Results of Functions of Number Theory

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
27.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n = \prod_{r=1}^{\nprimesdiv@{n}}p^{a_{r}}_{r}} n product(p(p[r])^(a[r]), r = 1..ifactor(n)) Error Error Error - -
27.3.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ndivisors[]@{n} = \prod_{r=1}^{\nprimesdiv@{n}}(1+a_{r})} numelems(divisors(n))= product(1 + a[r], r = 1..ifactor(n)) Error Error Error - -
27.3.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sumdivisors{\alpha}@{n} = \prod_{r=1}^{\nprimesdiv@{n}}\frac{p^{\alpha(1+a_{r})}_{r}-1}{p^{\alpha}_{r}-1}} product((p(p[r])^(alpha*(1 + a[r]))- 1)/(p(p[r])^(alpha)- 1), r = 1..ifactor(n)) Error Error Error - -
27.4.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \sum_{n=1}^{\infty}n^{-s}} Zeta(s)= sum((n)^(- s), n = 1..infinity) Zeta[s]= Sum[(n)^(- s), {n, 1, Infinity}] Successful Successful - -
27.4.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}n^{-s} = \prod_{p}(1-p^{-s})^{-1}} sum((n)^(- s), n = 1..infinity)= product((1 - (p)^(- s))^(- 1), p = - infinity..infinity) Sum[(n)^(- s), {n, 1, Infinity}]= Product[(1 - (p)^(- s))^(- 1), {p, - Infinity, Infinity}] Failure Failure Skip Error
27.4.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}2^{\nprimesdiv@{n}}n^{-s} = \frac{(\Riemannzeta@{s})^{2}}{\Riemannzeta@{2s}}} sum((2)^(ifactor(n))* (n)^(- s), n = 1..infinity)=((Zeta(s))^(2))/(Zeta(2*s)) Error Error Error - -
27.4.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}n^{-s} = \Riemannzeta@{s}\Riemannzeta@{s-\alpha}} \|add(divisors(alpha))*(n)^(- s), n = 1..infinity)= Zeta(s)*Zeta(s - alpha) Error Error Error - -
27.4.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=2}^{\infty}(\ln@@{n})n^{-s} = -\Riemannzeta'@{s}} sum((ln(n))* (n)^(- s), n = 2..infinity)= - subs( temp=s, diff( Zeta(temp), temp$(1) ) ) Sum[(Log[n])* (n)^(- s), {n, 2, Infinity}]= - (D[Zeta[temp], {temp, 1}]/.temp-> s) Successful Successful - -
27.7.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}n^{\alpha}\frac{x^{n}}{1-x^{n}} = \sum_{n=1}^{\infty}\sumdivisors{\alpha}@{n}x^{n}} \|add(divisors(alpha))*(x)^(n), n = 1..infinity) Error Error Error - -
27.9.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Legendresym{-1}{p} = (-1)^{(p-1)/2}} legendre(- 1, p)=(- 1)^((p - 1)/ 2) Error Error Error - -
27.9.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Legendresym{2}{p} = (-1)^{(p^{2}-1)/8}} legendre(2, p)=(- 1)^(((p)^(2)- 1)/ 8) Error Error Error - -
27.9.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Legendresym{p}{q}\Legendresym{q}{p} = (-1)^{(p-1)(q-1)/4}} legendre(p, q)*legendre(q, p)=(- 1)^((p - 1)*(q - 1)/ 4) Error Error Error - -
27.10.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s_{k}(n) = \sum_{m=1}^{k}a_{k}(m)e^{2\cpi\iunit mn/k}} s[k]*(n)= sum(a[k]*(m)* exp(2*Pi*I*m*n/ k), m = 1..k) Subscript[s, k]*(n)= Sum[Subscript[a, k]*(m)* Exp[2*Pi*I*m*n/ k], {m, 1, k}] Failure Failure Skip Successful
27.12.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{n\to\infty}\frac{p_{n}}{n\ln@@{n}} = 1} limit((p[n])/(n*ln(n)), n = infinity)= 1 Limit[Divide[Subscript[p, n],n*Log[n]], n -> Infinity]= 1 Successful Failure -
Fail
Complex[0.41421356237309515, 1.4142135623730951] <- {Rule[Limit[Times[Power[n, -1], Power[Log[n], -1], Subscript[p, n]], Rule[n, DirectedInfinity[1]]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.41421356237309515, -1.4142135623730951] <- {Rule[Limit[Times[Power[n, -1], Power[Log[n], -1], Subscript[p, n]], Rule[n, DirectedInfinity[1]]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.414213562373095, -1.4142135623730951] <- {Rule[Limit[Times[Power[n, -1], Power[Log[n], -1], Subscript[p, n]], Rule[n, DirectedInfinity[1]]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.414213562373095, 1.4142135623730951] <- {Rule[Limit[Times[Power[n, -1], Power[Log[n], -1], Subscript[p, n]], Rule[n, DirectedInfinity[1]]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
27.12.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{n} > n\ln@@{n}} p[n]> n*ln(n) Subscript[p, n]> n*Log[n] Failure Failure Successful Successful
27.13.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \AThetaFunction@{x} = 1+2\sum_{m=1}^{\infty}x^{m^{2}}} 1+2*(sum((x)^(m^2), m = 1 .. infinity))= 1 + 2*sum((x)^((m)^(2)), m = 1..infinity) Error Successful Error - -
27.13.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (\AThetaFunction@{x})^{2} = 1+4\sum_{n=1}^{\infty}\left(\delta_{1}(n)-\delta_{3}(n)\right)x^{n}} (1+2*(sum((x)^(m^2), m = 1 .. infinity)))^(2)= 1 + 4*sum((delta[1]*(n)- delta[3]*(n))* (x)^(n), n = 1..infinity) Error Failure Error Skip -
27.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerPhi@{x} = \prod_{m=1}^{\infty}(1-x^{m})} product(1-(x)^k, k = 1 .. infinity)= product(1 - (x)^(m), m = 1..infinity) Error Successful Error - -
27.14.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x\prod_{n=1}^{\infty}(1-x^{n})^{24} = \sum_{n=1}^{\infty}\Ramanujantau@{n}x^{n}} Error x*Product[(1 - (x)^(n))^(24), {n, 1, Infinity}]= Sum[RamanujanTau[n]*(x)^(n), {n, 1, Infinity}] Error Successful - -