Results of Exponential, Logarithmic, Sine, and Cosine Integrals

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
6.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = \int_{z}^{\infty}\frac{e^{-t}}{t}\diff{t}} Ei(z)= int((exp(- t))/(t), t = z..infinity) -ExpIntegralEi[-(z)]= Integrate[Divide[Exp[- t],t], {t, z, Infinity}] Failure Failure Skip Successful
6.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = e^{-z}\int_{0}^{\infty}\frac{e^{-t}}{t+z}\diff{t}} Ei(z)= exp(- z)*int((exp(- t))/(t + z), t = 0..infinity) -ExpIntegralEi[-(z)]= Exp[- z]*Integrate[Divide[Exp[- t],t + z], {t, 0, Infinity}] Failure Failure Skip
Fail
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.2.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEin@{z} = \int_{0}^{z}\frac{1-e^{-t}}{t}\diff{t}} Error -ExpIntegralEi[-(z)] + Ln[z] + EulerGamma = Integrate[Divide[1 - Exp[- t],t], {t, 0, z}] Error Failure - Successful
6.2.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = \expintEin@{z}-\ln@@{z}-\EulerConstant} Error -ExpIntegralEi[-(z)]= -ExpIntegralEi[-(z)] + Ln[z] + EulerGamma - Log[z]- EulerGamma Error Failure - Successful
6.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{-x} = -\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t}} Error -ExpIntegralEi[-(- x)]= - Integrate[Divide[Exp[- t],t], {t, x, Infinity}] Error Failure -
Fail
-1.6757338819604166 <- {Rule[x, 1]}
-4.905333845293828 <- {Rule[x, 2]}
-9.920784189531217 <- {Rule[x, 3]}
6.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t} = -\expintE@{x}} - int((exp(- t))/(t), t = x..infinity)= - Ei(x) - Integrate[Divide[Exp[- t],t], {t, x, Infinity}]= - -ExpIntegralEi[-(x)] Failure Failure Skip Successful
6.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{+ x} = -\expintEin@{- x}+\ln@@{x}+\EulerConstant} Error -ExpIntegralEi[-(+ x)]= - -ExpIntegralEi[-(- x)] + Ln[- x] + EulerGamma + Log[x]+ EulerGamma Error Failure - Successful
6.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{- x} = -\expintEin@{+ x}+\ln@@{x}+\EulerConstant} Error -ExpIntegralEi[-(- x)]= - -ExpIntegralEi[-(+ x)] + Ln[+ x] + EulerGamma + Log[x]+ EulerGamma Error Failure - Successful
6.2.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinint@{z} = \int_{0}^{z}\frac{\sin@@{t}}{t}\diff{t}} Si(z)= int((sin(t))/(t), t = 0..z) SinIntegral[z]= Integrate[Divide[Sin[t],t], {t, 0, z}] Successful Successful - -
6.2.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \shiftsinint@{z} = -\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t}} Ssi(z)= - int((sin(t))/(t), t = z..infinity) SinIntegral[z] - Pi/2 = - Integrate[Divide[Sin[t],t], {t, z, Infinity}] Successful Successful - -
6.2.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t} = \sinint@{z}-\tfrac{1}{2}\pi} - int((sin(t))/(t), t = z..infinity)= Si(z)-(1)/(2)*Pi - Integrate[Divide[Sin[t],t], {t, z, Infinity}]= SinIntegral[z]-Divide[1,2]*Pi Successful Successful - -
6.2.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cosint(z) = -\int_{z}^{\infty}\frac{\cos@@{t}}{t}\diff{t}} Ci(z)= - int((cos(t))/(t), t = z..infinity) CosIntegral[z]= - Integrate[Divide[Cos[t],t], {t, z, Infinity}] Successful Failure - Successful
6.2#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{x\to\infty}\sinint@{x} = \tfrac{1}{2}\pi} limit(Si(x), x = infinity)=(1)/(2)*Pi Limit[SinIntegral[x], x -> Infinity]=Divide[1,2]*Pi Successful Successful - -
6.2#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{x\to\infty}\cosint@{x} = 0} limit(Ci(x), x = infinity)= 0 Limit[CosIntegral[x], x -> Infinity]= 0 Successful Successful - -
