Results of Error Functions, Dawson’s and Fresnel Integrals

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
7.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{z} = \frac{2}{\sqrt{\pi}}\int_{0}^{z}e^{-t^{2}}\diff{t}} erf(z)=(2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = 0..z) Erf[z]=Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, 0, z}] Successful Successful - -
7.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@@{z} = \frac{2}{\sqrt{\pi}}\int_{z}^{\infty}e^{-t^{2}}\diff{t}} erfc(z)=(2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = z..infinity) Erfc[z]=Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, z, Infinity}] Successful Successful - -
7.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\sqrt{\pi}}\int_{z}^{\infty}e^{-t^{2}}\diff{t} = 1-\erf@@{z}} (2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = z..infinity)= 1 - erf(z) Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, z, Infinity}]= 1 - Erf[z] Successful Successful - -
7.2.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-z^{2}}\left(1+\frac{2i}{\sqrt{\pi}}\int_{0}^{z}e^{t^{2}}\diff{t}\right) = e^{-z^{2}}\erfc@{-iz}} exp(- (z)^(2))*(1 +(2*I)/(sqrt(Pi))*int(exp((t)^(2)), t = 0..z))= exp(- (z)^(2))*erfc(- I*z) Exp[- (z)^(2)]*(1 +Divide[2*I,Sqrt[Pi]]*Integrate[Exp[(t)^(2)], {t, 0, z}])= Exp[- (z)^(2)]*Erfc[- I*z] Successful Successful - -
7.2#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to\infty}\erf@@{z} = 1} limit(erf(z), z = infinity)= 1 Limit[Erf[z], z -> Infinity]= 1 Successful Successful - -
7.2#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to\infty}\erfc@@{z} = 0} limit(erfc(z), z = infinity)= 0 Limit[Erfc[z], z -> Infinity]= 0 Successful Successful - -
7.2.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \DawsonsintF@{z} = e^{-z^{2}}\int_{0}^{z}e^{t^{2}}\diff{t}} dawson(z)= exp(- (z)^(2))*int(exp((t)^(2)), t = 0..z) DawsonF[z]= Exp[- (z)^(2)]*Integrate[Exp[(t)^(2)], {t, 0, z}] Successful Successful - -
7.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z} = \int_{0}^{z}\cos@{\tfrac{1}{2}\pi t^{2}}\diff{t}} FresnelC(z)= int(cos((1)/(2)*Pi*(t)^(2)), t = 0..z) FresnelC[z]= Integrate[Cos[Divide[1,2]*Pi*(t)^(2)], {t, 0, z}] Successful Successful - -
7.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{z} = \int_{0}^{z}\sin@{\tfrac{1}{2}\pi t^{2}}\diff{t}} FresnelS(z)= int(sin((1)/(2)*Pi*(t)^(2)), t = 0..z) FresnelS[z]= Integrate[Sin[Divide[1,2]*Pi*(t)^(2)], {t, 0, z}] Successful Successful - -
7.2#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{x\to\infty}\Fresnelcosint@{x} = \tfrac{1}{2}} limit(FresnelC(x), x = infinity)=(1)/(2) Limit[FresnelC[x], x -> Infinity]=Divide[1,2] Successful Successful - -
7.2#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{x\to\infty}\Fresnelsinint@{x} = \tfrac{1}{2}} limit(FresnelS(x), x = infinity)=(1)/(2) Limit[FresnelS[x], x -> Infinity]=Divide[1,2] Successful Successful - -
7.2.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelf@{z} = \left(\tfrac{1}{2}-\Fresnelsinint@{z}\right)\cos@{\tfrac{1}{2}\pi z^{2}}-\left(\tfrac{1}{2}-\Fresnelcosint@{z}\right)\sin@{\tfrac{1}{2}\pi z^{2}}} Fresnelf(z)=((1)/(2)- FresnelS(z))* cos((1)/(2)*Pi*(z)^(2))-((1)/(2)- FresnelC(z))* sin((1)/(2)*Pi*(z)^(2)) FresnelF[z]=(Divide[1,2]- FresnelS[z])* Cos[Divide[1,2]*Pi*(z)^(2)]-(Divide[1,2]- FresnelC[z])* Sin[Divide[1,2]*Pi*(z)^(2)] Successful Successful - -
7.2.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z} = \left(\tfrac{1}{2}-\Fresnelcosint@{z}\right)\cos@{\tfrac{1}{2}\pi z^{2}}+\left(\tfrac{1}{2}-\Fresnelsinint@{z}\right)\sin@{\tfrac{1}{2}\pi z^{2}}} Fresnelg(z)=((1)/(2)- FresnelC(z))* cos((1)/(2)*Pi*(z)^(2))+((1)/(2)- FresnelS(z))* sin((1)/(2)*Pi*(z)^(2)) FresnelG[z]=(Divide[1,2]- FresnelC[z])* Cos[Divide[1,2]*Pi*(z)^(2)]+(Divide[1,2]- FresnelS[z])* Sin[Divide[1,2]*Pi*(z)^(2)] Successful Successful - -
7.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@{-z} = -\erf@{z}} erf(- z)= - erf(z) Erf[- z]= - Erf[z] Successful Successful - -
7.4.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@{-z} = 2-\erfc@{z}} erfc(- z)= 2 - erfc(z) Erfc[- z]= 2 - Erfc[z] Successful Successful - -
7.4.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \DawsonsintF@{-z} = -\DawsonsintF@{z}} dawson(- z)= - dawson(z) DawsonF[- z]= - DawsonF[z] Successful Successful - -
7.4#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{-z} = -\Fresnelcosint@{z}} FresnelC(- z)= - FresnelC(z) FresnelC[- z]= - FresnelC[z] Successful Successful - -
7.4#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{-z} = -\Fresnelsinint@{z}} FresnelS(- z)= - FresnelS(z) FresnelS[- z]= - FresnelS[z] Successful Successful - -
7.4#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{iz} = i\Fresnelcosint@{z}} FresnelC(I*z)= I*FresnelC(z) FresnelC[I*z]= I*FresnelC[z] Successful Successful - -
7.4#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{iz} = -i\Fresnelsinint@{z}} FresnelS(I*z)= - I*FresnelS(z) FresnelS[I*z]= - I*FresnelS[z] Successful Successful - -
7.4#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelf@{iz} = (1/\sqrt{2})e^{\frac{1}{4}\pi i-\frac{1}{2}\pi iz^{2}}-i\auxFresnelf@{z}} Fresnelf(I*z)=(1/sqrt(2))* exp((1)/(4)*Pi*I -(1)/(2)*Pi*I*(z)^(2))- I*Fresnelf(z) FresnelF[I*z]=(1/Sqrt[2])* Exp[Divide[1,4]*Pi*I -Divide[1,2]*Pi*I*(z)^(2)]- I*FresnelF[z] Failure Failure Successful Successful
7.4#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{iz} = (1/\sqrt{2})e^{-\frac{1}{4}\pi i-\frac{1}{2}\pi iz^{2}}+i\auxFresnelg@{z}} Fresnelg(I*z)=(1/sqrt(2))* exp(-(1)/(4)*Pi*I -(1)/(2)*Pi*I*(z)^(2))+ I*Fresnelg(z) FresnelG[I*z]=(1/Sqrt[2])* Exp[-Divide[1,4]*Pi*I -Divide[1,2]*Pi*I*(z)^(2)]+ I*FresnelG[z] Failure Failure Successful Successful
