperW{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z} = (-1)^{n}\Pochhammersym{\alpha+1}{n}\WhittakerconfhyperM{\frac{1}{2}\alpha+\frac{1}{2}+n}{\frac{1}{2}\alpha}@{z}} WhittakerW((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z)=(- 1)^(n)* pochhammer(alpha + 1, n)*WhittakerM((1)/(2)*alpha +(1)/(2)+ n, (1)/(2)*alpha, z) WhittakerW[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z]=(- 1)^(n)* Pochhammer[\[Alpha]+ 1, n]*WhittakerM[Divide[1,2]*\[Alpha]+Divide[1,2]+ n, Divide[1,2]*\[Alpha], z] Failure Failure Successful Successful
13.20.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \zeta\sqrt{\zeta^{2}+\alpha^{2}}+\alpha^{2}\asinh@{\frac{\zeta}{\alpha}} = \frac{X}{\mu}-\frac{2\kappa}{\mu}\ln@{\frac{X+x-2\kappa}{2\sqrt{\mu^{2}-\kappa^{2}}}}-2\ln@{\frac{\mu X+2\mu^{2}-\kappa x}{x\sqrt{\mu^{2}-\kappa^{2}}}}} zeta*sqrt((zeta)^(2)+ (alpha)^(2))+ (alpha)^(2)* arcsinh((zeta)/(alpha))=(X)/(mu)-(2*kappa)/(mu)*ln((X + x - 2*kappa)/(2*sqrt((mu)^(2)- (kappa)^(2))))- 2*ln((mu*X + 2*(mu)^(2)- kappa*x)/(x*sqrt((mu)^(2)- (kappa)^(2)))) \[zeta]*Sqrt[(\[zeta])^(2)+ (\[Alpha])^(2)]+ (\[Alpha])^(2)* ArcSinh[Divide[\[zeta],\[Alpha]]]=Divide[X,\[Mu]]-Divide[2*\[Kappa],\[Mu]]*Log[Divide[X + x - 2*\[Kappa],2*Sqrt[(\[Mu])^(2)- (\[Kappa])^(2)]]]- 2*Log[Divide[\[Mu]*X + 2*(\[Mu])^(2)- \[Kappa]*x,x*Sqrt[(\[Mu])^(2)- (\[Kappa])^(2)]]] Failure Failure Skip Error
13.20.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \zeta = +\sqrt{\frac{x}{\mu}-2-2\ln@{\frac{x}{2\mu}}}} zeta = +sqrt((x)/(mu)- 2 - 2*ln((x)/(2*mu))) \[zeta]= +Sqrt[Divide[x,\[Mu]]- 2 - 2*Log[Divide[x,2*\[Mu]]]] Failure Failure
Fail
.234294656+.8983972080*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 1}
.7206264000+.7915884667*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 2}
1.051794028+.7104212616*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 3}
.234294656-1.930029916*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Error
13.20.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \zeta = -\sqrt{\frac{x}{\mu}-2-2\ln@{\frac{x}{2\mu}}}} zeta = -sqrt((x)/(mu)- 2 - 2*ln((x)/(2*mu))) \[zeta]= -Sqrt[Divide[x,\[Mu]]- 2 - 2*Log[Divide[x,2*\[Mu]]]] Failure Failure
Fail
2.594132468+1.930029916*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 1}
2.107800724+2.036838657*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 2}
1.776633096+2.118005862*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 3}
2.594132468-.8983972080*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Error
13.20.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \zeta\sqrt{\zeta^{2}-\alpha^{2}}-\alpha^{2}\acosh@{\frac{\zeta}{\alpha}} = \frac{X}{\mu}-\frac{2\kappa}{\mu}\ln@{\frac{X+x-2\kappa}{2\sqrt{\kappa^{2}-\mu^{2}}}}-2\ln@{\frac{\kappa x-\mu X-2\mu^{2}}{x\sqrt{\kappa^{2}-\mu^{2}}}}} zeta*sqrt((zeta)^(2)- (alpha)^(2))- (alpha)^(2)* arccosh((zeta)/(alpha))=(X)/(mu)-(2*kappa)/(mu)*ln((X + x - 2*kappa)/(2*sqrt((kappa)^(2)- (mu)^(2))))- 2*ln((kappa*x - mu*X - 2*(mu)^(2))/(x*sqrt((kappa)^(2)- (mu)^(2)))) \[zeta]*Sqrt[(\[zeta])^(2)- (\[Alpha])^(2)]- (\[Alpha])^(2)* ArcCosh[Divide[\[zeta],\[Alpha]]]=Divide[X,\[Mu]]-Divide[2*\[Kappa],\[Mu]]*Log[Divide[X + x - 2*\[Kappa],2*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)]]]- 2*Log[Divide[\[Kappa]*x - \[Mu]*X - 2*(\[Mu])^(2),x*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)]]] Error Failure - Error