6.2.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinhint@{z} = \int_{0}^{z}\frac{\sinh@@{t}}{t}\diff{t}} Shi(z)= int((sinh(t))/(t), t = 0..z) SinhIntegral[z]= Integrate[Divide[Sinh[t],t], {t, 0, z}] Successful Successful - -
6.2.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \coshint@{z} = \EulerConstant+\ln@@{z}+\int_{0}^{z}\frac{\cosh@@{t}-1}{t}\diff{t}} Chi(z)= gamma + ln(z)+ int((cosh(t)- 1)/(t), t = 0..z) CoshIntegral[z]= EulerGamma + Log[z]+ Integrate[Divide[Cosh[t]- 1,t], {t, 0, z}] Successful Successful - -
6.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = \expintEin@{z}-\Ln@@{z}-\EulerConstant} Error -ExpIntegralEi[-(z)]= -ExpIntegralEi[-(z)] + Ln[z] + EulerGamma - Log[z]- EulerGamma Error Failure - Successful
6.4.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{ze^{2m\pi i}} = \expintE@{z}-2m\pi i} Ei(z*exp(2*m*Pi*I))= Ei(z)- 2*m*Pi*I -ExpIntegralEi[-(z*Exp[2*m*Pi*I])]= -ExpIntegralEi[-(z)]- 2*m*Pi*I Failure Failure
Fail
.6e-8+18.84955592*I <- {z = 2^(1/2)+I*2^(1/2), m = 3}
-.6e-8+18.84955592*I <- {z = 2^(1/2)-I*2^(1/2), m = 3}
-.34e-9+18.84955592*I <- {z = -2^(1/2)-I*2^(1/2), m = 3}
.34e-9+18.84955592*I <- {z = -2^(1/2)+I*2^(1/2), m = 3}
Fail
Complex[0.0, 18.84955592153876] <- {Rule[m, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 18.84955592153876] <- {Rule[m, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 18.84955592153876] <- {Rule[m, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 18.84955592153876] <- {Rule[m, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.4.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{ze^{+\pi i}} = \expintEin@{-z}-\ln@@{z}-\EulerConstant-\pi i} Error -ExpIntegralEi[-(z*Exp[+ Pi*I])]= -ExpIntegralEi[-(- z)] + Ln[- z] + EulerGamma - Log[z]- EulerGamma - Pi*I Error Failure - Successful
6.4.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{ze^{-\pi i}} = \expintEin@{-z}-\ln@@{z}-\EulerConstant+\pi i} Error -ExpIntegralEi[-(z*Exp[- Pi*I])]= -ExpIntegralEi[-(- z)] + Ln[- z] + EulerGamma - Log[z]- EulerGamma + Pi*I Error Failure - Successful
6.4.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cosint@{ze^{+\pi i}} = +\pi i+\cosint@{z}} Ci(z*exp(+ Pi*I))= + Pi*I + Ci(z) CosIntegral[z*Exp[+ Pi*I]]= + Pi*I + CosIntegral[z] Failure Failure
Fail
0.-6.283185307*I <- {z = 2^(1/2)+I*2^(1/2)}
0.-6.283185307*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.0, -6.283185307179586] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -6.283185307179586] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.4.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cosint@{ze^{-\pi i}} = -\pi i+\cosint@{z}} Ci(z*exp(- Pi*I))= - Pi*I + Ci(z) CosIntegral[z*Exp[- Pi*I]]= - Pi*I + CosIntegral[z] Failure Failure
Fail
0.+6.283185307*I <- {z = 2^(1/2)-I*2^(1/2)}
0.+6.283185307*I <- {z = -2^(1/2)-I*2^(1/2)}
Fail
Complex[0.0, 6.283185307179586] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 6.283185307179586] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
6.4.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \coshint@{ze^{+\pi i}} = +\pi i+\coshint@{z}} Chi(z*exp(+ Pi*I))= + Pi*I + Chi(z) CoshIntegral[z*Exp[+ Pi*I]]= + Pi*I + CoshIntegral[z] Failure Failure
Fail
0.-6.283185307*I <- {z = 2^(1/2)+I*2^(1/2)}
0.-6.283185307*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.0, -6.283185307179586] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -6.283185307179586] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.4.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \coshint@{ze^{-\pi i}} = -\pi i+\coshint@{z}} Chi(z*exp(- Pi*I))= - Pi*I + Chi(z) CoshIntegral[z*Exp[- Pi*I]]= - Pi*I + CoshIntegral[z] Failure Failure
Fail
0.+6.283185307*I <- {z = 2^(1/2)-I*2^(1/2)}
