Results of Exponential, Logarithmic, Sine, and Cosine Integrals
Jump to navigation
Jump to search
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
6.2.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = \int_{z}^{\infty}\frac{e^{-t}}{t}\diff{t}} | Ei(z)= int((exp(- t))/(t), t = z..infinity) |
-ExpIntegralEi[-(z)]= Integrate[Divide[Exp[- t],t], {t, z, Infinity}] |
Failure | Failure | Skip | Successful |
6.2.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = e^{-z}\int_{0}^{\infty}\frac{e^{-t}}{t+z}\diff{t}} | Ei(z)= exp(- z)*int((exp(- t))/(t + z), t = 0..infinity) |
-ExpIntegralEi[-(z)]= Exp[- z]*Integrate[Divide[Exp[- t],t + z], {t, 0, Infinity}] |
Failure | Failure | Skip | Fail
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.2.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEin@{z} = \int_{0}^{z}\frac{1-e^{-t}}{t}\diff{t}} | Error |
-ExpIntegralEi[-(z)] + Ln[z] + EulerGamma = Integrate[Divide[1 - Exp[- t],t], {t, 0, z}] |
Error | Failure | - | Successful |
6.2.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = \expintEin@{z}-\ln@@{z}-\EulerConstant} | Error |
-ExpIntegralEi[-(z)]= -ExpIntegralEi[-(z)] + Ln[z] + EulerGamma - Log[z]- EulerGamma |
Error | Failure | - | Successful |
6.2.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{-x} = -\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t}} | Error |
-ExpIntegralEi[-(- x)]= - Integrate[Divide[Exp[- t],t], {t, x, Infinity}] |
Error | Failure | - | Fail
-1.6757338819604166 <- {Rule[x, 1]} -4.905333845293828 <- {Rule[x, 2]} -9.920784189531217 <- {Rule[x, 3]} |
6.2.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t} = -\expintE@{x}} | - int((exp(- t))/(t), t = x..infinity)= - Ei(x) |
- Integrate[Divide[Exp[- t],t], {t, x, Infinity}]= - -ExpIntegralEi[-(x)] |
Failure | Failure | Skip | Successful |
6.2.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{+ x} = -\expintEin@{- x}+\ln@@{x}+\EulerConstant} | Error |
-ExpIntegralEi[-(+ x)]= - -ExpIntegralEi[-(- x)] + Ln[- x] + EulerGamma + Log[x]+ EulerGamma |
Error | Failure | - | Successful |
6.2.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{- x} = -\expintEin@{+ x}+\ln@@{x}+\EulerConstant} | Error |
-ExpIntegralEi[-(- x)]= - -ExpIntegralEi[-(+ x)] + Ln[+ x] + EulerGamma + Log[x]+ EulerGamma |
Error | Failure | - | Successful |
6.2.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinint@{z} = \int_{0}^{z}\frac{\sin@@{t}}{t}\diff{t}} | Si(z)= int((sin(t))/(t), t = 0..z) |
SinIntegral[z]= Integrate[Divide[Sin[t],t], {t, 0, z}] |
Successful | Successful | - | - |
6.2.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \shiftsinint@{z} = -\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t}} | Ssi(z)= - int((sin(t))/(t), t = z..infinity) |
SinIntegral[z] - Pi/2 = - Integrate[Divide[Sin[t],t], {t, z, Infinity}] |
Successful | Successful | - | - |
6.2.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t} = \sinint@{z}-\tfrac{1}{2}\pi} | - int((sin(t))/(t), t = z..infinity)= Si(z)-(1)/(2)*Pi |
- Integrate[Divide[Sin[t],t], {t, z, Infinity}]= SinIntegral[z]-Divide[1,2]*Pi |
Successful | Successful | - | - |
6.2.E11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cosint(z) = -\int_{z}^{\infty}\frac{\cos@@{t}}{t}\diff{t}} | Ci(z)= - int((cos(t))/(t), t = z..infinity) |
CosIntegral[z]= - Integrate[Divide[Cos[t],t], {t, z, Infinity}] |
Successful | Failure | - | Successful |
6.2#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{x\to\infty}\sinint@{x} = \tfrac{1}{2}\pi} | limit(Si(x), x = infinity)=(1)/(2)*Pi |
Limit[SinIntegral[x], x -> Infinity]=Divide[1,2]*Pi |
Successful | Successful | - | - |
6.2#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{x\to\infty}\cosint@{x} = 0} | limit(Ci(x), x = infinity)= 0 |
Limit[CosIntegral[x], x -> Infinity]= 0 |
Successful | Successful | - | - |