7.4#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelf@{-z} = \sqrt{2}\cos@{\tfrac{1}{4}\pi+\tfrac{1}{2}\pi z^{2}}-\auxFresnelf@{z}} Fresnelf(- z)=sqrt(2)*cos((1)/(4)*Pi +(1)/(2)*Pi*(z)^(2))- Fresnelf(z) FresnelF[- z]=Sqrt[2]*Cos[Divide[1,4]*Pi +Divide[1,2]*Pi*(z)^(2)]- FresnelF[z] Failure Successful Successful -
7.4#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{-z} = \sqrt{2}\sin@{\tfrac{1}{4}\pi+\tfrac{1}{2}\pi z^{2}}-\auxFresnelg@{z}} Fresnelg(- z)=sqrt(2)*sin((1)/(4)*Pi +(1)/(2)*Pi*(z)^(2))- Fresnelg(z) FresnelG[- z]=Sqrt[2]*Sin[Divide[1,4]*Pi +Divide[1,2]*Pi*(z)^(2)]- FresnelG[z] Failure Failure Successful Successful
7.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z} = \tfrac{1}{2}+\auxFresnelf@{z}\sin@{\tfrac{1}{2}\pi z^{2}}-\auxFresnelg@{z}\cos@{\tfrac{1}{2}\pi z^{2}}} FresnelC(z)=(1)/(2)+ Fresnelf(z)*sin((1)/(2)*Pi*(z)^(2))- Fresnelg(z)*cos((1)/(2)*Pi*(z)^(2)) FresnelC[z]=Divide[1,2]+ FresnelF[z]*Sin[Divide[1,2]*Pi*(z)^(2)]- FresnelG[z]*Cos[Divide[1,2]*Pi*(z)^(2)] Successful Failure - Successful
7.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{z} = \tfrac{1}{2}-\auxFresnelf@{z}\cos@{\tfrac{1}{2}\pi z^{2}}-\auxFresnelg@{z}\sin@{\tfrac{1}{2}\pi z^{2}}} FresnelS(z)=(1)/(2)- Fresnelf(z)*cos((1)/(2)*Pi*(z)^(2))- Fresnelg(z)*sin((1)/(2)*Pi*(z)^(2)) FresnelS[z]=Divide[1,2]- FresnelF[z]*Cos[Divide[1,2]*Pi*(z)^(2)]- FresnelG[z]*Sin[Divide[1,2]*Pi*(z)^(2)] Successful Failure - Successful
7.5.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{+\frac{1}{2}\pi iz^{2}}(\auxFresnelg@{z}+ i\auxFresnelf@{z}) = \tfrac{1}{2}(1+ i)-(\Fresnelcosint@{z}+ i\Fresnelsinint@{z})} exp(+(1)/(2)*Pi*I*(z)^(2))*(Fresnelg(z)+ I*Fresnelf(z))=(1)/(2)*(1 + I)-(FresnelC(z)+ I*FresnelS(z)) Exp[+Divide[1,2]*Pi*I*(z)^(2)]*(FresnelG[z]+ I*FresnelF[z])=Divide[1,2]*(1 + I)-(FresnelC[z]+ I*FresnelS[z]) Failure Failure
Fail
.149314e-2-.173022e-2*I <- {z = 2^(1/2)-I*2^(1/2)}
-.119473e-2+.149314e-2*I <- {z = -2^(1/2)+I*2^(1/2)}
Successful
7.5.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-\frac{1}{2}\pi iz^{2}}(\auxFresnelg@{z}- i\auxFresnelf@{z}) = \tfrac{1}{2}(1- i)-(\Fresnelcosint@{z}- i\Fresnelsinint@{z})} exp(-(1)/(2)*Pi*I*(z)^(2))*(Fresnelg(z)- I*Fresnelf(z))=(1)/(2)*(1 - I)-(FresnelC(z)- I*FresnelS(z)) Exp[-Divide[1,2]*Pi*I*(z)^(2)]*(FresnelG[z]- I*FresnelF[z])=Divide[1,2]*(1 - I)-(FresnelC[z]- I*FresnelS[z]) Failure Failure
Fail
.149314e-2+.173022e-2*I <- {z = 2^(1/2)+I*2^(1/2)}
-.119473e-2-.149314e-2*I <- {z = -2^(1/2)-I*2^(1/2)}
Successful
7.5.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z}+ i\Fresnelsinint@{z} = \tfrac{1}{2}(1+ i)\erf@@{\zeta}} FresnelC(z)+ I*FresnelS(z)=(1)/(2)*(1 + I)* erf(zeta) FresnelC[z]+ I*FresnelS[z]=Divide[1,2]*(1 + I)* Erf[\[zeta]] Failure Failure
Fail
-.1423151062+.1316106532*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2)}
.1316106532-.1423151062*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2)}
1.141922366+.8679966068*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)-I*2^(1/2)}
.8679966068+1.141922366*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Error
7.5.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z}- i\Fresnelsinint@{z} = \tfrac{1}{2}(1- i)\erf@@{\zeta}} FresnelC(z)- I*FresnelS(z)=(1)/(2)*(1 - I)* erf(zeta) FresnelC[z]- I*FresnelS[z]=Divide[1,2]*(1 - I)* Erf[\[zeta]] Failure Failure
Fail
66.79933367+67.80964539*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2)}
66.52540791+67.53571963*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2)}
67.53571963+66.52540791*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)-I*2^(1/2)}
67.80964539+66.79933367*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Error
7.5.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z}+ i\auxFresnelf@{z} = \tfrac{1}{2}(1+ i)e^{\zeta^{2}}\erfc@@{\zeta}} Fresnelg(z)+ I*Fresnelf(z)=(1)/(2)*(1 + I)* exp((zeta)^(2))*erfc(zeta) FresnelG[z]+ I*FresnelF[z]=Divide[1,2]*(1 + I)* Exp[(\[zeta])^(2)]*Erfc[\[zeta]] Failure Failure
Fail
-.874918896e-1+.8375300635e-1*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2)}
.8375400635e-1-.874928896e-1*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2)}
.1946430180+1.537001110*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)-I*2^(1/2)}
1.537002110+.1946420180*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Error
7.5.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z}- i\auxFresnelf@{z} = \tfrac{1}{2}(1- i)e^{\zeta^{2}}\erfc@@{\zeta}} Fresnelg(z)- I*Fresnelf(z)=(1)/(2)*(1 - I)* exp((zeta)^(2))*erfc(zeta) FresnelG[z]- I*FresnelF[z]=Divide[1,2]*(1 - I)* Exp[(\[zeta])^(2)]*Erfc[\[zeta]] Failure Failure
Fail
-.1458959936+.662848896e-1*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2)}
-.3171418896-.1049610064*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2)}
1.307352110-.2158500180*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)-I*2^(1/2)}
-.3500698200e-1-1.558209110*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Error
7.6.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{z} = \frac{2}{\sqrt{\pi}}\sum_{n=0}^{\infty}\frac{(-1)^{n}z^{2n+1}}{n!(2n+1)}} erf(z)=(2)/(sqrt(Pi))*sum(((- 1)^(n)* (z)^(2*n + 1))/(factorial(n)*(2*n + 1)), n = 0..infinity) Erf[z]=Divide[2,Sqrt[Pi]]*Sum[Divide[(- 1)^(n)* (z)^(2*n + 1),(n)!*(2*n + 1)], {n, 0, Infinity}] Successful Successful - -
7.6.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{2n}}{(2n)!(4n+1)}z^{4n+1}} FresnelC(z)= sum(((- 1)^(n)*((1)/(2)*Pi)^(2*n))/(factorial(2*n)*(4*n + 1))*(z)^(4*n + 1), n = 0..infinity) FresnelC[z]= Sum[Divide[(- 1)^(n)*(Divide[1,2]*Pi)^(2*n),(2*n)!*(4*n + 1)]*(z)^(4*n + 1), {n, 0, Infinity}] Successful Successful - -