13.20.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \zeta\sqrt{\alpha^{2}-\zeta^{2}}+\alpha^{2}\asin@{\frac{\zeta}{\alpha}} = \frac{X}{\mu}+\frac{2\kappa}{\mu}\atan@{\frac{x-2\kappa}{X}}-2\atan@{\frac{\kappa x-2\mu^{2}}{\mu X}}} zeta*sqrt((alpha)^(2)- (zeta)^(2))+ (alpha)^(2)* arcsin((zeta)/(alpha))=(X)/(mu)+(2*kappa)/(mu)*arctan((x - 2*kappa)/(X))- 2*arctan((kappa*x - 2*(mu)^(2))/(mu*X)) \[zeta]*Sqrt[(\[Alpha])^(2)- (\[zeta])^(2)]+ (\[Alpha])^(2)* ArcSin[Divide[\[zeta],\[Alpha]]]=Divide[X,\[Mu]]+Divide[2*\[Kappa],\[Mu]]*ArcTan[Divide[x - 2*\[Kappa],X]]- 2*ArcTan[Divide[\[Kappa]*x - 2*(\[Mu])^(2),\[Mu]*X]] Error Failure - Error
13.20.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\zeta\sqrt{\zeta^{2}-\alpha^{2}}-\alpha^{2}\acosh@{-\frac{\zeta}{\alpha}} = -\frac{X}{\mu}+\frac{2\kappa}{\mu}\ln@{\frac{2\kappa-X-x}{2\sqrt{\kappa^{2}-\mu^{2}}}}+2\ln@{\frac{\mu X+2\mu^{2}-\kappa x}{x\sqrt{\kappa^{2}-\mu^{2}}}}} - zeta*sqrt((zeta)^(2)- (alpha)^(2))- (alpha)^(2)* arccosh(-(zeta)/(alpha))= -(X)/(mu)+(2*kappa)/(mu)*ln((2*kappa - X - x)/(2*sqrt((kappa)^(2)- (mu)^(2))))+ 2*ln((mu*X + 2*(mu)^(2)- kappa*x)/(x*sqrt((kappa)^(2)- (mu)^(2)))) - \[zeta]*Sqrt[(\[zeta])^(2)- (\[Alpha])^(2)]- (\[Alpha])^(2)* ArcCosh[-Divide[\[zeta],\[Alpha]]]= -Divide[X,\[Mu]]+Divide[2*\[Kappa],\[Mu]]*Log[Divide[2*\[Kappa]- X - x,2*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)]]]+ 2*Log[Divide[\[Mu]*X + 2*(\[Mu])^(2)- \[Kappa]*x,x*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)]]] Error Failure - Error
13.21.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\sqrt{\zeta} = \sqrt{x+x^{2}}+\ln@{\sqrt{x}+\sqrt{1+x}}} 2*sqrt(zeta)=sqrt(x + (x)^(2))+ ln(sqrt(x)+sqrt(1 + x)) 2*Sqrt[\[zeta]]=Sqrt[x + (x)^(2)]+ Log[Sqrt[x]+Sqrt[1 + x]] Failure Failure
Fail
.3175387811+1.082392200*I <- {zeta = 2^(1/2)+I*2^(1/2), x = 1}
-.982579648+1.082392200*I <- {zeta = 2^(1/2)+I*2^(1/2), x = 2}
-2.167933582+1.082392200*I <- {zeta = 2^(1/2)+I*2^(1/2), x = 3}
.3175387811-1.082392200*I <- {zeta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Error
13.21.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{4\mu^{2}-\kappa\zeta}-\mu\ln@{\frac{2\mu+\sqrt{4\mu^{2}-\kappa\zeta}}{2\mu-\sqrt{4\mu^{2}-\kappa\zeta}}} = \tfrac{1}{2}X+\mu\ln@{\frac{x\sqrt{\kappa^{2}-\mu^{2}}}{2\mu^{2}-\kappa x+\mu X}}+\kappa\ln@{\frac{2\sqrt{\kappa^{2}-\mu^{2}}}{2\kappa-x-X}}} sqrt(4*(mu)^(2)- kappa*zeta)- mu*ln((2*mu +sqrt(4*(mu)^(2)- kappa*zeta))/(2*mu -sqrt(4*(mu)^(2)- kappa*zeta)))=(1)/(2)*X + mu*ln((x*sqrt((kappa)^(2)- (mu)^(2)))/(2*(mu)^(2)- kappa*x + mu*X))+ kappa*ln((2*sqrt((kappa)^(2)- (mu)^(2)))/(2*kappa - x - X)) Sqrt[4*(\[Mu])^(2)- \[Kappa]*\[zeta]]- \[Mu]*Log[Divide[2*\[Mu]+Sqrt[4*(\[Mu])^(2)- \[Kappa]*\[zeta]],2*\[Mu]-Sqrt[4*(\[Mu])^(2)- \[Kappa]*\[zeta]]]]=Divide[1,2]*X + \[Mu]*Log[Divide[x*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)],2*(\[Mu])^(2)- \[Kappa]*x + \[Mu]*X]]+ \[Kappa]*Log[Divide[2*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)],2*\[Kappa]- x - X]] Error Failure - Error