6.2.E15 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinhint@{z} = \int_{0}^{z}\frac{\sinh@@{t}}{t}\diff{t}} | Shi(z)= int((sinh(t))/(t), t = 0..z) |
SinhIntegral[z]= Integrate[Divide[Sinh[t],t], {t, 0, z}] |
Successful | Successful | - | - |
6.2.E16 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \coshint@{z} = \EulerConstant+\ln@@{z}+\int_{0}^{z}\frac{\cosh@@{t}-1}{t}\diff{t}} | Chi(z)= gamma + ln(z)+ int((cosh(t)- 1)/(t), t = 0..z) |
CoshIntegral[z]= EulerGamma + Log[z]+ Integrate[Divide[Cosh[t]- 1,t], {t, 0, z}] |
Successful | Successful | - | - |
6.4.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = \expintEin@{z}-\Ln@@{z}-\EulerConstant} | Error |
-ExpIntegralEi[-(z)]= -ExpIntegralEi[-(z)] + Ln[z] + EulerGamma - Log[z]- EulerGamma |
Error | Failure | - | Successful |
6.4.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{ze^{2m\pi i}} = \expintE@{z}-2m\pi i} | Ei(z*exp(2*m*Pi*I))= Ei(z)- 2*m*Pi*I |
-ExpIntegralEi[-(z*Exp[2*m*Pi*I])]= -ExpIntegralEi[-(z)]- 2*m*Pi*I |
Failure | Failure | Fail .6e-8+18.84955592*I <- {z = 2^(1/2)+I*2^(1/2), m = 3} -.6e-8+18.84955592*I <- {z = 2^(1/2)-I*2^(1/2), m = 3} -.34e-9+18.84955592*I <- {z = -2^(1/2)-I*2^(1/2), m = 3} .34e-9+18.84955592*I <- {z = -2^(1/2)+I*2^(1/2), m = 3} |
Fail
Complex[0.0, 18.84955592153876] <- {Rule[m, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, 18.84955592153876] <- {Rule[m, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 18.84955592153876] <- {Rule[m, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 18.84955592153876] <- {Rule[m, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.4.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{ze^{+\pi i}} = \expintEin@{-z}-\ln@@{z}-\EulerConstant-\pi i} | Error |
-ExpIntegralEi[-(z*Exp[+ Pi*I])]= -ExpIntegralEi[-(- z)] + Ln[- z] + EulerGamma - Log[z]- EulerGamma - Pi*I |
Error | Failure | - | Successful |
6.4.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{ze^{-\pi i}} = \expintEin@{-z}-\ln@@{z}-\EulerConstant+\pi i} | Error |
-ExpIntegralEi[-(z*Exp[- Pi*I])]= -ExpIntegralEi[-(- z)] + Ln[- z] + EulerGamma - Log[z]- EulerGamma + Pi*I |
Error | Failure | - | Successful |
6.4.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cosint@{ze^{+\pi i}} = +\pi i+\cosint@{z}} | Ci(z*exp(+ Pi*I))= + Pi*I + Ci(z) |
CosIntegral[z*Exp[+ Pi*I]]= + Pi*I + CosIntegral[z] |
Failure | Failure | Fail 0.-6.283185307*I <- {z = 2^(1/2)+I*2^(1/2)} 0.-6.283185307*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[0.0, -6.283185307179586] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.4.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cosint@{ze^{-\pi i}} = -\pi i+\cosint@{z}} | Ci(z*exp(- Pi*I))= - Pi*I + Ci(z) |
CosIntegral[z*Exp[- Pi*I]]= - Pi*I + CosIntegral[z] |
Failure | Failure | Fail 0.+6.283185307*I <- {z = 2^(1/2)-I*2^(1/2)} 0.+6.283185307*I <- {z = -2^(1/2)-I*2^(1/2)} |
Fail
Complex[0.0, 6.283185307179586] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 6.283185307179586] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} |
6.4.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \coshint@{ze^{+\pi i}} = +\pi i+\coshint@{z}} | Chi(z*exp(+ Pi*I))= + Pi*I + Chi(z) |
CoshIntegral[z*Exp[+ Pi*I]]= + Pi*I + CoshIntegral[z] |
Failure | Failure | Fail 0.-6.283185307*I <- {z = 2^(1/2)+I*2^(1/2)} 0.-6.283185307*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[0.0, -6.283185307179586] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -6.283185307179586] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.4.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \coshint@{ze^{-\pi i}} = -\pi i+\coshint@{z}} | Chi(z*exp(- Pi*I))= - Pi*I + Chi(z) |
CoshIntegral[z*Exp[- Pi*I]]= - Pi*I + CoshIntegral[z] |
Failure | Failure | Fail 0.+6.283185307*I <- {z = 2^(1/2)-I*2^(1/2)} 0.+6.283185307*I <- {z = -2^(1/2)-I*2^(1/2)} |
Fail