0.+6.283185307*I <- {z = -2^(1/2)-I*2^(1/2)}
Fail
Complex[0.0, 6.283185307179586] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 6.283185307179586] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
6.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{-x+ i0} = -\expintEi@{x}- i\pi} Error -ExpIntegralEi[-(- x + I*0)]= - -ExpIntegralEi[-(x)]- I*Pi Error Failure -
Fail
Complex[-1.6757338819604166, 3.141592653589793] <- {Rule[x, 1]}
Complex[-4.905333845293828, 3.141592653589793] <- {Rule[x, 2]}
Complex[-9.920784189531217, 3.141592653589793] <- {Rule[x, 3]}
6.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{-x- i0} = -\expintEi@{x}+ i\pi} Error -ExpIntegralEi[-(- x - I*0)]= - -ExpIntegralEi[-(x)]+ I*Pi Error Failure -
Fail
Complex[-1.6757338819604166, -3.141592653589793] <- {Rule[x, 1]}
Complex[-4.905333845293828, -3.141592653589793] <- {Rule[x, 2]}
Complex[-9.920784189531217, -3.141592653589793] <- {Rule[x, 3]}
6.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{x} = -\tfrac{1}{2}(\expintE@{-x+i0}+\expintE@{-x-i0})} Error -ExpIntegralEi[-(x)]= -Divide[1,2]*(-ExpIntegralEi[-(- x + I*0)]+ -ExpIntegralEi[-(- x - I*0)]) Error Failure -
Fail
-1.6757338819604166 <- {Rule[x, 1]}
-4.905333845293828 <- {Rule[x, 2]}
-9.920784189531217 <- {Rule[x, 3]}
6.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(\expintEi@{x}+\expintE@{x}) = \sinhint@{x}} Error Divide[1,2]*(-ExpIntegralEi[-(x)]+ -ExpIntegralEi[-(x)])= SinhIntegral[x] Error Failure -
Fail
-0.8378669409802083 <- {Rule[x, 1]}
-2.4526669226469147 <- {Rule[x, 2]}
-4.960392094765611 <- {Rule[x, 3]}
6.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinhint@{x} = -i\sinint@{ix}} Shi(x)= - I*Si(I*x) SinhIntegral[x]= - I*SinIntegral[I*x] Successful Successful - -
6.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(\expintEi@{x}-\expintE@{x}) = \coshint@{x}} Error Divide[1,2]*(-ExpIntegralEi[-(x)]- -ExpIntegralEi[-(x)])= CoshIntegral[x] Error Failure -
Fail
-0.8378669409802083 <- {Rule[x, 1]}
-2.452666922646914 <- {Rule[x, 2]}
-4.960392094765608 <- {Rule[x, 3]}
6.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \coshint@{x} = \cosint@{ix}-\tfrac{1}{2}\pi i} Chi(x)= Ci(I*x)-(1)/(2)*Pi*I CoshIntegral[x]= CosIntegral[I*x]-Divide[1,2]*Pi*I Failure Failure Successful Successful
6.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinint@{z} = \tfrac{1}{2}i(\expintE@{-iz}-\expintE@{iz})+\tfrac{1}{2}\pi} Si(z)=(1)/(2)*I*(Ei(- I*z)- Ei(I*z))+(1)/(2)*Pi SinIntegral[z]=Divide[1,2]*I*(-ExpIntegralEi[-(- I*z)]- -ExpIntegralEi[-(I*z)])+Divide[1,2]*Pi Failure Failure
Fail
-3.141592654+0.*I <- {z = 2^(1/2)+I*2^(1/2)}
-3.141592654+0.*I <- {z = 2^(1/2)-I*2^(1/2)}
Fail
Complex[-3.141592653589793, 0.0] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-3.141592653589793, 0.0] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
6.5.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cosint@{z} = -\tfrac{1}{2}(\expintE@{iz}+\expintE@{-iz})} Ci(z)= -(1)/(2)*(Ei(I*z)+ Ei(- I*z)) CosIntegral[z]= -Divide[1,2]*(-ExpIntegralEi[-(I*z)]+ -ExpIntegralEi[-(- I*z)]) Failure Failure
Fail
2.208978234-.399630454*I <- {z = 2^(1/2)+I*2^(1/2)}
2.208978234+.399630454*I <- {z = 2^(1/2)-I*2^(1/2)}
2.208978234-3.541223107*I <- {z = -2^(1/2)-I*2^(1/2)}
2.208978234+3.541223107*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.6.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{x} = \EulerConstant+\ln@@{x}+\sum_{n=1}^{\infty}\frac{x^{n}}{n!\thinspace n}} Error -ExpIntegralEi[-(x)]= EulerGamma + Log[x]+ Sum[Divide[(x)^(n),(n)!*n], {n, 1, Infinity}] Error Failure -
Fail
Complex[0.10555368991298714, 0.0] <- {Rule[x, Rational[1, 2]]}