13.21.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{\kappa\zeta-4\mu^{2}}-2\mu\atan@{\frac{\sqrt{\kappa\zeta-4\mu^{2}}}{2\mu}} = \tfrac{1}{2}(X-\pi\mu)-\mu\atan@{\frac{x\kappa-2\mu^{2}}{\mu X}}+\kappa\asin@{\frac{X}{2\sqrt{\kappa^{2}-\mu^{2}}}}} sqrt(kappa*zeta - 4*(mu)^(2))- 2*mu*arctan((sqrt(kappa*zeta - 4*(mu)^(2)))/(2*mu))=(1)/(2)*(X - Pi*mu)- mu*arctan((x*kappa - 2*(mu)^(2))/(mu*X))+ kappa*arcsin((X)/(2*sqrt((kappa)^(2)- (mu)^(2)))) Sqrt[\[Kappa]*\[zeta]- 4*(\[Mu])^(2)]- 2*\[Mu]*ArcTan[Divide[Sqrt[\[Kappa]*\[zeta]- 4*(\[Mu])^(2)],2*\[Mu]]]=Divide[1,2]*(X - Pi*\[Mu])- \[Mu]*ArcTan[Divide[x*\[Kappa]- 2*(\[Mu])^(2),\[Mu]*X]]+ \[Kappa]*ArcSin[Divide[X,2*Sqrt[(\[Kappa])^(2)- (\[Mu])^(2)]]] Error Failure - Error
13.23.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-zt}t^{\nu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\mu+\nu+\tfrac{1}{2}}}{\left(z+\frac{1}{2}\right)^{\mu+\nu+\frac{1}{2}}}\*\genhyperF{2}{1}@@{\tfrac{1}{2}+\mu-\kappa,\tfrac{1}{2}+\mu+\nu}{1+2\mu}{\frac{1}{z+\frac{1}{2}}}} int(exp(- z*t)*(t)^(nu - 1)* WhittakerM(kappa, mu, t), t = 0..infinity)=(GAMMA(mu + nu +(1)/(2)))/((z +(1)/(2))^(mu + nu +(1)/(2)))* hypergeom([(1)/(2)+ mu - kappa ,(1)/(2)+ mu + nu], [1 + 2*mu], (1)/(z +(1)/(2))) Integrate[Exp[- z*t]*(t)^(\[Nu]- 1)* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}]=Divide[Gamma[\[Mu]+ \[Nu]+Divide[1,2]],(z +Divide[1,2])^(\[Mu]+ \[Nu]+Divide[1,2])]* HypergeometricPFQ[{Divide[1,2]+ \[Mu]- \[Kappa],Divide[1,2]+ \[Mu]+ \[Nu]}, {1 + 2*\[Mu]}, Divide[1,z +Divide[1,2]]] Failure Failure Skip Error
13.23.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-zt}t^{\mu-\frac{1}{2}}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \EulerGamma@{2\mu+1}\left(z+\tfrac{1}{2}\right)^{-\kappa-\mu-\frac{1}{2}}\*\left(z-\tfrac{1}{2}\right)^{\kappa-\mu-\frac{1}{2}}} int(exp(- z*t)*(t)^(mu -(1)/(2))* WhittakerM(kappa, mu, t), t = 0..infinity)= GAMMA(2*mu + 1)*(z +(1)/(2))^(- kappa - mu -(1)/(2))*(z -(1)/(2))^(kappa - mu -(1)/(2)) Integrate[Exp[- z*t]*(t)^(\[Mu]-Divide[1,2])* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}]= Gamma[2*\[Mu]+ 1]*(z +Divide[1,2])^(- \[Kappa]- \[Mu]-Divide[1,2])*(z -Divide[1,2])^(\[Kappa]- \[Mu]-Divide[1,2]) Failure Failure Skip Error
13.23.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\nu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\mu+\nu+\frac{1}{2}}\EulerGamma@{\kappa-\nu}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}\EulerGamma@{\frac{1}{2}+\mu-\nu}}} (1)/(GAMMA(1 + 2*mu))*int(exp(-(1)/(2)*t)*(t)^(nu - 1)* WhittakerM(kappa, mu, t), t = 0..infinity)=(GAMMA(mu + nu +(1)/(2))*GAMMA(kappa - nu))/(GAMMA((1)/(2)+ mu + kappa)*GAMMA((1)/(2)+ mu - nu)) Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Exp[-Divide[1,2]*t]*(t)^(\[Nu]- 1)* WhittakerM[\[Kappa], \[Mu], t], {t, 0, Infinity}]=Divide[Gamma[\[Mu]+ \[Nu]+Divide[1,2]]*Gamma[\[Kappa]- \[Nu]],Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]*Gamma[Divide[1,2]+ \[Mu]- \[Nu]]] Failure Failure Skip Error