Complex[0.0, 6.283185307179586] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 6.283185307179586] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} |
6.5.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{-x+ i0} = -\expintEi@{x}- i\pi} | Error |
-ExpIntegralEi[-(- x + I*0)]= - -ExpIntegralEi[-(x)]- I*Pi |
Error | Failure | - | Fail
Complex[-1.6757338819604166, 3.141592653589793] <- {Rule[x, 1]} Complex[-4.905333845293828, 3.141592653589793] <- {Rule[x, 2]} Complex[-9.920784189531217, 3.141592653589793] <- {Rule[x, 3]} |
6.5.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{-x- i0} = -\expintEi@{x}+ i\pi} | Error |
-ExpIntegralEi[-(- x - I*0)]= - -ExpIntegralEi[-(x)]+ I*Pi |
Error | Failure | - | Fail
Complex[-1.6757338819604166, -3.141592653589793] <- {Rule[x, 1]} Complex[-4.905333845293828, -3.141592653589793] <- {Rule[x, 2]} Complex[-9.920784189531217, -3.141592653589793] <- {Rule[x, 3]} |
6.5.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{x} = -\tfrac{1}{2}(\expintE@{-x+i0}+\expintE@{-x-i0})} | Error |
-ExpIntegralEi[-(x)]= -Divide[1,2]*(-ExpIntegralEi[-(- x + I*0)]+ -ExpIntegralEi[-(- x - I*0)]) |
Error | Failure | - | Fail
-1.6757338819604166 <- {Rule[x, 1]} -4.905333845293828 <- {Rule[x, 2]} -9.920784189531217 <- {Rule[x, 3]} |
6.5.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(\expintEi@{x}+\expintE@{x}) = \sinhint@{x}} | Error |
Divide[1,2]*(-ExpIntegralEi[-(x)]+ -ExpIntegralEi[-(x)])= SinhIntegral[x] |
Error | Failure | - | Fail
-0.8378669409802083 <- {Rule[x, 1]} -2.4526669226469147 <- {Rule[x, 2]} -4.960392094765611 <- {Rule[x, 3]} |
6.5.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinhint@{x} = -i\sinint@{ix}} | Shi(x)= - I*Si(I*x) |
SinhIntegral[x]= - I*SinIntegral[I*x] |
Successful | Successful | - | - |
6.5.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(\expintEi@{x}-\expintE@{x}) = \coshint@{x}} | Error |
Divide[1,2]*(-ExpIntegralEi[-(x)]- -ExpIntegralEi[-(x)])= CoshIntegral[x] |
Error | Failure | - | Fail
-0.8378669409802083 <- {Rule[x, 1]} -2.452666922646914 <- {Rule[x, 2]} -4.960392094765608 <- {Rule[x, 3]} |
6.5.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \coshint@{x} = \cosint@{ix}-\tfrac{1}{2}\pi i} | Chi(x)= Ci(I*x)-(1)/(2)*Pi*I |
CoshIntegral[x]= CosIntegral[I*x]-Divide[1,2]*Pi*I |
Failure | Failure | Successful | Successful |
6.5.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinint@{z} = \tfrac{1}{2}i(\expintE@{-iz}-\expintE@{iz})+\tfrac{1}{2}\pi} | Si(z)=(1)/(2)*I*(Ei(- I*z)- Ei(I*z))+(1)/(2)*Pi |
SinIntegral[z]=Divide[1,2]*I*(-ExpIntegralEi[-(- I*z)]- -ExpIntegralEi[-(I*z)])+Divide[1,2]*Pi |
Failure | Failure | Fail -3.141592654+0.*I <- {z = 2^(1/2)+I*2^(1/2)} -3.141592654+0.*I <- {z = 2^(1/2)-I*2^(1/2)} |
Fail
Complex[-3.141592653589793, 0.0] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-3.141592653589793, 0.0] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} |
6.5.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cosint@{z} = -\tfrac{1}{2}(\expintE@{iz}+\expintE@{-iz})} | Ci(z)= -(1)/(2)*(Ei(I*z)+ Ei(- I*z)) |
CosIntegral[z]= -Divide[1,2]*(-ExpIntegralEi[-(I*z)]+ -ExpIntegralEi[-(- I*z)]) |
Failure | Failure | Fail 2.208978234-.399630454*I <- {z = 2^(1/2)+I*2^(1/2)} 2.208978234+.399630454*I <- {z = 2^(1/2)-I*2^(1/2)} 2.208978234-3.541223107*I <- {z = -2^(1/2)-I*2^(1/2)} 2.208978234+3.541223107*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.6.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{x} = \EulerConstant+\ln@@{x}+\sum_{n=1}^{\infty}\frac{x^{n}}{n!\thinspace n}} | Error |
-ExpIntegralEi[-(x)]= EulerGamma + Log[x]+ Sum[Divide[(x)^(n),(n)!*n], {n, 1, Infinity}] |
Error | Failure | - | Fail
Complex[0.10555368991298714, 0.0] <- {Rule[x, Rational[1, 2]]} |
6.6.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = -\EulerConstant-\ln@@{z}-\sum_{n=1}^{\infty}\frac{(-1)^{n}z^{n}}{n!\thinspace n}} | Ei(z)= - gamma - ln(z)- sum(((- 1)^(n)* (z)^(n))/(factorial(n)*n), n = 1..infinity) |