6.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = -\EulerConstant-\ln@@{z}-\sum_{n=1}^{\infty}\frac{(-1)^{n}z^{n}}{n!\thinspace n}} Ei(z)= - gamma - ln(z)- sum(((- 1)^(n)* (z)^(n))/(factorial(n)*n), n = 1..infinity) -ExpIntegralEi[-(z)]= - EulerGamma - Log[z]- Sum[Divide[(- 1)^(n)* (z)^(n),(n)!*n], {n, 1, Infinity}] Failure Failure Skip
Fail
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = -\ln@@{z}+e^{-z}\sum_{n=0}^{\infty}\frac{z^{n}}{n!}\digamma@{n+1}} Ei(z)= - ln(z)+ exp(- z)*sum(((z)^(n))/(factorial(n))*Psi(n + 1), n = 0..infinity) -ExpIntegralEi[-(z)]= - Log[z]+ Exp[- z]*Sum[Divide[(z)^(n),(n)!]*PolyGamma[n + 1], {n, 0, Infinity}] Error Failure -
Fail
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.6.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEin@{z} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}z^{n}}{n!\thinspace n}} Error -ExpIntegralEi[-(z)] + Ln[z] + EulerGamma = Sum[Divide[(- 1)^(n - 1)* (z)^(n),(n)!*n], {n, 1, Infinity}] Error Failure - Successful
6.6.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}z^{2n+1}}{(2n+1)!(2n+1)}} Si(z)= sum(((- 1)^(n)* (z)^(2*n + 1))/(factorial(2*n + 1)*(2*n + 1)), n = 0..infinity) SinIntegral[z]= Sum[Divide[(- 1)^(n)* (z)^(2*n + 1),(2*n + 1)!*(2*n + 1)], {n, 0, Infinity}] Successful Successful - -
6.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cosint@{z} = \EulerConstant+\ln@@{z}+\sum_{n=1}^{\infty}\frac{(-1)^{n}z^{2n}}{(2n)!(2n)}} Ci(z)= gamma + ln(z)+ sum(((- 1)^(n)* (z)^(2*n))/(factorial(2*n)*(2*n)), n = 1..infinity) CosIntegral[z]= EulerGamma + Log[z]+ Sum[Divide[(- 1)^(n)* (z)^(2*n),(2*n)!*(2*n)], {n, 1, Infinity}] Successful Successful - -
6.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{e^{-at}}{t+b}\diff{t} = \int_{0}^{\infty}\frac{e^{iat}}{t+ib}\diff{t}} int((exp(- a*t))/(t + b), t = 0..infinity)= int((exp(I*a*t))/(t + I*b), t = 0..infinity) Integrate[Divide[Exp[- a*t],t + b], {t, 0, Infinity}]= Integrate[Divide[Exp[I*a*t],t + I*b], {t, 0, Infinity}] Failure Failure Skip Error
6.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{e^{iat}}{t+ib}\diff{t} = e^{ab}\expintE@{ab}} int((exp(I*a*t))/(t + I*b), t = 0..infinity)= exp(a*b)*Ei(a*b) Integrate[Divide[Exp[I*a*t],t + I*b], {t, 0, Infinity}]= Exp[a*b]*-ExpIntegralEi[-(a*b)] Failure Failure Skip Error
6.7.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{x}\int_{0}^{\alpha}\frac{e^{-xt}}{1-t}\diff{t} = \expintEi@{x}-\expintEi@{(1-\alpha)x}} Error Exp[x]*Integrate[Divide[Exp[- x*t],1 - t], {t, 0, \[Alpha]}]= -ExpIntegralEi[-(x)]- -ExpIntegralEi[-((1 - \[Alpha])* x)] Error Failure -
Fail
Complex[-0.42316473444652486, 0.4289071640857123] <- {Rule[x, Rational[1, 2]], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.42316473444652486, -0.4289071640857123] <- {Rule[x, Rational[1, 2]], Rule[α, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.36486876599473, 1.1603687293382365] <- {Rule[x, Rational[1, 2]], Rule[α, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.36486876599473, -1.1603687293382365] <- {Rule[x, Rational[1, 2]], Rule[α, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.7.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{e^{it}}{a^{2}+t^{2}}\diff{t} = \frac{i}{2a}\left(e^{a}\expintE@{a-ix}-e^{-a}\expintE@{-a-ix}\right)} int((exp(I*t))/((a)^(2)+ (t)^(2)), t = x..infinity)=(I)/(2*a)*(exp(a)*Ei(a - I*x)- exp(- a)*Ei(- a - I*x)) Integrate[Divide[Exp[I*t],(a)^(2)+ (t)^(2)], {t, x, Infinity}]=Divide[I,2*a]*(Exp[a]*-ExpIntegralEi[-(a - I*x)]- Exp[- a]*-ExpIntegralEi[-(- a - I*x)]) Failure Failure Skip Error