13.23.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-zt}t^{\nu-1}\WhittakerconfhyperW{\kappa}{\mu}@{t}\diff{t} = \EulerGamma@{\tfrac{1}{2}+\mu+\nu}\EulerGamma@{\tfrac{1}{2}-\mu+\nu}\*\genhyperOlverF{2}{1}@@{\tfrac{1}{2}-\mu+\nu,\tfrac{1}{2}+\mu+\nu}{\nu-\kappa+1}{\tfrac{1}{2}-z}} int(exp(- z*t)*(t)^(nu - 1)* WhittakerW(kappa, mu, t), t = 0..infinity)= GAMMA((1)/(2)+ mu + nu)*GAMMA((1)/(2)- mu + nu)* hypergeom([(1)/(2)- mu + nu ,(1)/(2)+ mu + nu], [nu - kappa + 1], (1)/(2)- z) Integrate[Exp[- z*t]*(t)^(\[Nu]- 1)* WhittakerW[\[Kappa], \[Mu], t], {t, 0, Infinity}]= Gamma[Divide[1,2]+ \[Mu]+ \[Nu]]*Gamma[Divide[1,2]- \[Mu]+ \[Nu]]* HypergeometricPFQRegularized[{Divide[1,2]- \[Mu]+ \[Nu],Divide[1,2]+ \[Mu]+ \[Nu]}, {\[Nu]- \[Kappa]+ 1}, Divide[1,2]- z] Failure Failure Skip Error
13.23.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{\frac{1}{2}t}t^{\nu-1}\WhittakerconfhyperW{\kappa}{\mu}@{t}\diff{t} = \frac{\EulerGamma@{\frac{1}{2}+\mu+\nu}\EulerGamma@{\frac{1}{2}-\mu+\nu}\EulerGamma@{-\kappa-\nu}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}} int(exp((1)/(2)*t)*(t)^(nu - 1)* WhittakerW(kappa, mu, t), t = 0..infinity)=(GAMMA((1)/(2)+ mu + nu)*GAMMA((1)/(2)- mu + nu)*GAMMA(- kappa - nu))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa)) Integrate[Exp[Divide[1,2]*t]*(t)^(\[Nu]- 1)* WhittakerW[\[Kappa], \[Mu], t], {t, 0, Infinity}]=Divide[Gamma[Divide[1,2]+ \[Mu]+ \[Nu]]*Gamma[Divide[1,2]- \[Mu]+ \[Nu]]*Gamma[- \[Kappa]- \[Nu]],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]] Failure Failure Skip Error
13.23.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{1+2\mu}2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt+\frac{1}{2}t^{-1}}t^{\kappa}\WhittakerconfhyperM{\kappa}{\mu}@{t^{-1}}\diff{t} = \frac{z^{-\kappa-\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\modBesselI{2\mu}@{2\sqrt{z}}} (1)/(GAMMA(1 + 2*mu)*2*Pi*I)*int(exp(z*t +(1)/(2)*(t)^(- 1))*(t)^(kappa)* WhittakerM(kappa, mu, (t)^(- 1)), t = - infinity..(0 +))=((z)^(- kappa -(1)/(2)))/(GAMMA((1)/(2)+ mu - kappa))*BesselI(2*mu, 2*sqrt(z)) Divide[1,Gamma[1 + 2*\[Mu]]*2*Pi*I]*Integrate[Exp[z*t +Divide[1,2]*(t)^(- 1)]*(t)^(\[Kappa])* WhittakerM[\[Kappa], \[Mu], (t)^(- 1)], {t, - Infinity, (0 +)}]=Divide[(z)^(- \[Kappa]-Divide[1,2]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]*BesselI[2*\[Mu], 2*Sqrt[z]] Error Failure - Error
13.23.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2\pi\iunit}\int_{-\infty}^{(0+)}e^{zt+\frac{1}{2}t^{-1}}t^{\kappa}\WhittakerconfhyperW{\kappa}{\mu}@{t^{-1}}\diff{t} = \frac{2z^{-\kappa-\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}\EulerGamma@{\frac{1}{2}-\mu-\kappa}}\modBesselK{2\mu}@{2\sqrt{z}}} (1)/(2*Pi*I)*int(exp(z*t +(1)/(2)*(t)^(- 1))*(t)^(kappa)* WhittakerW(kappa, mu, (t)^(- 1)), t = - infinity..(0 +))=(2*(z)^(- kappa -(1)/(2)))/(GAMMA((1)/(2)+ mu - kappa)*GAMMA((1)/(2)- mu - kappa))*BesselK(2*mu, 2*sqrt(z)) Divide[1,2*Pi*I]*Integrate[Exp[z*t +Divide[1,2]*(t)^(- 1)]*(t)^(\[Kappa])* WhittakerW[\[Kappa], \[Mu], (t)^(- 1)], {t, - Infinity, (0 +)}]=Divide[2*(z)^(- \[Kappa]-Divide[1,2]),Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]*Gamma[Divide[1,2]- \[Mu]- \[Kappa]]]*BesselK[2*\[Mu], 2*Sqrt[z]] Error Failure - Error