7.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{2n+1}}{(2n+1)!(4n+3)}z^{4n+3}} FresnelS(z)= sum(((- 1)^(n)*((1)/(2)*Pi)^(2*n + 1))/(factorial(2*n + 1)*(4*n + 3))*(z)^(4*n + 3), n = 0..infinity) FresnelS[z]= Sum[Divide[(- 1)^(n)*(Divide[1,2]*Pi)^(2*n + 1),(2*n + 1)!*(4*n + 3)]*(z)^(4*n + 3), {n, 0, Infinity}] Successful Successful - -
7.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{z} = \frac{2z}{\sqrt{\pi}}\sum_{n=0}^{\infty}(-1)^{n}\left(\modsphBesseli{1}{2n}@{z^{2}}-\modsphBesseli{1}{2n+1}@{z^{2}}\right)} Error \|Sqrt[1/2 Pi /$2] BesselI[-2*n - 1/2, 2*n]*(z)^(2)- Sqrt[1/2 Pi /$2] BesselI[(-1)^(1-1)*2*n + 1 + 1/2, 2*n + 1]\|\|Sqrt[1/2 Pi /$2] BesselI[-2*n + 1 - 1/2, 2*n + 1]*(z)^(2)), {n, 0, Infinity}] Error Error - -
7.6.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@{az} = \frac{2z}{\sqrt{\pi}}e^{(\frac{1}{2}-a^{2})z^{2}}\sum_{n=0}^{\infty}\ChebyshevpolyT{2n+1}@{a}\modsphBesseli{1}{n}@{\tfrac{1}{2}z^{2}}} Error \|Sqrt[1/2 Pi /$2] BesselI[-n - 1/2, n]*Divide[1,2]*(z)^(2), {n, 0, Infinity}] Error Error - -
7.6.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z} = z\sum_{n=0}^{\infty}\sphBesselJ{2n}@{\tfrac{1}{2}\pi z^{2}}} Error FresnelC[z]= z*Sum[SphericalBesselJ[2*n, Divide[1,2]*Pi*(z)^(2)], {n, 0, Infinity}] Error Failure - Skip
7.6.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{z} = z\sum_{n=0}^{\infty}\sphBesselJ{2n+1}@{\tfrac{1}{2}\pi z^{2}}} Error FresnelS[z]= z*Sum[SphericalBesselJ[2*n + 1, Divide[1,2]*Pi*(z)^(2)], {n, 0, Infinity}] Error Failure - Skip
7.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@@{z} = \frac{2}{\pi}e^{-z^{2}}\int_{0}^{\infty}\frac{e^{-z^{2}t^{2}}}{t^{2}+1}\diff{t}} erfc(z)=(2)/(Pi)*exp(- (z)^(2))*int((exp(- (z)^(2)* (t)^(2)))/((t)^(2)+ 1), t = 0..infinity) Erfc[z]=Divide[2,Pi]*Exp[- (z)^(2)]*Integrate[Divide[Exp[- (z)^(2)* (t)^(2)],(t)^(2)+ 1], {t, 0, Infinity}] Successful Failure - Error
7.7.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t-z} = \frac{2z}{\pi i}\int_{0}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t^{2}-z^{2}}} (1)/(Pi*I)*int((exp(- (t)^(2)))/(t - z), t = - infinity..infinity)=(2*z)/(Pi*I)*int((exp(- (t)^(2)))/((t)^(2)- (z)^(2)), t = 0..infinity) Divide[1,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],t - z], {t, - Infinity, Infinity}]=Divide[2*z,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],(t)^(2)- (z)^(2)], {t, 0, Infinity}] Failure Failure Skip Successful
7.7.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at^{2}+2izt}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-z^{2}/a}+\frac{i}{\sqrt{a}}\DawsonsintF@{\frac{z}{\sqrt{a}}}} int(exp(- a*(t)^(2)+ 2*I*z*t), t = 0..infinity)=(1)/(2)*sqrt((Pi)/(a))*exp(- (z)^(2)/ a)+(I)/(sqrt(a))*dawson((z)/(sqrt(a))) Integrate[Exp[- a*(t)^(2)+ 2*I*z*t], {t, 0, Infinity}]=Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[- (z)^(2)/ a]+Divide[I,Sqrt[a]]*DawsonF[Divide[z,Sqrt[a]]] Failure Successful Skip -
7.7.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}\diff{t} = \sqrt{\frac{\pi}{a}}e^{az^{2}}\erfc@{\sqrt{a}z}} int((exp(- a*t))/(sqrt(t + (z)^(2))), t = 0..infinity)=sqrt((Pi)/(a))*exp(a*(z)^(2))*erfc(sqrt(a)*z) Integrate[Divide[Exp[- a*t],Sqrt[t + (z)^(2)]], {t, 0, Infinity}]=Sqrt[Divide[Pi,a]]*Exp[a*(z)^(2)]*Erfc[Sqrt[a]*z] Successful Failure - Successful
7.7.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}e^{-(at^{2}+2bt+c)}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{(b^{2}-ac)/a}\erfc@{\sqrt{a}x+\frac{b}{\sqrt{a}}}} int(exp(-(a*(t)^(2)+ 2*b*t + c)), t = x..infinity)=(1)/(2)*sqrt((Pi)/(a))*exp(((b)^(2)- a*c)/ a)*erfc(sqrt(a)*x +(b)/(sqrt(a))) Integrate[Exp[-(a*(t)^(2)+ 2*b*t + c)], {t, x, Infinity}]=Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[((b)^(2)- a*c)/ a]*Erfc[Sqrt[a]*x +Divide[b,Sqrt[a]]] Failure Failure Skip Successful
7.7.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{4a}\left(e^{2ab}\erfc@{ax+(b/x)}+e^{-2ab}\erfc@{ax-(b/x)}\right)} int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/ (t)^(2))), t = x..infinity)=(sqrt(Pi))/(4*a)*(exp(2*a*b)*erfc(a*x +(b/ x))+ exp(- 2*a*b)*erfc(a*x -(b/ x))) Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/ (t)^(2))], {t, x, Infinity}]=Divide[Sqrt[Pi],4*a]*(Exp[2*a*b]*Erfc[a*x +(b/ x)]+ Exp[- 2*a*b]*Erfc[a*x -(b/ x)]) Failure Failure Skip Error
7.7.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{2a}e^{-2ab}} int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/ (t)^(2))), t = 0..infinity)=(sqrt(Pi))/(2*a)*exp(- 2*a*b) Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/ (t)^(2))], {t, 0, Infinity}]=Divide[Sqrt[Pi],2*a]*Exp[- 2*a*b] Successful Failure - Successful
7.7.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\erf@@{t}\diff{t} = x\erf@@{x}+\frac{1}{\sqrt{\pi}}\left(e^{-x^{2}}-1\right)} int(erf(t), t = 0..x)= x*erf(x)+(1)/(sqrt(Pi))*(exp(- (x)^(2))- 1) Integrate[Erf[t], {t, 0, x}]= x*Erf[x]+Divide[1,Sqrt[Pi]]*(Exp[- (x)^(2)]- 1) Successful Successful - -
7.7.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelf@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{e^{-\pi z^{2}t/2}}{\sqrt{t}(t^{2}+1)}\diff{t}} Fresnelf(z)=(1)/(Pi*sqrt(2))*int((exp(- Pi*(z)^(2)* t/ 2))/(sqrt(t)*((t)^(2)+ 1)), t = 0..infinity) FresnelF[z]=Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Exp[- Pi*(z)^(2)* t/ 2],Sqrt[t]*((t)^(2)+ 1)], {t, 0, Infinity}] Failure Failure Skip Error
7.7.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{\sqrt{t}e^{-\pi z^{2}t/2}}{t^{2}+1}\diff{t}} Fresnelg(z)=(1)/(Pi*sqrt(2))*int((sqrt(t)*exp(- Pi*(z)^(2)* t/ 2))/((t)^(2)+ 1), t = 0..infinity) FresnelG[z]=Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Sqrt[t]*Exp[- Pi*(z)^(2)* t/ 2],(t)^(2)+ 1], {t, 0, Infinity}] Failure Failure Skip Error