6.7.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{te^{it}}{a^{2}+t^{2}}\diff{t} = \tfrac{1}{2}\left(e^{a}\expintE@{a-ix}+e^{-a}\expintE@{-a-ix}\right)} int((t*exp(I*t))/((a)^(2)+ (t)^(2)), t = x..infinity)=(1)/(2)*(exp(a)*Ei(a - I*x)+ exp(- a)*Ei(- a - I*x)) Integrate[Divide[t*Exp[I*t],(a)^(2)+ (t)^(2)], {t, x, Infinity}]=Divide[1,2]*(Exp[a]*-ExpIntegralEi[-(a - I*x)]+ Exp[- a]*-ExpIntegralEi[-(- a - I*x)]) Failure Failure Skip Error
6.7.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{e^{-t}}{a^{2}+t^{2}}\diff{t} = -\frac{1}{2ai}\left(e^{ia}\expintE@{x+ia}-e^{-ia}\expintE@{x-ia}\right)} int((exp(- t))/((a)^(2)+ (t)^(2)), t = x..infinity)= -(1)/(2*a*I)*(exp(I*a)*Ei(x + I*a)- exp(- I*a)*Ei(x - I*a)) Integrate[Divide[Exp[- t],(a)^(2)+ (t)^(2)], {t, x, Infinity}]= -Divide[1,2*a*I]*(Exp[I*a]*-ExpIntegralEi[-(x + I*a)]- Exp[- I*a]*-ExpIntegralEi[-(x - I*a)]) Error Failure - Error
6.7.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{te^{-t}}{a^{2}+t^{2}}\diff{t} = \tfrac{1}{2}\left(e^{ia}\expintE@{x+ia}+e^{-ia}\expintE@{x-ia}\right)} int((t*exp(- t))/((a)^(2)+ (t)^(2)), t = x..infinity)=(1)/(2)*(exp(I*a)*Ei(x + I*a)+ exp(- I*a)*Ei(x - I*a)) Integrate[Divide[t*Exp[- t],(a)^(2)+ (t)^(2)], {t, x, Infinity}]=Divide[1,2]*(Exp[I*a]*-ExpIntegralEi[-(x + I*a)]+ Exp[- I*a]*-ExpIntegralEi[-(x - I*a)]) Error Failure - Error
6.7.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\frac{e^{-at}\sin@{bt}}{t}\diff{t} = \imagpart@@{\expintEin@{a+ib}}} Error Integrate[Divide[Exp[- a*t]*Sin[b*t],t], {t, 0, 1}]= Im[-ExpIntegralEi[-(a + I*b)] + Ln[a + I*b] + EulerGamma] Error Failure - Successful
6.7.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\frac{e^{-at}(1-\cos@{bt})}{t}\diff{t} = \realpart@@{\expintEin@{a+ib}}-\expintEin@{a}} Error Integrate[Divide[Exp[- a*t]*(1 - Cos[b*t]),t], {t, 0, 1}]= Re[-ExpIntegralEi[-(a + I*b)] + Ln[a + I*b] + EulerGamma]- -ExpIntegralEi[-(a)] + Ln[a] + EulerGamma Error Failure - Successful
6.7.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \shiftsinint@{z} = -\int_{0}^{\pi/2}e^{-z\cos@@{t}}\cos@{z\sin@@{t}}\diff{t}} Ssi(z)= - int(exp(- z*cos(t))*cos(z*sin(t)), t = 0..Pi/ 2) SinIntegral[z] - Pi/2 = - Integrate[Exp[- z*Cos[t]]*Cos[z*Sin[t]], {t, 0, Pi/ 2}] Failure Failure Skip Error
6.7.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{\sin@@{t}}{t+z}\diff{t} = \int_{0}^{\infty}\frac{e^{-zt}}{t^{2}+1}\diff{t}} int((sin(t))/(t + z), t = 0..infinity)= int((exp(- z*t))/((t)^(2)+ 1), t = 0..infinity) Integrate[Divide[Sin[t],t + z], {t, 0, Infinity}]= Integrate[Divide[Exp[- z*t],(t)^(2)+ 1], {t, 0, Infinity}] Failure Failure Skip Error
6.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{\cos@@{t}}{t+z}\diff{t} = \int_{0}^{\infty}\frac{te^{-zt}}{t^{2}+1}\diff{t}} int((cos(t))/(t + z), t = 0..infinity)= int((t*exp(- z*t))/((t)^(2)+ 1), t = 0..infinity) Integrate[Divide[Cos[t],t + z], {t, 0, Infinity}]= Integrate[Divide[t*Exp[- z*t],(t)^(2)+ 1], {t, 0, Infinity}] Failure Failure Skip Successful
6.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2}\ln@{1+\frac{2}{x}} < e^{x}\expintE@{x}} (1)/(2)*ln(1 +(2)/(x))< exp(x)*Ei(x) Divide[1,2]*Log[1 +Divide[2,x]]< Exp[x]*-ExpIntegralEi[-(x)] Failure Failure Successful Successful
6.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{x}\expintE@{x} < \ln@{1+\frac{1}{x}}} exp(x)*Ei(x)< ln(1 +(1)/(x)) Exp[x]*-ExpIntegralEi[-(x)]< Log[1 +Divide[1,x]] Failure Failure
Fail
5.151464321 < .6931471806 <- {x = 1}
36.60711558 < .4054651081 <- {x = 2}
199.5263609 < .2876820722 <- {x = 3}
Successful
6.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{x}{x+1} < xe^{x}\expintE@{x}} (x)/(x + 1)< x*exp(x)*Ei(x) Divide[x,x + 1]< x*Exp[x]*-ExpIntegralEi[-(x)] Failure Failure Successful Successful