13.23.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}\cos@{2xt}e^{-\frac{1}{2}t^{2}}t^{-2\mu-1}\WhittakerconfhyperM{\kappa}{\mu}@{t^{2}}\diff{t} = \frac{\sqrt{\pi}e^{-\frac{1}{2}x^{2}}x^{\mu+\kappa-1}}{2\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\WhittakerconfhyperW{\frac{1}{2}\kappa-\frac{3}{2}\mu}{\frac{1}{2}\kappa+\frac{1}{2}\mu}@{x^{2}}} (1)/(GAMMA(1 + 2*mu))*int(cos(2*x*t)*exp(-(1)/(2)*(t)^(2))*(t)^(- 2*mu - 1)* WhittakerM(kappa, mu, (t)^(2)), t = 0..infinity)=(sqrt(Pi)*exp(-(1)/(2)*(x)^(2))*(x)^(mu + kappa - 1))/(2*GAMMA((1)/(2)+ mu + kappa))*WhittakerW((1)/(2)*kappa -(3)/(2)*mu, (1)/(2)*kappa +(1)/(2)*mu, (x)^(2)) Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Cos[2*x*t]*Exp[-Divide[1,2]*(t)^(2)]*(t)^(- 2*\[Mu]- 1)* WhittakerM[\[Kappa], \[Mu], (t)^(2)], {t, 0, Infinity}]=Divide[Sqrt[Pi]*Exp[-Divide[1,2]*(x)^(2)]*(x)^(\[Mu]+ \[Kappa]- 1),2*Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]*WhittakerW[Divide[1,2]*\[Kappa]-Divide[3,2]*\[Mu], Divide[1,2]*\[Kappa]+Divide[1,2]*\[Mu], (x)^(2)] Failure Failure Skip Error
13.23.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\mu-\frac{1}{2}(\nu+1)}\WhittakerconfhyperM{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{1+2\mu}}{\EulerGamma@{\frac{1}{2}-\mu+\kappa+\nu}}\*e^{-\frac{1}{2}x}x^{\frac{1}{2}(\kappa-\mu-\frac{3}{2})}\*\WhittakerconfhyperM{\frac{1}{2}(\kappa+3\mu-\nu+\frac{1}{2})}{\frac{1}{2}(\kappa-\mu+\nu-\frac{1}{2})}@{x}} int(exp(-(1)/(2)*t)*(t)^(mu -(1)/(2)*(nu + 1))* WhittakerM(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=(GAMMA(1 + 2*mu))/(GAMMA((1)/(2)- mu + kappa + nu))* exp(-(1)/(2)*x)*(x)^((1)/(2)*(kappa - mu -(3)/(2)))* WhittakerM((1)/(2)*(kappa + 3*mu - nu +(1)/(2)), (1)/(2)*(kappa - mu + nu -(1)/(2)), x) Integrate[Exp[-Divide[1,2]*t]*(t)^(\[Mu]-Divide[1,2]*(\[Nu]+ 1))* WhittakerM[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[Gamma[1 + 2*\[Mu]],Gamma[Divide[1,2]- \[Mu]+ \[Kappa]+ \[Nu]]]* Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Kappa]- \[Mu]-Divide[3,2]))* WhittakerM[Divide[1,2]*(\[Kappa]+ 3*\[Mu]- \[Nu]+Divide[1,2]), Divide[1,2]*(\[Kappa]- \[Mu]+ \[Nu]-Divide[1,2]), x] Failure Failure Skip Error
13.23.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{1+2\mu}}\int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperM{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{e^{-\frac{1}{2}x}x^{\frac{1}{2}(\kappa+\mu-\frac{3}{2})}}{\EulerGamma@{\frac{1}{2}+\mu+\kappa}}\*\WhittakerconfhyperW{\frac{1}{2}(\kappa-3\mu+\nu+\frac{1}{2})}{\frac{1}{2}(\kappa+\mu-\nu-\frac{1}{2})}@{x}} (1)/(GAMMA(1 + 2*mu))*int(exp(-(1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerM(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=(exp(-(1)/(2)*x)*(x)^((1)/(2)*(kappa + mu -(3)/(2))))/(GAMMA((1)/(2)+ mu + kappa))* WhittakerW((1)/(2)*(kappa - 3*mu + nu +(1)/(2)), (1)/(2)*(kappa + mu - nu -(1)/(2)), x) Divide[1,Gamma[1 + 2*\[Mu]]]*Integrate[Exp[-Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerM[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Kappa]+ \[Mu]-Divide[3,2])),Gamma[Divide[1,2]+ \[Mu]+ \[Kappa]]]* WhittakerW[Divide[1,2]*(\[Kappa]- 3*\[Mu]+ \[Nu]+Divide[1,2]), Divide[1,2]*(\[Kappa]+ \[Mu]- \[Nu]-Divide[1,2]), x] Failure Failure Skip Error