-ExpIntegralEi[-(z)]= - EulerGamma - Log[z]- Sum[Divide[(- 1)^(n)* (z)^(n),(n)!*n], {n, 1, Infinity}] |
Failure | Failure | Skip | Fail
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.6.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = -\ln@@{z}+e^{-z}\sum_{n=0}^{\infty}\frac{z^{n}}{n!}\digamma@{n+1}} | Ei(z)= - ln(z)+ exp(- z)*sum(((z)^(n))/(factorial(n))*Psi(n + 1), n = 0..infinity) |
-ExpIntegralEi[-(z)]= - Log[z]+ Exp[- z]*Sum[Divide[(z)^(n),(n)!]*PolyGamma[n + 1], {n, 0, Infinity}] |
Error | Failure | - | Fail
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.6.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEin@{z} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}z^{n}}{n!\thinspace n}} | Error |
-ExpIntegralEi[-(z)] + Ln[z] + EulerGamma = Sum[Divide[(- 1)^(n - 1)* (z)^(n),(n)!*n], {n, 1, Infinity}] |
Error | Failure | - | Successful |
6.6.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}z^{2n+1}}{(2n+1)!(2n+1)}} | Si(z)= sum(((- 1)^(n)* (z)^(2*n + 1))/(factorial(2*n + 1)*(2*n + 1)), n = 0..infinity) |
SinIntegral[z]= Sum[Divide[(- 1)^(n)* (z)^(2*n + 1),(2*n + 1)!*(2*n + 1)], {n, 0, Infinity}] |
Successful | Successful | - | - |
6.6.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cosint@{z} = \EulerConstant+\ln@@{z}+\sum_{n=1}^{\infty}\frac{(-1)^{n}z^{2n}}{(2n)!(2n)}} | Ci(z)= gamma + ln(z)+ sum(((- 1)^(n)* (z)^(2*n))/(factorial(2*n)*(2*n)), n = 1..infinity) |
CosIntegral[z]= EulerGamma + Log[z]+ Sum[Divide[(- 1)^(n)* (z)^(2*n),(2*n)!*(2*n)], {n, 1, Infinity}] |
Successful | Successful | - | - |
6.7.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{e^{-at}}{t+b}\diff{t} = \int_{0}^{\infty}\frac{e^{iat}}{t+ib}\diff{t}} | int((exp(- a*t))/(t + b), t = 0..infinity)= int((exp(I*a*t))/(t + I*b), t = 0..infinity) |
Integrate[Divide[Exp[- a*t],t + b], {t, 0, Infinity}]= Integrate[Divide[Exp[I*a*t],t + I*b], {t, 0, Infinity}] |
Failure | Failure | Skip | Error |
6.7.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{e^{iat}}{t+ib}\diff{t} = e^{ab}\expintE@{ab}} | int((exp(I*a*t))/(t + I*b), t = 0..infinity)= exp(a*b)*Ei(a*b) |
Integrate[Divide[Exp[I*a*t],t + I*b], {t, 0, Infinity}]= Exp[a*b]*-ExpIntegralEi[-(a*b)] |
Failure | Failure | Skip | Error |
6.7.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{x}\int_{0}^{\alpha}\frac{e^{-xt}}{1-t}\diff{t} = \expintEi@{x}-\expintEi@{(1-\alpha)x}} | Error |
Exp[x]*Integrate[Divide[Exp[- x*t],1 - t], {t, 0, \[Alpha]}]= -ExpIntegralEi[-(x)]- -ExpIntegralEi[-((1 - \[Alpha])* x)] |
Error | Failure | - | Fail
Complex[-0.42316473444652486, 0.4289071640857123] <- {Rule[x, Rational[1, 2]], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-0.42316473444652486, -0.4289071640857123] <- {Rule[x, Rational[1, 2]], Rule[α, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.36486876599473, 1.1603687293382365] <- {Rule[x, Rational[1, 2]], Rule[α, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.36486876599473, -1.1603687293382365] <- {Rule[x, Rational[1, 2]], Rule[α, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.7.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{e^{it}}{a^{2}+t^{2}}\diff{t} = \frac{i}{2a}\left(e^{a}\expintE@{a-ix}-e^{-a}\expintE@{-a-ix}\right)} | int((exp(I*t))/((a)^(2)+ (t)^(2)), t = x..infinity)=(I)/(2*a)*(exp(a)*Ei(a - I*x)- exp(- a)*Ei(- a - I*x)) |
Integrate[Divide[Exp[I*t],(a)^(2)+ (t)^(2)], {t, x, Infinity}]=Divide[I,2*a]*(Exp[a]*-ExpIntegralEi[-(a - I*x)]- Exp[- a]*-ExpIntegralEi[-(- a - I*x)]) |
Failure | Failure | Skip | Error |
6.7.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{te^{it}}{a^{2}+t^{2}}\diff{t} = \tfrac{1}{2}\left(e^{a}\expintE@{a-ix}+e^{-a}\expintE@{-a-ix}\right)} | int((t*exp(I*t))/((a)^(2)+ (t)^(2)), t = x..infinity)=(1)/(2)*(exp(a)*Ei(a - I*x)+ exp(- a)*Ei(- a - I*x)) |