6.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle xe^{x}\expintE@{x} < \frac{x+1}{x+2}} x*exp(x)*Ei(x)<(x + 1)/(x + 2) x*Exp[x]*-ExpIntegralEi[-(x)]<Divide[x + 1,x + 2] Failure Failure
Fail
5.151464321 < .6666666667 <- {x = 1}
73.21423116 < .7500000000 <- {x = 2}
598.5790827 < .8000000000 <- {x = 3}
Successful
6.8.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{x(x+3)}{x^{2}+4x+2} < xe^{x}\expintE@{x}} (x*(x + 3))/((x)^(2)+ 4*x + 2)< x*exp(x)*Ei(x) Divide[x*(x + 3),(x)^(2)+ 4*x + 2]< x*Exp[x]*-ExpIntegralEi[-(x)] Failure Failure Successful Successful
6.8.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle xe^{x}\expintE@{x} < \frac{x^{2}+5x+2}{x^{2}+6x+6}} x*exp(x)*Ei(x)<((x)^(2)+ 5*x + 2)/((x)^(2)+ 6*x + 6) x*Exp[x]*-ExpIntegralEi[-(x)]<Divide[(x)^(2)+ 5*x + 2,(x)^(2)+ 6*x + 6] Failure Failure
Fail
5.151464321 < .6153846154 <- {x = 1}
73.21423116 < .7272727273 <- {x = 2}
598.5790827 < .7878787879 <- {x = 3}
Successful
6.10.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinint@{z} = z\sum_{n=0}^{\infty}\left(\sphBesselJ{n}@{\tfrac{1}{2}z}\right)^{2}} Error SinIntegral[z]= z*Sum[(SphericalBesselJ[n, Divide[1,2]*z])^(2), {n, 0, Infinity}] Error Successful - -
6.10.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{x} = \EulerConstant+\ln@@{\abs{x}}+\sum_{n=0}^{\infty}(-1)^{n}(x-a_{n})\left(\modsphBesseli{1}{n}@{\tfrac{1}{2}x}\right)^{2}} Error \|Sqrt[1/2 Pi /$2] BesselI[-n - 1/2, n]*Divide[1,2]*x*))^(2), {n, 0, Infinity}] Error Error - -
6.10.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEin@{z} = ze^{-z/2}\left(\modsphBesseli{1}{0}@{\tfrac{1}{2}z}+\sum_{n=1}^{\infty}\dfrac{2n+1}{n(n+1)}\modsphBesseli{1}{n}@{\tfrac{1}{2}z}\right)} Error \|Sqrt[1/2 Pi /$2] BesselI[-0 - 1/2, 0]*Divide[1,2]*z*+ Sum[Divide[2*n + 1,n*(n + 1)]*Sqrt[1/2 Pi /$2] BesselI[(-1)^(1-1)*n + 1/2, n]\|\|Sqrt[1/2 Pi /$2] BesselI[-n - 1/2, n]*Divide[1,2]*z, {n, 1, Infinity}]) Error Error - -
6.11.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = \incGamma@{0}{z}} Ei(z)= GAMMA(0, z) -ExpIntegralEi[-(z)]= Gamma[0, z] Failure Failure
Fail
2.208978234+3.541223107*I <- {z = 2^(1/2)+I*2^(1/2)}
2.208978234-3.541223107*I <- {z = 2^(1/2)-I*2^(1/2)}
2.208978234-2.741962200*I <- {z = -2^(1/2)-I*2^(1/2)}
2.208978234+2.741962200*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.11.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = e^{-z}\KummerconfhyperU@{1}{1}{z}} Ei(z)= exp(- z)*KummerU(1, 1, z) -ExpIntegralEi[-(z)]= Exp[- z]*HypergeometricU[1, 1, z] Failure Failure
Fail
2.208978234+3.541223107*I <- {z = 2^(1/2)+I*2^(1/2)}
2.208978234-3.541223107*I <- {z = 2^(1/2)-I*2^(1/2)}
2.208978234-2.741962200*I <- {z = -2^(1/2)-I*2^(1/2)}
2.208978234+2.741962200*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.14.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\expintE@{t}\diff{t} = \frac{1}{a}\ln@{1+a}} int(exp(- a*t)*Ei(t), t = 0..infinity)=(1)/(a)*ln(1 + a) Integrate[Exp[- a*t]*-ExpIntegralEi[-(t)], {t, 0, Infinity}]=Divide[1,a]*Log[1 + a] Failure Failure Skip Successful
6.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\cosint@{t}\diff{t} = -\frac{1}{2a}\ln@{1+a^{2}}} int(exp(- a*t)*Ci(t), t = 0..infinity)= -(1)/(2*a)*ln(1 + (a)^(2)) Integrate[Exp[- a*t]*CosIntegral[t], {t, 0, Infinity}]= -Divide[1,2*a]*Log[1 + (a)^(2)] Failure Failure Skip Error
6.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\shiftsinint@{t}\diff{t} = -\frac{1}{a}\atan@@{a}} int(exp(- a*t)*Ssi(t), t = 0..infinity)= -(1)/(a)*arctan(a) Integrate[Exp[- a*t]*SinIntegral[t] - Pi/2, {t, 0, Infinity}]= -Divide[1,a]*ArcTan[a] Failure Failure Skip Error