13.23.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperW{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{\nu-2\mu+1}}{\EulerGamma@{\frac{1}{2}+\mu-\kappa}}\*e^{\frac{1}{2}x}x^{\frac{1}{2}(\mu-\kappa-\frac{3}{2})}\*\WhittakerconfhyperW{\frac{1}{2}(\kappa+3\mu-\nu-\frac{1}{2})}{\frac{1}{2}(\kappa-\mu+\nu+\frac{1}{2})}@{x}} int(exp((1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerW(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=(GAMMA(nu - 2*mu + 1))/(GAMMA((1)/(2)+ mu - kappa))* exp((1)/(2)*x)*(x)^((1)/(2)*(mu - kappa -(3)/(2)))* WhittakerW((1)/(2)*(kappa + 3*mu - nu -(1)/(2)), (1)/(2)*(kappa - mu + nu +(1)/(2)), x) Integrate[Exp[Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerW[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[Gamma[\[Nu]- 2*\[Mu]+ 1],Gamma[Divide[1,2]+ \[Mu]- \[Kappa]]]* Exp[Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Mu]- \[Kappa]-Divide[3,2]))* WhittakerW[Divide[1,2]*(\[Kappa]+ 3*\[Mu]- \[Nu]-Divide[1,2]), Divide[1,2]*(\[Kappa]- \[Mu]+ \[Nu]+Divide[1,2]), x] Failure Failure Skip Error
13.23.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-\frac{1}{2}t}t^{\frac{1}{2}(\nu-1)-\mu}\WhittakerconfhyperW{\kappa}{\mu}@{t}\BesselJ{\nu}@{2\sqrt{xt}}\diff{t} = \frac{\EulerGamma@{\nu-2\mu+1}}{\EulerGamma@{\frac{3}{2}-\mu-\kappa+\nu}}\*e^{-\frac{1}{2}x}x^{\frac{1}{2}(\mu+\kappa-\frac{3}{2})}\*\WhittakerconfhyperM{\frac{1}{2}(\kappa-3\mu+\nu+\frac{1}{2})}{\frac{1}{2}(\nu-\mu-\kappa+\frac{1}{2})}@{x}} int(exp(-(1)/(2)*t)*(t)^((1)/(2)*(nu - 1)- mu)* WhittakerW(kappa, mu, t)*BesselJ(nu, 2*sqrt(x*t)), t = 0..infinity)=(GAMMA(nu - 2*mu + 1))/(GAMMA((3)/(2)- mu - kappa + nu))* exp(-(1)/(2)*x)*(x)^((1)/(2)*(mu + kappa -(3)/(2)))* WhittakerM((1)/(2)*(kappa - 3*mu + nu +(1)/(2)), (1)/(2)*(nu - mu - kappa +(1)/(2)), x) Integrate[Exp[-Divide[1,2]*t]*(t)^(Divide[1,2]*(\[Nu]- 1)- \[Mu])* WhittakerW[\[Kappa], \[Mu], t]*BesselJ[\[Nu], 2*Sqrt[x*t]], {t, 0, Infinity}]=Divide[Gamma[\[Nu]- 2*\[Mu]+ 1],Gamma[Divide[3,2]- \[Mu]- \[Kappa]+ \[Nu]]]* Exp[-Divide[1,2]*x]*(x)^(Divide[1,2]*(\[Mu]+ \[Kappa]-Divide[3,2]))* WhittakerM[Divide[1,2]*(\[Kappa]- 3*\[Mu]+ \[Nu]+Divide[1,2]), Divide[1,2]*(\[Nu]- \[Mu]- \[Kappa]+Divide[1,2]), x] Failure Failure Skip Error
13.24.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\mu}@{z} = \EulerGamma@{\kappa+\mu}2^{2\kappa+2\mu}z^{\frac{1}{2}-\kappa}\*\sum_{s=0}^{\infty}(-1)^{s}\frac{\Pochhammersym{2\kappa+2\mu}{s}\Pochhammersym{2\kappa}{s}}{\Pochhammersym{1+2\mu}{s}s!}\*\left(\kappa+\mu+s\right)\modBesselI{\kappa+\mu+s}@{\tfrac{1}{2}z}} WhittakerM(kappa, mu, z)= GAMMA(kappa + mu)*(2)^(2*kappa + 2*mu)* (z)^((1)/(2)- kappa)* sum((- 1)^(s)*(pochhammer(2*kappa + 2*mu, s)*pochhammer(2*kappa, s))/(pochhammer(1 + 2*mu, s)*factorial(s))*(kappa + mu + s)* BesselI(kappa + mu + s, (1)/(2)*z), s = 0..infinity) WhittakerM[\[Kappa], \[Mu], z]= Gamma[\[Kappa]+ \[Mu]]*(2)^(2*\[Kappa]+ 2*\[Mu])* (z)^(Divide[1,2]- \[Kappa])* Sum[(- 1)^(s)*Divide[Pochhammer[2*\[Kappa]+ 2*\[Mu], s]*Pochhammer[2*\[Kappa], s],Pochhammer[1 + 2*\[Mu], s]*(s)!]*(\[Kappa]+ \[Mu]+ s)* BesselI[\[Kappa]+ \[Mu]+ s, Divide[1,2]*z], {s, 0, Infinity}] Failure Failure Skip Skip