7.7.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z}+i\auxFresnelf@{z} = e^{-\pi iz^{2}/2}\int_{z}^{\infty}e^{\pi it^{2}/2}\diff{t}} Fresnelg(z)+ I*Fresnelf(z)= exp(- Pi*I*(z)^(2)/ 2)*int(exp(Pi*I*(t)^(2)/ 2), t = z..infinity) FresnelG[z]+ I*FresnelF[z]= Exp[- Pi*I*(z)^(2)/ 2]*Integrate[Exp[Pi*I*(t)^(2)/ 2], {t, z, Infinity}] Failure Failure Skip
Fail
Complex[-0.12449815517713354, 0.12449815517716199] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.12449815517710515, -0.12449815517713354] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
7.7.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelf@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{3}{4}}\EulerGamma@{\tfrac{1}{4}-s}\diff{s}} Fresnelf(z)=((2*Pi)^(- 3/ 2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(3)/(4))*GAMMA((1)/(4)- s), s = c - I*infinity..c + I*infinity) FresnelF[z]=Divide[(2*Pi)^(- 3/ 2),2*Pi*I]*Integrate[(\[zeta])^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[3,4]]*Gamma[Divide[1,4]- s], {s, c - I*Infinity, c + I*Infinity}] Failure Failure Skip Error
7.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{1}{4}}\EulerGamma@{\tfrac{3}{4}-s}\diff{s}} Fresnelg(z)=((2*Pi)^(- 3/ 2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(1)/(4))*GAMMA((3)/(4)- s), s = c - I*infinity..c + I*infinity) FresnelG[z]=Divide[(2*Pi)^(- 3/ 2),2*Pi*I]*Integrate[(\[zeta])^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[1,4]]*Gamma[Divide[3,4]- s], {s, c - I*Infinity, c + I*Infinity}] Failure Failure Skip Error
7.7.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\cos@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelf@{\frac{a}{\sqrt{2\pi}}}} int(exp(- a*t)*cos((t)^(2)), t = 0..infinity)=sqrt((Pi)/(2))*Fresnelf((a)/(sqrt(2*Pi))) Integrate[Exp[- a*t]*Cos[(t)^(2)], {t, 0, Infinity}]=Sqrt[Divide[Pi,2]]*FresnelF[Divide[a,Sqrt[2*Pi]]] Successful Failure - Error
7.7.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\sin@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelg@{\frac{a}{\sqrt{2\pi}}}} int(exp(- a*t)*sin((t)^(2)), t = 0..infinity)=sqrt((Pi)/(2))*Fresnelg((a)/(sqrt(2*Pi))) Integrate[Exp[- a*t]*Sin[(t)^(2)], {t, 0, Infinity}]=Sqrt[Divide[Pi,2]]*FresnelG[Divide[a,Sqrt[2*Pi]]] Successful Failure - Error
7.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}} = e^{x^{2}}\int_{x}^{\infty}e^{-t^{2}}\diff{t}} (int(exp(- (t)^(2)), t = x..infinity))/(exp(- (x)^(2)))= exp((x)^(2))*int(exp(- (t)^(2)), t = x..infinity) Divide[Integrate[Exp[- (t)^(2)], {t, x, Infinity}],Exp[- (x)^(2)]]= Exp[(x)^(2)]*Integrate[Exp[- (t)^(2)], {t, x, Infinity}] Successful Successful - -
7.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{x^{2}}{2x^{2}+1} <= \frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3}} ((x)^(2))/(2*(x)^(2)+ 1)< =((x)^(2)*(2*(x)^(2)+ 5))/(4*(x)^(4)+ 12*(x)^(2)+ 3) Divide[(x)^(2),2*(x)^(2)+ 1]< =Divide[(x)^(2)*(2*(x)^(2)+ 5),4*(x)^(4)+ 12*(x)^(2)+ 3] Failure Failure Successful Successful
7.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15} < \frac{x^{2}+1}{2x^{2}+3}} (2*(x)^(4)+ 9*(x)^(2)+ 4)/(4*(x)^(4)+ 20*(x)^(2)+ 15)<((x)^(2)+ 1)/(2*(x)^(2)+ 3) Divide[2*(x)^(4)+ 9*(x)^(2)+ 4,4*(x)^(4)+ 20*(x)^(2)+ 15]<Divide[(x)^(2)+ 1,2*(x)^(2)+ 3] Failure Failure Skip Successful
7.8.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{at^{2}}\diff{t} < \frac{1}{3ax}\left(2e^{ax^{2}}+ax^{2}-2\right)} int(exp(a*(t)^(2)), t = 0..x)<(1)/(3*a*x)*(2*exp(a*(x)^(2))+ a*(x)^(2)- 2) Integrate[Exp[a*(t)^(2)], {t, 0, x}]<Divide[1,3*a*x]*(2*Exp[a*(x)^(2)]+ a*(x)^(2)- 2) Error Failure - Successful
7.8.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{t^{2}}\diff{t} < \frac{e^{x^{2}}-1}{x}} int(exp((t)^(2)), t = 0..x)<(exp((x)^(2))- 1)/(x) Integrate[Exp[(t)^(2)], {t, 0, x}]<Divide[Exp[(x)^(2)]- 1,x] Failure Failure Skip Successful
7.8.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{x} < \sqrt{1-\expe^{-4x^{2}/\cpi}}} erf(x)<sqrt(1 - exp(- 4*(x)^(2)/ Pi)) Erf[x]<Sqrt[1 - Exp[- 4*(x)^(2)/ Pi]] Failure Failure Skip Successful
7.10.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n+1]{\erf@@{z}}{z} = (-1)^{n}\frac{2}{\sqrt{\pi}}\HermitepolyH{n}@{z}e^{-z^{2}}} diff(erf(z), [z$(n + 1)])=(- 1)^(n)*(2)/(sqrt(Pi))*HermiteH(n, z)*exp(- (z)^(2)) D[Erf[z], {z, n + 1}]=(- 1)^(n)*Divide[2,Sqrt[Pi]]*HermiteH[n, z]*Exp[- (z)^(2)] Failure Failure Skip Successful
7.10#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{\auxFresnelf@{z}}{z} = -\pi z\auxFresnelg@{z}} diff(Fresnelf(z), z)= - Pi*z*Fresnelg(z) D[FresnelF[z], z]= - Pi*z*FresnelG[z] Successful Successful - -
7.10#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{\auxFresnelg@{z}}{z} = \pi z\auxFresnelf@{z}-1} diff(Fresnelg(z), z)= Pi*z*Fresnelf(z)- 1 D[FresnelG[z], z]= Pi*z*FresnelF[z]- 1 Successful Successful - -
7.11.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{z} = \frac{1}{\sqrt{\pi}}\incgamma@{\tfrac{1}{2}}{z^{2}}} erf(z)=(1)/(sqrt(Pi))*GAMMA((1)/(2))-GAMMA((1)/(2), (z)^(2)) Erf[z]=Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], 0, (z)^(2)] Failure Failure
Fail
-.796532174e-2+.2115950078*I <- {z = 2^(1/2)+I*2^(1/2)}
-.796532174e-2-.2115950078*I <- {z = 2^(1/2)-I*2^(1/2)}
-2.028588748+.7594465268*I <- {z = -2^(1/2)-I*2^(1/2)}
-2.028588748-.7594465268*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-2.020623424050978, 0.547851518927081] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.020623424050978, -0.547851518927081] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
7.11.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@@{z} = \frac{1}{\sqrt{\pi}}\incGamma@{\tfrac{1}{2}}{z^{2}}} erfc(z)=(1)/(sqrt(Pi))*GAMMA((1)/(2), (z)^(2)) Erfc[z]=Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], (z)^(2)] Failure Failure