6.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\expintE^{2}@{t}\diff{t} = 2\ln@@{2}} int((Ei(t))^(2), t = 0..infinity)= 2*ln(2) Integrate[(-ExpIntegralEi[-(t)])^(2), {t, 0, Infinity}]= 2*Log[2] Failure Successful Skip -
6.14.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\cos@@{t}\cosint@{t}\diff{t} = \int_{0}^{\infty}\sin@@{t}\shiftsinint@{t}\diff{t}} int(cos(t)*Ci(t), t = 0..infinity)= int(sin(t)*Ssi(t), t = 0..infinity) Integrate[Cos[t]*CosIntegral[t], {t, 0, Infinity}]= Integrate[Sin[t]*SinIntegral[t] - Pi/2, {t, 0, Infinity}] Failure Failure Skip
Fail
Complex[-2.199611725770543, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.199611725770543, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.6288153989756469, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.6288153989756469, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.14.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\sin@@{t}\shiftsinint@{t}\diff{t} = -\tfrac{1}{4}\pi} int(sin(t)*Ssi(t), t = 0..infinity)= -(1)/(4)*Pi Integrate[Sin[t]*SinIntegral[t] - Pi/2, {t, 0, Infinity}]= -Divide[1,4]*Pi Successful Failure -
Fail
Complex[2.199611725770543, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.199611725770543, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.6288153989756469, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.6288153989756469, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\cosint^{2}@{t}\diff{t} = \int_{0}^{\infty}\shiftsinint^{2}@{t}\diff{t}} int((Ci(t))^(2), t = 0..infinity)= int((Ssi(t))^(2), t = 0..infinity) Integrate[(CosIntegral[t])^(2), {t, 0, Infinity}]= Integrate[(SinIntegral[t] - Pi/2)^(2), {t, 0, Infinity}] Failure Successful Skip -
6.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\shiftsinint^{2}@{t}\diff{t} = \tfrac{1}{2}\pi} int((Ssi(t))^(2), t = 0..infinity)=(1)/(2)*Pi Integrate[(SinIntegral[t] - Pi/2)^(2), {t, 0, Infinity}]=Divide[1,2]*Pi Failure Successful Skip -
6.14.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\cosint@{t}\shiftsinint@{t}\diff{t} = \ln@@{2}} int(Ci(t)*Ssi(t), t = 0..infinity)= ln(2) Integrate[CosIntegral[t]*SinIntegral[t] - Pi/2, {t, 0, Infinity}]= Log[2] Failure Failure Skip
Fail
Complex[0.7210663818131499, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[CosIntegral[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.7210663818131499, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[CosIntegral[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.1073607429330403, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[CosIntegral[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.1073607429330403, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[CosIntegral[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\cosint@{\pi n} = \tfrac{1}{2}(\ln@@{2}-\EulerConstant)} sum(Ci(Pi*n), n = 1..infinity)=(1)/(2)*(ln(2)- gamma) Sum[CosIntegral[Pi*n], {n, 1, Infinity}]=Divide[1,2]*(Log[2]- EulerGamma) Failure Failure Skip
Fail
Complex[1.356247804543889, 1.4142135623730951] <- {Rule[Sum[CosIntegral[Times[n, Pi]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.356247804543889, -1.4142135623730951] <- {Rule[Sum[CosIntegral[Times[n, Pi]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4721793202023012, -1.4142135623730951] <- {Rule[Sum[CosIntegral[Times[n, Pi]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4721793202023012, 1.4142135623730951] <- {Rule[Sum[CosIntegral[Times[n, Pi]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.15.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\frac{\shiftsinint@{\pi n}}{n} = \tfrac{1}{2}\pi(\ln@@{\pi}-1)} sum((Ssi(Pi*n))/(n), n = 1..infinity)=(1)/(2)*Pi*(ln(Pi)- 1) Sum[Divide[SinIntegral[Pi*n] - Pi/2,n], {n, 1, Infinity}]=Divide[1,2]*Pi*(Log[Pi]- 1) Failure Failure Skip