Integrate[Divide[t*Exp[I*t],(a)^(2)+ (t)^(2)], {t, x, Infinity}]=Divide[1,2]*(Exp[a]*-ExpIntegralEi[-(a - I*x)]+ Exp[- a]*-ExpIntegralEi[-(- a - I*x)]) |
Failure | Failure | Skip | Error |
6.7.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{e^{-t}}{a^{2}+t^{2}}\diff{t} = -\frac{1}{2ai}\left(e^{ia}\expintE@{x+ia}-e^{-ia}\expintE@{x-ia}\right)} | int((exp(- t))/((a)^(2)+ (t)^(2)), t = x..infinity)= -(1)/(2*a*I)*(exp(I*a)*Ei(x + I*a)- exp(- I*a)*Ei(x - I*a)) |
Integrate[Divide[Exp[- t],(a)^(2)+ (t)^(2)], {t, x, Infinity}]= -Divide[1,2*a*I]*(Exp[I*a]*-ExpIntegralEi[-(x + I*a)]- Exp[- I*a]*-ExpIntegralEi[-(x - I*a)]) |
Error | Failure | - | Error |
6.7.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}\frac{te^{-t}}{a^{2}+t^{2}}\diff{t} = \tfrac{1}{2}\left(e^{ia}\expintE@{x+ia}+e^{-ia}\expintE@{x-ia}\right)} | int((t*exp(- t))/((a)^(2)+ (t)^(2)), t = x..infinity)=(1)/(2)*(exp(I*a)*Ei(x + I*a)+ exp(- I*a)*Ei(x - I*a)) |
Integrate[Divide[t*Exp[- t],(a)^(2)+ (t)^(2)], {t, x, Infinity}]=Divide[1,2]*(Exp[I*a]*-ExpIntegralEi[-(x + I*a)]+ Exp[- I*a]*-ExpIntegralEi[-(x - I*a)]) |
Error | Failure | - | Error |
6.7.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\frac{e^{-at}\sin@{bt}}{t}\diff{t} = \imagpart@@{\expintEin@{a+ib}}} | Error |
Integrate[Divide[Exp[- a*t]*Sin[b*t],t], {t, 0, 1}]= Im[-ExpIntegralEi[-(a + I*b)] + Ln[a + I*b] + EulerGamma] |
Error | Failure | - | Successful |
6.7.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\frac{e^{-at}(1-\cos@{bt})}{t}\diff{t} = \realpart@@{\expintEin@{a+ib}}-\expintEin@{a}} | Error |
Integrate[Divide[Exp[- a*t]*(1 - Cos[b*t]),t], {t, 0, 1}]= Re[-ExpIntegralEi[-(a + I*b)] + Ln[a + I*b] + EulerGamma]- -ExpIntegralEi[-(a)] + Ln[a] + EulerGamma |
Error | Failure | - | Successful |
6.7.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \shiftsinint@{z} = -\int_{0}^{\pi/2}e^{-z\cos@@{t}}\cos@{z\sin@@{t}}\diff{t}} | Ssi(z)= - int(exp(- z*cos(t))*cos(z*sin(t)), t = 0..Pi/ 2) |
SinIntegral[z] - Pi/2 = - Integrate[Exp[- z*Cos[t]]*Cos[z*Sin[t]], {t, 0, Pi/ 2}] |
Failure | Failure | Skip | Error |
6.7.E13 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{\sin@@{t}}{t+z}\diff{t} = \int_{0}^{\infty}\frac{e^{-zt}}{t^{2}+1}\diff{t}} | int((sin(t))/(t + z), t = 0..infinity)= int((exp(- z*t))/((t)^(2)+ 1), t = 0..infinity) |
Integrate[Divide[Sin[t],t + z], {t, 0, Infinity}]= Integrate[Divide[Exp[- z*t],(t)^(2)+ 1], {t, 0, Infinity}] |
Failure | Failure | Skip | Error |
6.7.E14 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{\cos@@{t}}{t+z}\diff{t} = \int_{0}^{\infty}\frac{te^{-zt}}{t^{2}+1}\diff{t}} | int((cos(t))/(t + z), t = 0..infinity)= int((t*exp(- z*t))/((t)^(2)+ 1), t = 0..infinity) |
Integrate[Divide[Cos[t],t + z], {t, 0, Infinity}]= Integrate[Divide[t*Exp[- z*t],(t)^(2)+ 1], {t, 0, Infinity}] |
Failure | Failure | Skip | Successful |
6.8.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2}\ln@{1+\frac{2}{x}} < e^{x}\expintE@{x}} | (1)/(2)*ln(1 +(2)/(x))< exp(x)*Ei(x) |
Divide[1,2]*Log[1 +Divide[2,x]]< Exp[x]*-ExpIntegralEi[-(x)] |
Failure | Failure | Successful | Successful |
6.8.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{x}\expintE@{x} < \ln@{1+\frac{1}{x}}} | exp(x)*Ei(x)< ln(1 +(1)/(x)) |
Exp[x]*-ExpIntegralEi[-(x)]< Log[1 +Divide[1,x]] |
Failure | Failure | Fail 5.151464321 < .6931471806 <- {x = 1} 36.60711558 < .4054651081 <- {x = 2} 199.5263609 < .2876820722 <- {x = 3} |
Successful |
6.8.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{x}{x+1} < xe^{x}\expintE@{x}} | (x)/(x + 1)< x*exp(x)*Ei(x) |
Divide[x,x + 1]< x*Exp[x]*-ExpIntegralEi[-(x)] |
Failure | Failure | Successful | Successful |
6.8.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle xe^{x}\expintE@{x} < \frac{x+1}{x+2}} | x*exp(x)*Ei(x)<(x + 1)/(x + 2) |
x*Exp[x]*-ExpIntegralEi[-(x)]<Divide[x + 1,x + 2] |