Fail
2.020623426-.5478515190*I <- {z = -2^(1/2)-I*2^(1/2)}
2.020623426+.5478515190*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[2.0206234240509775, -0.547851518927081] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.0206234240509775, 0.547851518927081] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
7.11.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@@{z} = \frac{z}{\sqrt{\pi}}\genexpintE{\frac{1}{2}}@{z^{2}}} erfc(z)=(z)/(sqrt(Pi))*Ei((1)/(2), (z)^(2)) Erfc[z]=Divide[z,Sqrt[Pi]]*ExpIntegralE[Divide[1,2], (z)^(2)] Failure Failure
Fail
2.000000000-.1e-9*I <- {z = -2^(1/2)-I*2^(1/2)}
2.000000000+.1e-9*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[1.9999999999999996, -1.1102230246251565*^-16] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.9999999999999996, 1.1102230246251565*^-16] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
7.11.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{z} = \frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}}} erf(z)=(2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2)) Erf[z]=Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)] Successful Successful - -
7.11.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{2z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperM@{1}{\tfrac{3}{2}}{z^{2}}} (2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2))=(2*z)/(sqrt(Pi))*exp(- (z)^(2))*KummerM(1, (3)/(2), (z)^(2)) Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)]=Divide[2*z,Sqrt[Pi]]*Exp[- (z)^(2)]*Hypergeometric1F1[1, Divide[3,2], (z)^(2)] Successful Successful - -
7.11.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@@{z} = \frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}} erfc(z)=(1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2)) Erfc[z]=Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)] Failure Failure
Fail
2.020623426-.5478515190*I <- {z = -2^(1/2)-I*2^(1/2)}
2.020623426+.5478515190*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[2.0206234240509775, -0.547851518927081] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.0206234240509775, 0.547851518927081] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
7.11.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \frac{z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{1}{\tfrac{3}{2}}{z^{2}}} (1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2))=(z)/(sqrt(Pi))*exp(- (z)^(2))*KummerU(1, (3)/(2), (z)^(2)) Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)]=Divide[z,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[1, Divide[3,2], (z)^(2)] Failure Failure
Fail
-.2062342514e-1+.5478515190*I <- {z = -2^(1/2)-I*2^(1/2)}
-.2062342514e-1-.5478515190*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.02062342405097809, 0.5478515189270807] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.020623424050978133, -0.5478515189270807] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
7.11.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z}+i\Fresnelsinint@{z} = z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}}} FresnelC(z)+ I*FresnelS(z)= z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2)) FresnelC[z]+ I*FresnelS[z]= z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)] Failure Successful Successful -
7.11.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}} = ze^{\pi iz^{2}/2}\KummerconfhyperM@{1}{\tfrac{3}{2}}{-\tfrac{1}{2}\pi iz^{2}}} z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2))= z*exp(Pi*I*(z)^(2)/ 2)*KummerM(1, (3)/(2), -(1)/(2)*Pi*I*(z)^(2)) z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)]= z*Exp[Pi*I*(z)^(2)/ 2]*Hypergeometric1F1[1, Divide[3,2], -Divide[1,2]*Pi*I*(z)^(2)] Successful Successful - -
7.11.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z} = z\genhyperF{1}{2}@{\tfrac{1}{4}}{\tfrac{5}{4},\tfrac{1}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}} FresnelC(z)= z*hypergeom([(1)/(4)], [(5)/(4),(1)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4)) FresnelC[z]= z*HypergeometricPFQ[{Divide[1,4]}, {Divide[5,4],Divide[1,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)] Successful Successful - -
7.11.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{z} = \tfrac{1}{6}\pi z^{3}\genhyperF{1}{2}@{\tfrac{3}{4}}{\tfrac{7}{4},\tfrac{3}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}} FresnelS(z)=(1)/(6)*Pi*(z)^(3)* hypergeom([(3)/(4)], [(7)/(4),(3)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4)) FresnelS[z]=Divide[1,6]*Pi*(z)^(3)* HypergeometricPFQ[{Divide[3,4]}, {Divide[7,4],Divide[3,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)] Successful Successful - -
7.13#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mu = \ln@{\lambda\sqrt{2\pi}}} mu = ln(lambda*sqrt(2*Pi)) \[Mu]= Log[\[Lambda]*Sqrt[2*Pi]] Failure Failure
Fail
-.197872151+.6288153986*I <- {lambda = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2)}
-.197872151-2.199611725*I <- {lambda = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2)}
-3.026299275-2.199611725*I <- {lambda = 2^(1/2)+I*2^(1/2), mu = -2^(1/2)-I*2^(1/2)}
-3.026299275+.6288153986*I <- {lambda = 2^(1/2)+I*2^(1/2), mu = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.1978721513915227, 0.6288153989756469] <- {Rule[λ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.1978721513915227, -2.199611725770543] <- {Rule[λ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.026299276137713, -2.199611725770543] <- {Rule[λ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.026299276137713, 0.6288153989756469] <- {Rule[λ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.13#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mu = \ln@{2\lambda\sqrt{2\pi}}} mu = ln(2*lambda*sqrt(2*Pi)) \[Mu]= Log[2*\[Lambda]*Sqrt[2*Pi]] Failure Failure