Fail
Complex[1.1868723893034128, 1.4142135623730951] <- {Rule[Sum[Times[Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[n, Pi]]]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.1868723893034128, -1.4142135623730951] <- {Rule[Sum[Times[Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[n, Pi]]]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.6415547354427775, -1.4142135623730951] <- {Rule[Sum[Times[Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[n, Pi]]]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.6415547354427775, 1.4142135623730951] <- {Rule[Sum[Times[Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[n, Pi]]]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.15.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}(-1)^{n}\cosint@{2\pi n} = 1-\ln@@{2}-\tfrac{1}{2}\EulerConstant} sum((- 1)^(n)* Ci(2*Pi*n), n = 1..infinity)= 1 - ln(2)-(1)/(2)*gamma Sum[(- 1)^(n)* CosIntegral[2*Pi*n], {n, 1, Infinity}]= 1 - Log[2]-Divide[1,2]*EulerGamma Failure Failure Skip
Fail
Complex[1.395968575383807, 1.4142135623730951] <- {Rule[Sum[Times[Power[-1, n], CosIntegral[Times[2, n, Pi]]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.395968575383807, -1.4142135623730951] <- {Rule[Sum[Times[Power[-1, n], CosIntegral[Times[2, n, Pi]]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4324585493623831, -1.4142135623730951] <- {Rule[Sum[Times[Power[-1, n], CosIntegral[Times[2, n, Pi]]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4324585493623831, 1.4142135623730951] <- {Rule[Sum[Times[Power[-1, n], CosIntegral[Times[2, n, Pi]]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
6.15.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}(-1)^{n}\frac{\shiftsinint@{2\pi n}}{n} = \pi(\tfrac{3}{2}\ln@@{2}-1)} sum((- 1)^(n)*(Ssi(2*Pi*n))/(n), n = 1..infinity)= Pi*((3)/(2)*ln(2)- 1) Sum[(- 1)^(n)*Divide[SinIntegral[2*Pi*n] - Pi/2,n], {n, 1, Infinity}]= Pi*(Divide[3,2]*Log[2]- 1) Failure Failure Skip Error
6.16.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@@{x}+\tfrac{1}{3}\sin@{3x}+\tfrac{1}{5}\sin@{5x}+\dots = \begin{cases}\frac{1}{4}\pi,&0} sin(x)+(1)/(3)*sin(3*x)+(1)/(5)*sin(5*x)+ .. = Sin[x]+Divide[1,3]*Sin[3*x]+Divide[1,5]*Sin[5*x]+ ... = Error Failure - -
6.16.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \begin{cases}\frac{1}{4}\pi,&0 < x} Error Failure - Error
6.16.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x < \pi,\\ 0,&x} x < Pi , 0 , x < Pi , 0 , Error Failure - Error
6.18#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A_{n} = \int_{0}^{\infty}\frac{te^{-zt}}{1+t^{2}}\left(\frac{t^{2}}{1+t^{2}}\right)^{n}\diff{t}} A[n]= int((t*exp(- z*t))/(1 + (t)^(2))*(((t)^(2))/(1 + (t)^(2)))^(n), t = 0..infinity) Subscript[A, n]= Integrate[Divide[t*Exp[- z*t],1 + (t)^(2)]*(Divide[(t)^(2),1 + (t)^(2)])^(n), {t, 0, Infinity}] Failure Failure Skip Error
6.18#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle B_{n} = \int_{0}^{\infty}\frac{e^{-zt}}{1+t^{2}}\left(\frac{t^{2}}{1+t^{2}}\right)^{n}\diff{t}} B[n]= int((exp(- z*t))/(1 + (t)^(2))*(((t)^(2))/(1 + (t)^(2)))^(n), t = 0..infinity) Subscript[B, n]= Integrate[Divide[Exp[- z*t],1 + (t)^(2)]*(Divide[(t)^(2),1 + (t)^(2)])^(n), {t, 0, Infinity}] Failure Failure Skip Error
6.18#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle C_{n} = \int_{0}^{\infty}e^{-zt}\left(\frac{t^{2}}{1+t^{2}}\right)^{n}\diff{t}} C[n]= int(exp(- z*t)*(((t)^(2))/(1 + (t)^(2)))^(n), t = 0..infinity) Subscript[C, n]= Integrate[Exp[- z*t]*(Divide[(t)^(2),1 + (t)^(2)])^(n), {t, 0, Infinity}] Failure Failure Skip Error