Failure | Failure | Fail 5.151464321 < .6666666667 <- {x = 1} 73.21423116 < .7500000000 <- {x = 2} 598.5790827 < .8000000000 <- {x = 3} |
Successful |
6.8.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{x(x+3)}{x^{2}+4x+2} < xe^{x}\expintE@{x}} | (x*(x + 3))/((x)^(2)+ 4*x + 2)< x*exp(x)*Ei(x) |
Divide[x*(x + 3),(x)^(2)+ 4*x + 2]< x*Exp[x]*-ExpIntegralEi[-(x)] |
Failure | Failure | Successful | Successful |
6.8.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle xe^{x}\expintE@{x} < \frac{x^{2}+5x+2}{x^{2}+6x+6}} | x*exp(x)*Ei(x)<((x)^(2)+ 5*x + 2)/((x)^(2)+ 6*x + 6) |
x*Exp[x]*-ExpIntegralEi[-(x)]<Divide[(x)^(2)+ 5*x + 2,(x)^(2)+ 6*x + 6] |
Failure | Failure | Fail 5.151464321 < .6153846154 <- {x = 1} 73.21423116 < .7272727273 <- {x = 2} 598.5790827 < .7878787879 <- {x = 3} |
Successful |
6.10.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sinint@{z} = z\sum_{n=0}^{\infty}\left(\sphBesselJ{n}@{\tfrac{1}{2}z}\right)^{2}} | Error |
SinIntegral[z]= z*Sum[(SphericalBesselJ[n, Divide[1,2]*z])^(2), {n, 0, Infinity}] |
Error | Successful | - | - |
6.10.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEi@{x} = \EulerConstant+\ln@@{\abs{x}}+\sum_{n=0}^{\infty}(-1)^{n}(x-a_{n})\left(\modsphBesseli{1}{n}@{\tfrac{1}{2}x}\right)^{2}} | Error |
\|Sqrt[1/2 Pi /$2] BesselI[-n - 1/2, n]*Divide[1,2]*x*))^(2), {n, 0, Infinity}] | Error | Error | - | - |
6.10.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintEin@{z} = ze^{-z/2}\left(\modsphBesseli{1}{0}@{\tfrac{1}{2}z}+\sum_{n=1}^{\infty}\dfrac{2n+1}{n(n+1)}\modsphBesseli{1}{n}@{\tfrac{1}{2}z}\right)} | Error |
\|Sqrt[1/2 Pi /$2] BesselI[-0 - 1/2, 0]*Divide[1,2]*z*+ Sum[Divide[2*n + 1,n*(n + 1)]*Sqrt[1/2 Pi /$2] BesselI[(-1)^(1-1)*n + 1/2, n]\|\|Sqrt[1/2 Pi /$2] BesselI[-n - 1/2, n]*Divide[1,2]*z, {n, 1, Infinity}]) | Error | Error | - | - |
6.11.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = \incGamma@{0}{z}} | Ei(z)= GAMMA(0, z) |
-ExpIntegralEi[-(z)]= Gamma[0, z] |
Failure | Failure | Fail 2.208978234+3.541223107*I <- {z = 2^(1/2)+I*2^(1/2)} 2.208978234-3.541223107*I <- {z = 2^(1/2)-I*2^(1/2)} 2.208978234-2.741962200*I <- {z = -2^(1/2)-I*2^(1/2)} 2.208978234+2.741962200*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.11.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \expintE@{z} = e^{-z}\KummerconfhyperU@{1}{1}{z}} | Ei(z)= exp(- z)*KummerU(1, 1, z) |
-ExpIntegralEi[-(z)]= Exp[- z]*HypergeometricU[1, 1, z] |
Failure | Failure | Fail 2.208978234+3.541223107*I <- {z = 2^(1/2)+I*2^(1/2)} 2.208978234-3.541223107*I <- {z = 2^(1/2)-I*2^(1/2)} 2.208978234-2.741962200*I <- {z = -2^(1/2)-I*2^(1/2)} 2.208978234+2.741962200*I <- {z = -2^(1/2)+I*2^(1/2)} |
Fail
Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, -3.141592653589793] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.0, 3.141592653589793] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.14.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\expintE@{t}\diff{t} = \frac{1}{a}\ln@{1+a}} | int(exp(- a*t)*Ei(t), t = 0..infinity)=(1)/(a)*ln(1 + a) |
Integrate[Exp[- a*t]*-ExpIntegralEi[-(t)], {t, 0, Infinity}]=Divide[1,a]*Log[1 + a] |
Failure | Failure | Skip | Successful |
6.14.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\cosint@{t}\diff{t} = -\frac{1}{2a}\ln@{1+a^{2}}} | int(exp(- a*t)*Ci(t), t = 0..infinity)= -(1)/(2*a)*ln(1 + (a)^(2)) |
Integrate[Exp[- a*t]*CosIntegral[t], {t, 0, Infinity}]= -Divide[1,2*a]*Log[1 + (a)^(2)] |
Failure | Failure | Skip | Error |
6.14.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\shiftsinint@{t}\diff{t} = -\frac{1}{a}\atan@@{a}} | int(exp(- a*t)*Ssi(t), t = 0..infinity)= -(1)/(a)*arctan(a) |
Integrate[Exp[- a*t]*SinIntegral[t] - Pi/2, {t, 0, Infinity}]= -Divide[1,a]*ArcTan[a] |
Failure | Failure | Skip | Error |
6.14.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\expintE^{2}@{t}\diff{t} = 2\ln@@{2}} | int((Ei(t))^(2), t = 0..infinity)= 2*ln(2) |