13.24.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{1+2\mu}}\WhittakerconfhyperM{\kappa}{\mu}@{z} = 2^{2\mu}z^{\mu+\frac{1}{2}}\sum_{s=0}^{\infty}p_{s}^{(\mu)}(z)\left(2\sqrt{\kappa z}\right)^{-2\mu-s}\BesselJ{2\mu+s}@{2\sqrt{\kappa z}}} (1)/(GAMMA(1 + 2*mu))*WhittakerM(kappa, mu, z)= (2)^(2*mu)* sum(p(p[s])^(mu)*(z)*(2*sqrt(kappa*z))^(- 2*mu - s)* BesselJ(2*mu + s, 2*sqrt(kappa*z)), s = 0..infinity) Divide[1,Gamma[1 + 2*\[Mu]]]*WhittakerM[\[Kappa], \[Mu], z]= (2)^(2*\[Mu])* Sum[p(Subscript[p, s])^(\[Mu])*(z)*(2*Sqrt[\[Kappa]*z])^(- 2*\[Mu]- s)* BesselJ[2*\[Mu]+ s, 2*Sqrt[\[Kappa]*z]], {s, 0, Infinity}] Failure Failure Skip Skip
13.24.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \exp@{-\tfrac{1}{2}z\left(\coth@@{t}-\frac{1}{t}\right)}\left(\frac{t}{\sinh@@{t}}\right)^{1-2\mu} = \sum_{s=0}^{\infty}p_{s}^{(\mu)}(z)\left(-\frac{t}{z}\right)^{s}} exp(-(1)/(2)*z*(coth(t)-(1)/(t)))*((t)/(sinh(t)))^(1 - 2*mu)sum(p(p[s])^(mu)*(z)*(-(t)/(z))^(s), s = 0..infinity) Exp[-Divide[1,2]*z*(Coth[t]-Divide[1,t])]*(Divide[t,Sinh[t]])^(1 - 2*\[Mu])Sum[p(Subscript[p, s])^(\[Mu])*(z)*(-Divide[t,z])^(s), {s, 0, Infinity}] Failure Failure Skip Skip
13.25.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerconfhyperM{\kappa}{\mu}@{z}\WhittakerconfhyperM{\kappa}{-\mu-1}@{z}+\frac{(\frac{1}{2}+\mu+\kappa)(\frac{1}{2}+\mu-\kappa)}{4\mu(1+\mu)(1+2\mu)^{2}}\WhittakerconfhyperM{\kappa}{\mu+1}@{z}\WhittakerconfhyperM{\kappa}{-\mu}@{z} = 1} WhittakerM(kappa, mu, z)*WhittakerM(kappa, - mu - 1, z)+(((1)/(2)+ mu + kappa)*((1)/(2)+ mu - kappa))/(4*mu*(1 + mu)*(1 + 2*mu)^(2))*WhittakerM(kappa, mu + 1, z)*WhittakerM(kappa, - mu, z)= 1 WhittakerM[\[Kappa], \[Mu], z]*WhittakerM[\[Kappa], - \[Mu]- 1, z]+Divide[(Divide[1,2]+ \[Mu]+ \[Kappa])*(Divide[1,2]+ \[Mu]- \[Kappa]),4*\[Mu]*(1 + \[Mu])*(1 + 2*\[Mu])^(2)]*WhittakerM[\[Kappa], \[Mu]+ 1, z]*WhittakerM[\[Kappa], - \[Mu], z]= 1 Failure Failure Successful Successful
13.28#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle f_{1}(\xi) = \xi^{-\frac{1}{2}}V_{\kappa,\frac{1}{2}p}^{(1)}(2\iunit k\xi)} f[1]*(xi)= (xi)^(-(1)/(2))* (V[kappa ,(1)/(2)*p])^(1)*(2*I*k*xi) Subscript[f, 1]*(\[Xi])= (\[Xi])^(-Divide[1,2])* (Subscript[V, \[Kappa],Divide[1,2]*p])^(1)*(2*I*k*\[Xi]) Failure Failure
Fail
5.226251858+1.835215598*I <- {xi = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[1] = 2^(1/2)+I*2^(1/2), k = 1}
10.45250372-.329568802*I <- {xi = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[1] = 2^(1/2)+I*2^(1/2), k = 2}
15.67875557-2.494353202*I <- {xi = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[1] = 2^(1/2)+I*2^(1/2), k = 3}
9.226251856-2.164784400*I <- {xi = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[1] = 2^(1/2)-I*2^(1/2), k = 1}
... skip entries to safe data
Fail
Complex[5.226251859505505, 1.8352155994152124] <- {Rule[k, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[10.45250371901101, -0.3295688011695752] <- {Rule[k, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[15.678755578516517, -2.4943532017543637] <- {Rule[k, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.164784400584788, -1.2262518595055054] <- {Rule[k, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.28#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle f_{2}(\eta) = \eta^{-\frac{1}{2}}V_{\kappa,\frac{1}{2}p}^{(2)}(-2\iunit k\eta)} f[2]*(eta)= (eta)^(-(1)/(2))* (V[kappa ,(1)/(2)*p])^(2)*(- 2*I*k*eta) Subscript[f, 2]*(\[Eta])= (\[Eta])^(-Divide[1,2])* (Subscript[V, \[Kappa],Divide[1,2]*p])^(2)*(- 2*I*k*\[Eta]) Failure Failure