Fail
-.891019332+.6288153986*I <- {lambda = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)+I*2^(1/2)}
-.891019332-2.199611725*I <- {lambda = 2^(1/2)+I*2^(1/2), mu = 2^(1/2)-I*2^(1/2)}
-3.719446456-2.199611725*I <- {lambda = 2^(1/2)+I*2^(1/2), mu = -2^(1/2)-I*2^(1/2)}
-3.719446456+.6288153986*I <- {lambda = 2^(1/2)+I*2^(1/2), mu = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.8910193319514683, 0.6288153989756469] <- {Rule[λ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.8910193319514683, -2.199611725770543] <- {Rule[λ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.719446456697659, -2.199611725770543] <- {Rule[λ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.719446456697659, 0.6288153989756469] <- {Rule[λ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.13#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha = (2/\pi)\ln@{\pi\lambda}} alpha =(2/ Pi)* ln(Pi*lambda) \[Alpha]=(2/ Pi)* Log[Pi*\[Lambda]] Failure Failure
Fail
.244184683+.9142135621*I <- {alpha = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2)}
.244184683+1.914213562*I <- {alpha = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)-I*2^(1/2)}
.244184683+2.914213561*I <- {alpha = 2^(1/2)+I*2^(1/2), lambda = -2^(1/2)-I*2^(1/2)}
.244184683-.85786437e-1*I <- {alpha = 2^(1/2)+I*2^(1/2), lambda = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[0.24418468271597948, 0.9142135623730951] <- {Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[λ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.24418468271597948, 1.9142135623730951] <- {Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[λ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.24418468271597948, 2.914213562373095] <- {Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[λ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.24418468271597948, -0.08578643762690485] <- {Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[λ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.13#Ex14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha = (2/\pi)\ln@{\pi\lambda}} alpha =(2/ Pi)* ln(Pi*lambda) \[Alpha]=(2/ Pi)* Log[Pi*\[Lambda]] Failure Failure
Fail
.244184683+.9142135621*I <- {alpha = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2)}
.244184683+1.914213562*I <- {alpha = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)-I*2^(1/2)}
.244184683+2.914213561*I <- {alpha = 2^(1/2)+I*2^(1/2), lambda = -2^(1/2)-I*2^(1/2)}
.244184683-.85786437e-1*I <- {alpha = 2^(1/2)+I*2^(1/2), lambda = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[0.24418468271597948, 0.9142135623730951] <- {Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[λ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.24418468271597948, 1.9142135623730951] <- {Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[λ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.24418468271597948, 2.914213562373095] <- {Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[λ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.24418468271597948, -0.08578643762690485] <- {Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[λ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.14.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{2iat}\erfc@{bt}\diff{t} = {\frac{1}{a\sqrt{\pi}}\DawsonsintF@{\frac{a}{b}}+\frac{i}{2a}\left(1-e^{-(a/b)^{2}}\right)}} int(exp(2*I*a*t)*erfc(b*t), t = 0..infinity)=(1)/(a*sqrt(Pi))*dawson((a)/(b))+(I)/(2*a)*(1 - exp(-(a/ b)^(2))) Integrate[Exp[2*I*a*t]*Erfc[b*t], {t, 0, Infinity}]=Divide[1,a*Sqrt[Pi]]*DawsonF[Divide[a,b]]+Divide[I,2*a]*(1 - Exp[-(a/ b)^(2)]) Failure Failure Skip Error
7.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\erf@{bt}\diff{t} = \frac{1}{a}e^{a^{2}/(4b^{2})}\erfc@{\frac{a}{2b}}} int(exp(- a*t)*erf(b*t), t = 0..infinity)=(1)/(a)*exp((a)^(2)/(4*(b)^(2)))*erfc((a)/(2*b)) Integrate[Exp[- a*t]*Erf[b*t], {t, 0, Infinity}]=Divide[1,a]*Exp[(a)^(2)/(4*(b)^(2))]*Erfc[Divide[a,2*b]] Successful Failure - Error
7.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{(a-b)t}\erfc@{\sqrt{at}+\sqrt{\frac{c}{t}}}\diff{t} = \frac{e^{-2(\sqrt{ac}+\sqrt{bc})}}{\sqrt{b}(\sqrt{a}+\sqrt{b})}} int(exp((a - b)* t)*erfc(sqrt(a*t)+sqrt((c)/(t))), t = 0..infinity)=(exp(- 2*(sqrt(a*c)+sqrt(b*c))))/(sqrt(b)*(sqrt(a)+sqrt(b))) Integrate[Exp[(a - b)* t]*Erfc[Sqrt[a*t]+Sqrt[Divide[c,t]]], {t, 0, Infinity}]=Divide[Exp[- 2*(Sqrt[a*c]+Sqrt[b*c])],Sqrt[b]*(Sqrt[a]+Sqrt[b])] Failure Failure Skip Error
7.14.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\Fresnelcosint@{t}\diff{t} = \frac{1}{a}\auxFresnelf@{\frac{a}{\pi}}} int(exp(- a*t)*FresnelC(t), t = 0..infinity)=(1)/(a)*Fresnelf((a)/(Pi)) Integrate[Exp[- a*t]*FresnelC[t], {t, 0, Infinity}]=Divide[1,a]*FresnelF[Divide[a,Pi]] Failure Failure Skip Successful
7.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\Fresnelsinint@{t}\diff{t} = \frac{1}{a}\auxFresnelg@{\frac{a}{\pi}}} int(exp(- a*t)*FresnelS(t), t = 0..infinity)=(1)/(a)*Fresnelg((a)/(Pi)) Integrate[Exp[- a*t]*FresnelS[t], {t, 0, Infinity}]=Divide[1,a]*FresnelG[Divide[a,Pi]] Failure Failure Skip Successful
7.17#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle y = \inverf@@{x}} Error y = InverseErf[x] Error Failure -
Fail
DirectedInfinity[-1] <- {Rule[x, 1], Rule[y, 1]}
DirectedInfinity[-1] <- {Rule[x, 1], Rule[y, 2]}
DirectedInfinity[-1] <- {Rule[x, 1], Rule[y, 3]}
7.17#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle y = \inverfc@@{x}} Error y = InverseErfc[x] Error Failure -