Integrate[(-ExpIntegralEi[-(t)])^(2), {t, 0, Infinity}]= 2*Log[2] |
Failure | Successful | Skip | - |
6.14.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\cos@@{t}\cosint@{t}\diff{t} = \int_{0}^{\infty}\sin@@{t}\shiftsinint@{t}\diff{t}} | int(cos(t)*Ci(t), t = 0..infinity)= int(sin(t)*Ssi(t), t = 0..infinity) |
Integrate[Cos[t]*CosIntegral[t], {t, 0, Infinity}]= Integrate[Sin[t]*SinIntegral[t] - Pi/2, {t, 0, Infinity}] |
Failure | Failure | Skip | Fail
Complex[-2.199611725770543, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-2.199611725770543, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[0.6288153989756469, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[0.6288153989756469, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.14.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\sin@@{t}\shiftsinint@{t}\diff{t} = -\tfrac{1}{4}\pi} | int(sin(t)*Ssi(t), t = 0..infinity)= -(1)/(4)*Pi |
Integrate[Sin[t]*SinIntegral[t] - Pi/2, {t, 0, Infinity}]= -Divide[1,4]*Pi |
Successful | Failure | - | Fail
Complex[2.199611725770543, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[2.199611725770543, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-0.6288153989756469, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-0.6288153989756469, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[Sin[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.14.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\cosint^{2}@{t}\diff{t} = \int_{0}^{\infty}\shiftsinint^{2}@{t}\diff{t}} | int((Ci(t))^(2), t = 0..infinity)= int((Ssi(t))^(2), t = 0..infinity) |
Integrate[(CosIntegral[t])^(2), {t, 0, Infinity}]= Integrate[(SinIntegral[t] - Pi/2)^(2), {t, 0, Infinity}] |
Failure | Successful | Skip | - |
6.14.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\shiftsinint^{2}@{t}\diff{t} = \tfrac{1}{2}\pi} | int((Ssi(t))^(2), t = 0..infinity)=(1)/(2)*Pi |
Integrate[(SinIntegral[t] - Pi/2)^(2), {t, 0, Infinity}]=Divide[1,2]*Pi |
Failure | Successful | Skip | - |
6.14.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\cosint@{t}\shiftsinint@{t}\diff{t} = \ln@@{2}} | int(Ci(t)*Ssi(t), t = 0..infinity)= ln(2) |
Integrate[CosIntegral[t]*SinIntegral[t] - Pi/2, {t, 0, Infinity}]= Log[2] |
Failure | Failure | Skip | Fail
Complex[0.7210663818131499, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[CosIntegral[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.7210663818131499, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[CosIntegral[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.1073607429330403, -1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[CosIntegral[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.1073607429330403, 1.4142135623730951] <- {Rule[Integrate[Plus[Times[Rational[-1, 2], Pi], Times[CosIntegral[t], SinIntegral[t]]], {t, 0, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.15.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\cosint@{\pi n} = \tfrac{1}{2}(\ln@@{2}-\EulerConstant)} | sum(Ci(Pi*n), n = 1..infinity)=(1)/(2)*(ln(2)- gamma) |
Sum[CosIntegral[Pi*n], {n, 1, Infinity}]=Divide[1,2]*(Log[2]- EulerGamma) |
Failure | Failure | Skip | Fail
Complex[1.356247804543889, 1.4142135623730951] <- {Rule[Sum[CosIntegral[Times[n, Pi]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.356247804543889, -1.4142135623730951] <- {Rule[Sum[CosIntegral[Times[n, Pi]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.4721793202023012, -1.4142135623730951] <- {Rule[Sum[CosIntegral[Times[n, Pi]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.4721793202023012, 1.4142135623730951] <- {Rule[Sum[CosIntegral[Times[n, Pi]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.15.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\frac{\shiftsinint@{\pi n}}{n} = \tfrac{1}{2}\pi(\ln@@{\pi}-1)} | sum((Ssi(Pi*n))/(n), n = 1..infinity)=(1)/(2)*Pi*(ln(Pi)- 1) |