Fail
-10.45250371-.329568800*I <- {eta = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[2] = 2^(1/2)+I*2^(1/2), k = 1}
-20.90500742-4.659137598*I <- {eta = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[2] = 2^(1/2)+I*2^(1/2), k = 2}
-31.35751114-8.988706392*I <- {eta = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[2] = 2^(1/2)+I*2^(1/2), k = 3}
-6.452503712-4.329568798*I <- {eta = 2^(1/2)+I*2^(1/2), V[kappa,1/2*p] = 2^(1/2)+I*2^(1/2), f[2] = 2^(1/2)-I*2^(1/2), k = 1}
... skip entries to safe data
Fail
Complex[-10.45250371901101, -0.3295688011695752] <- {Rule[k, 1], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-20.90500743802202, -4.65913760233915] <- {Rule[k, 2], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-31.35751115703303, -8.988706403508727] <- {Rule[k, 3], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[10.45250371901101, 8.329568801169575] <- {Rule[k, 1], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[f, 2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[V, κ, Times[Rational[1, 2], p]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
13.29.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-\frac{1}{2}z} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{2\mu}{s}\Pochhammersym{\frac{1}{2}+\mu-\kappa}{s}}{\Pochhammersym{2\mu}{2s}s!}(-z)^{s}y(s)} exp(-(1)/(2)*z)= sum((pochhammer(2*mu, s)*pochhammer((1)/(2)+ mu - kappa, s))/(pochhammer(2*mu, 2*s)*factorial(s))*(- z)^(s)* y*(s), s = 0..infinity) Exp[-Divide[1,2]*z]= Sum[Divide[Pochhammer[2*\[Mu], s]*Pochhammer[Divide[1,2]+ \[Mu]- \[Kappa], s],Pochhammer[2*\[Mu], 2*s]*(s)!]*(- z)^(s)* y*(s), {s, 0, Infinity}] Failure Failure Skip Skip
13.29.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w(n) = \Pochhammersym{a}{n}\KummerconfhyperU@{n+a}{b}{z}} w*(n)= pochhammer(a, n)*KummerU(n + a, b, z) w*(n)= Pochhammer[a, n]*HypergeometricU[n + a, b, z] Failure Failure
Fail
1.520419005+1.650199040*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
2.873866917+2.939587822*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
4.267041895+4.298527135*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
1.371726075+1.394092488*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
13.29.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{-a} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{a-b+1}{s}}{s!}w(s)} (z)^(- a)= sum((pochhammer(a - b + 1, s))/(factorial(s))*w*(s), s = 0..infinity) (z)^(- a)= Sum[Divide[Pochhammer[a - b + 1, s],(s)!]*w*(s), {s, 0, Infinity}] Failure Failure Skip Skip
13.31.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{a}\KummerconfhyperU@{a}{1+a-b}{z} = \lim_{n\to\infty}\frac{A_{n}(z)}{B_{n}(z)}} (z)^(a)* KummerU(a, 1 + a - b, z)= limit((A[n]*(z))/(B[n]*(z)), n = infinity) (z)^(a)* HypergeometricU[a, 1 + a - b, z]= Limit[Divide[Subscript[A, n]*(z),Subscript[B, n]*(z)], n -> Infinity] Failure Failure Skip Skip