Fail
1.0 <- {Rule[x, 1], Rule[y, 1]}
2.0 <- {Rule[x, 1], Rule[y, 2]}
3.0 <- {Rule[x, 1], Rule[y, 3]}
DirectedInfinity[1] <- {Rule[x, 2], Rule[y, 1]}
... skip entries to safe data
7.18#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{-1}@{z} = \frac{2}{\sqrt{\pi}}e^{-z^{2}}} erfc(- 1, z)=(2)/(sqrt(Pi))*exp(- (z)^(2)) I^(- 1)*Erfc[z]=Divide[2,Sqrt[Pi]]*Exp[- (z)^(2)] Successful Failure -
Fail
Complex[1.011483603950918, -0.8436484572858769] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.46363208502383696, 0.8642718813368542] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.46363208502383696, -2.864271881336854] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.011483603950918, -1.1563515427141229] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
7.18#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{0}@{z} = \erfc@@{z}} erfc(0, z)= erfc(z) I^(0)*Erfc[z]= Erfc[z] Successful Successful - -
7.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = \int_{z}^{\infty}\repinterfc{n-1}@{t}\diff{t}} erfc(n, z)= int(erfc(n - 1, t), t = z..infinity) I^(n)*Erfc[z]= Integrate[I^(n - 1)*Erfc[t], {t, z, Infinity}] Failure Failure Skip
Fail
Complex[-0.30711932433427286, -0.06448523556221403] <- {Rule[n, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.06448523556221401, -0.30711932433427286] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.30711932433427286, 0.06448523556221403] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.2407321945928082, 0.04386181151123664] <- {Rule[n, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{z}^{\infty}\repinterfc{n-1}@{t}\diff{t} = \frac{2}{\sqrt{\pi}}\int_{z}^{\infty}\frac{(t-z)^{n}}{n!}e^{-t^{2}}\diff{t}} int(erfc(n - 1, t), t = z..infinity)=(2)/(sqrt(Pi))*int(((t - z)^(n))/(factorial(n))*exp(- (t)^(2)), t = z..infinity) Integrate[I^(n - 1)*Erfc[t], {t, z, Infinity}]=Divide[2,Sqrt[Pi]]*Integrate[Divide[(t - z)^(n),(n)!]*Exp[- (t)^(2)], {t, z, Infinity}] Failure Failure Skip
Fail
Complex[-0.06643066657209085, 0.02648998567028575] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.036107850584238765, -0.054264273946754926] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.04191638050136022, 0.039897144071178225] <- {Rule[n, 2], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.03610785058423853, 0.054264273946755606] <- {Rule[n, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.18.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{z}\repinterfc{n}@{z} = -\repinterfc{n-1}@{z}} diff(erfc(n, z), z)= - erfc(n - 1, z) D[I^(n)*Erfc[z], z]= - I^(n - 1)*Erfc[z] Successful Failure -
Fail
Complex[-0.8436484572858769, -1.011483603950918] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.8642718813368542, -0.46363208502383696] <- {Rule[n, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.864271881336854, -0.46363208502383696] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.1563515427141229, -1.011483603950918] <- {Rule[n, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
7.18.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{z^{2}}\erfc@@{z}\right) = (-1)^{n}2^{n}n!e^{z^{2}}\repinterfc{n}@{z}} diff(exp((z)^(2))*erfc(z), [z$(n)])=(- 1)^(n)* (2)^(n)* factorial(n)*exp((z)^(2))*erfc(n, z) D[Exp[(z)^(2)]*Erfc[z], {z, n}]=(- 1)^(n)* (2)^(n)* (n)!*Exp[(z)^(2)]*I^(n)*Erfc[z] Failure Failure Successful
Fail
Complex[-8.131664243641417, -10.165585245606788] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[8.307941760049161, -10.383011529763138] <- {Rule[n, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-195.50543578827103, 111.66805229196896] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-66.63896269283943, 34.38011968921443] <- {Rule[n, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
7.18.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{W}{z}+2z\deriv{W}{z}-2nW = 0} diff(W, [z$(2)])+ 2*z*diff(W, z)- 2*n*W = 0 D[W, {z, 2}]+ 2*z*D[W, z]- 2*n*W = 0 Failure Failure Skip Successful
7.18.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = \sum_{k=0}^{\infty}\frac{(-1)^{k}z^{k}}{2^{n-k}k!\EulerGamma@{1+\frac{1}{2}(n-k)}}} erfc(n, z)= sum(((- 1)^(k)* (z)^(k))/((2)^(n - k)* factorial(k)*GAMMA(1 +(1)/(2)*(n - k))), k = 0..infinity) I^(n)*Erfc[z]= Sum[Divide[(- 1)^(k)* (z)^(k),(2)^(n - k)* (k)!*Gamma[1 +Divide[1,2]*(n - k)]], {k, 0, Infinity}] Failure Failure Skip
Fail
Complex[-0.3071193243342728, -0.06448523556221496] <- {Rule[n, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.0019454310098768, -0.280629338663987] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.2710114737500341, 0.01022096161545949] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.24073219459280773, 0.043861811511237594] <- {Rule[n, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.18.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = -\frac{z}{n}\repinterfc{n-1}@{z}+\frac{1}{2n}\repinterfc{n-2}@{z}} erfc(n, z)= -(z)/(n)*erfc(n - 1, z)+(1)/(2*n)*erfc(n - 2, z) I^(n)*Erfc[z]= -Divide[z,n]*I^(n - 1)*Erfc[z]+Divide[1,2*n]*I^(n - 2)*Erfc[z] Successful Failure -
Fail
Complex[0.45357088174560434, -0.11223852300991567] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.18558922366932362, 0.1362991844027226] <- {Rule[n, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.7572198179127398, -1.5268234761539925] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.3963799233276677, -3.163903851905481] <- {Rule[n, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
7.18.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\repinterfc{n}@{z}+\repinterfc{n}@{-z} = \frac{i^{-n}}{2^{n-1}n!}\HermitepolyH{n}@{iz}} (- 1)^(n)* erfc(n, z)+ erfc(n, - z)=((I)^(- n))/((2)^(n - 1)* factorial(n))*HermiteH(n, I*z) (- 1)^(n)* I^(n)*Erfc[z]+ I^(n)*Erfc[- z]=Divide[(I)^(- n),(2)^(n - 1)* (n)!]*HermiteH[n, I*z] Failure Failure Successful