Sum[Divide[SinIntegral[Pi*n] - Pi/2,n], {n, 1, Infinity}]=Divide[1,2]*Pi*(Log[Pi]- 1) |
Failure | Failure | Skip | Fail
Complex[1.1868723893034128, 1.4142135623730951] <- {Rule[Sum[Times[Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[n, Pi]]]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.1868723893034128, -1.4142135623730951] <- {Rule[Sum[Times[Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[n, Pi]]]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.6415547354427775, -1.4142135623730951] <- {Rule[Sum[Times[Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[n, Pi]]]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.6415547354427775, 1.4142135623730951] <- {Rule[Sum[Times[Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[n, Pi]]]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.15.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}(-1)^{n}\cosint@{2\pi n} = 1-\ln@@{2}-\tfrac{1}{2}\EulerConstant} | sum((- 1)^(n)* Ci(2*Pi*n), n = 1..infinity)= 1 - ln(2)-(1)/(2)*gamma |
Sum[(- 1)^(n)* CosIntegral[2*Pi*n], {n, 1, Infinity}]= 1 - Log[2]-Divide[1,2]*EulerGamma |
Failure | Failure | Skip | Fail
Complex[1.395968575383807, 1.4142135623730951] <- {Rule[Sum[Times[Power[-1, n], CosIntegral[Times[2, n, Pi]]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.395968575383807, -1.4142135623730951] <- {Rule[Sum[Times[Power[-1, n], CosIntegral[Times[2, n, Pi]]], {n, 1, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.4324585493623831, -1.4142135623730951] <- {Rule[Sum[Times[Power[-1, n], CosIntegral[Times[2, n, Pi]]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.4324585493623831, 1.4142135623730951] <- {Rule[Sum[Times[Power[-1, n], CosIntegral[Times[2, n, Pi]]], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} |
6.15.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}(-1)^{n}\frac{\shiftsinint@{2\pi n}}{n} = \pi(\tfrac{3}{2}\ln@@{2}-1)} | sum((- 1)^(n)*(Ssi(2*Pi*n))/(n), n = 1..infinity)= Pi*((3)/(2)*ln(2)- 1) |
Sum[(- 1)^(n)*Divide[SinIntegral[2*Pi*n] - Pi/2,n], {n, 1, Infinity}]= Pi*(Divide[3,2]*Log[2]- 1) |
Failure | Failure | Skip | Error |
6.16.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@@{x}+\tfrac{1}{3}\sin@{3x}+\tfrac{1}{5}\sin@{5x}+\dots = \begin{cases}\frac{1}{4}\pi,&0} | sin(x)+(1)/(3)*sin(3*x)+(1)/(5)*sin(5*x)+ .. = |
Sin[x]+Divide[1,3]*Sin[3*x]+Divide[1,5]*Sin[5*x]+ ... = |
Error | Failure | - | - |
6.16.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \begin{cases}\frac{1}{4}\pi,&0 < x} |
|
|
Error | Failure | - | Error |
6.16.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x < \pi,\\ 0,&x} | x < Pi , 0 , |
x < Pi , 0 , |
Error | Failure | - | Error |
6.18#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A_{n} = \int_{0}^{\infty}\frac{te^{-zt}}{1+t^{2}}\left(\frac{t^{2}}{1+t^{2}}\right)^{n}\diff{t}} | A[n]= int((t*exp(- z*t))/(1 + (t)^(2))*(((t)^(2))/(1 + (t)^(2)))^(n), t = 0..infinity) |
Subscript[A, n]= Integrate[Divide[t*Exp[- z*t],1 + (t)^(2)]*(Divide[(t)^(2),1 + (t)^(2)])^(n), {t, 0, Infinity}] |
Failure | Failure | Skip | Error |
6.18#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle B_{n} = \int_{0}^{\infty}\frac{e^{-zt}}{1+t^{2}}\left(\frac{t^{2}}{1+t^{2}}\right)^{n}\diff{t}} | B[n]= int((exp(- z*t))/(1 + (t)^(2))*(((t)^(2))/(1 + (t)^(2)))^(n), t = 0..infinity) |
Subscript[B, n]= Integrate[Divide[Exp[- z*t],1 + (t)^(2)]*(Divide[(t)^(2),1 + (t)^(2)])^(n), {t, 0, Infinity}] |
Failure | Failure | Skip | Error |
6.18#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle C_{n} = \int_{0}^{\infty}e^{-zt}\left(\frac{t^{2}}{1+t^{2}}\right)^{n}\diff{t}} | C[n]= int(exp(- z*t)*(((t)^(2))/(1 + (t)^(2)))^(n), t = 0..infinity) |
Subscript[C, n]= Integrate[Exp[- z*t]*(Divide[(t)^(2),1 + (t)^(2)])^(n), {t, 0, Infinity}] |
Failure | Failure | Skip | Error |