Results of Functions of Number Theory
Jump to navigation
Jump to search
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
27.2.E1 | n product(p(p[r])^(a[r]), r = 1..ifactor(n)) |
Error |
Error | Error | - | - | |
27.3.E5 | numelems(divisors(n))= product(1 + a[r], r = 1..ifactor(n)) |
Error |
Error | Error | - | - | |
27.3.E6 | product((p(p[r])^(alpha*(1 + a[r]))- 1)/(p(p[r])^(alpha)- 1), r = 1..ifactor(n)) |
Error |
Error | Error | - | - | |
27.4.E3 | Zeta(s)= sum((n)^(- s), n = 1..infinity) |
Zeta[s]= Sum[(n)^(- s), {n, 1, Infinity}] |
Successful | Successful | - | - | |
27.4.E3 | sum((n)^(- s), n = 1..infinity)= product((1 - (p)^(- s))^(- 1), p = - infinity..infinity) |
Sum[(n)^(- s), {n, 1, Infinity}]= Product[(1 - (p)^(- s))^(- 1), {p, - Infinity, Infinity}] |
Failure | Failure | Skip | Error | |
27.4.E9 | sum((2)^(ifactor(n))* (n)^(- s), n = 1..infinity)=((Zeta(s))^(2))/(Zeta(2*s)) |
Error |
Error | Error | - | - | |
27.4.E11 | \|add(divisors(alpha))*(n)^(- s), n = 1..infinity)= Zeta(s)*Zeta(s - alpha) | Error |
Error | Error | - | - | |
27.4.E13 | sum((ln(n))* (n)^(- s), n = 2..infinity)= - subs( temp=s, diff( Zeta(temp), temp$(1) ) ) |
Sum[(Log[n])* (n)^(- s), {n, 2, Infinity}]= - (D[Zeta[temp], {temp, 1}]/.temp-> s) |
Successful | Successful | - | - | |
27.7.E5 | \|add(divisors(alpha))*(x)^(n), n = 1..infinity) | Error |
Error | Error | - | - | |
27.9.E1 | legendre(- 1, p)=(- 1)^((p - 1)/ 2) |
Error |
Error | Error | - | - | |
27.9.E2 | legendre(2, p)=(- 1)^(((p)^(2)- 1)/ 8) |
Error |
Error | Error | - | - | |
27.9.E3 | legendre(p, q)*legendre(q, p)=(- 1)^((p - 1)*(q - 1)/ 4) |
Error |
Error | Error | - | - | |
27.10.E7 | s[k]*(n)= sum(a[k]*(m)* exp(2*Pi*I*m*n/ k), m = 1..k) |
Subscript[s, k]*(n)= Sum[Subscript[a, k]*(m)* Exp[2*Pi*I*m*n/ k], {m, 1, k}] |
Failure | Failure | Skip | Successful | |
27.12.E1 | limit((p[n])/(n*ln(n)), n = infinity)= 1 |
Limit[Divide[Subscript[p, n],n*Log[n]], n -> Infinity]= 1 |
Successful | Failure | - | Fail
Complex[0.41421356237309515, 1.4142135623730951] <- {Rule[Limit[Times[Power[n, -1], Power[Log[n], -1], Subscript[p, n]], Rule[n, DirectedInfinity[1]]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.41421356237309515, -1.4142135623730951] <- {Rule[Limit[Times[Power[n, -1], Power[Log[n], -1], Subscript[p, n]], Rule[n, DirectedInfinity[1]]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.414213562373095, -1.4142135623730951] <- {Rule[Limit[Times[Power[n, -1], Power[Log[n], -1], Subscript[p, n]], Rule[n, DirectedInfinity[1]]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-2.414213562373095, 1.4142135623730951] <- {Rule[Limit[Times[Power[n, -1], Power[Log[n], -1], Subscript[p, n]], Rule[n, DirectedInfinity[1]]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} | |
27.12.E2 | p[n]> n*ln(n) |
Subscript[p, n]> n*Log[n] |
Failure | Failure | Successful | Successful | |
27.13.E4 | 1+2*(sum((x)^(m^2), m = 1 .. infinity))= 1 + 2*sum((x)^((m)^(2)), m = 1..infinity) |
Error |
Successful | Error | - | - | |
27.13.E6 | (1+2*(sum((x)^(m^2), m = 1 .. infinity)))^(2)= 1 + 4*sum((delta[1]*(n)- delta[3]*(n))* (x)^(n), n = 1..infinity) |
Error |
Failure | Error | Skip | - | |
27.14.E2 | product(1-(x)^k, k = 1 .. infinity)= product(1 - (x)^(m), m = 1..infinity) |
Error |
Successful | Error | - | - | |
27.14.E18 | Error |
x*Product[(1 - (x)^(n))^(24), {n, 1, Infinity}]= Sum[RamanujanTau[n]*(x)^(n), {n, 1, Infinity}] |
Error | Successful | - | - |