Fail
Complex[-2.280575605819109, -0.8078037006952131] <- {Rule[n, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.5, -4.0] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.6306597830504983, -4.613348288401651] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-3.3762786436732717, 4.849050548797168] <- {Rule[n, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.18.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = e^{-z^{2}}\left(\frac{1}{2^{n}\EulerGamma@{\tfrac{1}{2}n+1}}\KummerconfhyperM@{\tfrac{1}{2}n+\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}-\frac{z}{2^{n-1}\EulerGamma@{\tfrac{1}{2}n+\tfrac{1}{2}}}\KummerconfhyperM@{\tfrac{1}{2}n+1}{\tfrac{3}{2}}{z^{2}}\right)} erfc(n, z)= exp(- (z)^(2))*((1)/((2)^(n)* GAMMA((1)/(2)*n + 1))*KummerM((1)/(2)*n +(1)/(2), (1)/(2), (z)^(2))-(z)/((2)^(n - 1)* GAMMA((1)/(2)*n +(1)/(2)))*KummerM((1)/(2)*n + 1, (3)/(2), (z)^(2))) I^(n)*Erfc[z]= Exp[- (z)^(2)]*(Divide[1,(2)^(n)* Gamma[Divide[1,2]*n + 1]]*Hypergeometric1F1[Divide[1,2]*n +Divide[1,2], Divide[1,2], (z)^(2)]-Divide[z,(2)^(n - 1)* Gamma[Divide[1,2]*n +Divide[1,2]]]*Hypergeometric1F1[Divide[1,2]*n + 1, Divide[3,2], (z)^(2)]) Failure Failure Successful
Fail
Complex[-0.3071193243342726, -0.06448523556221446] <- {Rule[n, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.0019454310098766699, -0.28062933866398737] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.27101147375003376, 0.010220961615459446] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.2407321945928081, 0.04386181151123732] <- {Rule[n, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.18.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = \frac{e^{-z^{2}}}{2^{n}\sqrt{\pi}}\KummerconfhyperU@{\tfrac{1}{2}n+\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}} erfc(n, z)=(exp(- (z)^(2)))/((2)^(n)*sqrt(Pi))*KummerU((1)/(2)*n +(1)/(2), (1)/(2), (z)^(2)) I^(n)*Erfc[z]=Divide[Exp[- (z)^(2)],(2)^(n)*Sqrt[Pi]]*HypergeometricU[Divide[1,2]*n +Divide[1,2], Divide[1,2], (z)^(2)] Failure Failure
Fail
2.828427124+2.828427124*I <- {z = -2^(1/2)-I*2^(1/2), n = 1}
.4754857140+3.986592840*I <- {z = -2^(1/2)-I*2^(1/2), n = 2}
-1.178511301+2.592724863*I <- {z = -2^(1/2)-I*2^(1/2), n = 3}
2.828427124-2.828427124*I <- {z = -2^(1/2)+I*2^(1/2), n = 1}
... skip entries to safe data
Fail
Complex[-0.30711932433427297, -0.06448523556221639] <- {Rule[n, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.0019454310098774158, -0.28062933866398587] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.2710114737500343, 0.010220961615459385] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.24073219459280773, 0.04386181151123868] <- {Rule[n, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.18.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = \frac{e^{-z^{2}/2}}{\sqrt{2^{n-1}\pi}}\paraU@{n+\tfrac{1}{2}}{z\sqrt{2}}} erfc(n, z)=(exp(- (z)^(2)/ 2))/(sqrt((2)^(n - 1)* Pi))*CylinderU(n +(1)/(2), z*sqrt(2)) I^(n)*Erfc[z]=Divide[Exp[- (z)^(2)/ 2],Sqrt[(2)^(n - 1)* Pi]]*ParabolicCylinderD[-n +Divide[1,2] - 1/2, z*Sqrt[2]] Failure Failure Successful
Fail
Complex[-0.26663427796467404, -0.20400647408383285] <- {Rule[n, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.013159682786361896, -0.3122322253171296] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.2652586505052597, 0.005571565714632675] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.281217240962407, 0.18338305003285552] <- {Rule[n, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.20.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{x}e^{-(t-m)^{2}/(2\sigma^{2})}\diff{t} = \frac{1}{2}\erfc@{\frac{m-x}{\sigma\sqrt{2}}}} (1)/(sigma*sqrt(2*Pi))*int(exp(-(t - m)^(2)/(2*(sigma)^(2))), t = - infinity..x)=(1)/(2)*erfc((m - x)/(sigma*sqrt(2))) Divide[1,\[Sigma]*Sqrt[2*Pi]]*Integrate[Exp[-(t - m)^(2)/(2*(\[Sigma])^(2))], {t, - Infinity, x}]=Divide[1,2]*Erfc[Divide[m - x,\[Sigma]*Sqrt[2]]] Failure Failure Skip Successful
7.20.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2}\erfc@{\frac{m-x}{\sigma\sqrt{2}}} = Q\left(\frac{m-x}{\sigma}\right)} (1)/(2)*erfc((m - x)/(sigma*sqrt(2)))= Q*((m - x)/(sigma)) Divide[1,2]*Erfc[Divide[m - x,\[Sigma]*Sqrt[2]]]= Q*(Divide[m - x,\[Sigma]]) Failure Failure
Fail
.5000000000 <- {Q = 2^(1/2)+I*2^(1/2), sigma = 2^(1/2)+I*2^(1/2), m = 1, x = 1}
1.646697588-.1349567498*I <- {Q = 2^(1/2)+I*2^(1/2), sigma = 2^(1/2)+I*2^(1/2), m = 1, x = 2}
2.821306458-.2289406972*I <- {Q = 2^(1/2)+I*2^(1/2), sigma = 2^(1/2)+I*2^(1/2), m = 1, x = 3}
-.6466975876+.1349567498*I <- {Q = 2^(1/2)+I*2^(1/2), sigma = 2^(1/2)+I*2^(1/2), m = 2, x = 1}
... skip entries to safe data
Fail
0.5 <- {Rule[m, 1], Rule[Q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[σ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.6466975876615073, -0.13495674973157074] <- {Rule[m, 1], Rule[Q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2], Rule[σ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.8213064574274105, -0.22894069721759613] <- {Rule[m, 1], Rule[Q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3], Rule[σ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.6466975876615073, 0.13495674973157074] <- {Rule[m, 2], Rule[Q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[σ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
7.20.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Q\left(\frac{m-x}{\sigma}\right) = P\left(\frac{x-m}{\sigma}\right)} Q*((m - x)/(sigma))= P*((x - m)/(sigma)) Q*(Divide[m - x,\[Sigma]])= P*(Divide[x - m,\[Sigma]]) Failure Failure Skip Skip