Results of Hypergeometric Function

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
15.1.E1 F 1 2 ⁑ ( a , b ; c ; z ) = F ⁑ ( a , b ; c ; z ) Gauss-hypergeometric-F-as-2F1 π‘Ž 𝑏 𝑐 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle{{}_{2}F_{1}}\left(a,b;c;z\right)=F\left(a,b;c;z% \right)}} hypergeom([a , b], [c], z)= hypergeom([a, b], [c], z) HypergeometricPFQ[{a , b}, {c}, z]= Hypergeometric2F1[a, b, c, z] Successful Successful - -
15.1.E1 F ⁑ ( a , b ; c ; z ) = F ⁑ ( a , b c ; z ) Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle F\left(a,b;c;z\right)=F\left({a,b\atop c};z\right% )}} hypergeom([a, b], [c], z)= hypergeom([a, b], [c], z) Hypergeometric2F1[a, b, c, z]= Hypergeometric2F1[a, b, c, z] Successful Successful - -
15.1.E2 F ⁑ ( a , b ; c ; z ) Ξ“ ⁑ ( c ) = 𝐅 ⁑ ( a , b ; c ; z ) Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Euler-Gamma 𝑐 scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle\frac{F\left(a,b;c;z\right)}{\Gamma\left(c\right)}% =\mathbf{F}\left(a,b;c;z\right)}} (hypergeom([a, b], [c], z))/(GAMMA(c))= hypergeom([a, b], [c], z)/GAMMA(c) Divide[Hypergeometric2F1[a, b, c, z],Gamma[c]]= Hypergeometric2F1Regularized[a, b, c, z] Successful Successful - -
15.1.E2 𝐅 ⁑ ( a , b ; c ; z ) = 𝐅 ⁑ ( a , b c ; z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\mathbf{F}\left({a,% b\atop c};z\right)}} hypergeom([a, b], [c], z)/GAMMA(c)= hypergeom([a, b], [c], z)/GAMMA(c) Hypergeometric2F1Regularized[a, b, c, z]= Hypergeometric2F1Regularized[a, b, c, z] Successful Successful - -
15.1.E2 𝐅 ⁑ ( a , b c ; z ) = 𝐅 1 2 ⁑ ( a , b ; c ; z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 hypergeometric-bold-pFq 2 1 π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop c};z\right)={{}_{2}{% \mathbf{F}}_{1}}\left(a,b;c;z\right)}} hypergeom([a, b], [c], z)/GAMMA(c)= hypergeom([a , b], [c], z) Hypergeometric2F1Regularized[a, b, c, z]= HypergeometricPFQRegularized[{a , b}, {c}, z] Failure Successful Skip -
15.2.E1 F ⁑ ( a , b ; c ; z ) = βˆ‘ s = 0 ∞ ( a ) s ⁒ ( b ) s ( c ) s ⁒ s ! ⁒ z s Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 superscript subscript 𝑠 0 Pochhammer π‘Ž 𝑠 Pochhammer 𝑏 𝑠 Pochhammer 𝑐 𝑠 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle F\left(a,b;c;z\right)=\sum_{s=0}^{\infty}\frac{{% \left(a\right)_{s}}{\left(b\right)_{s}}}{{\left(c\right)_{s}}s!}z^{s}}} hypergeom([a, b], [c], z)= sum((pochhammer(a, s)*pochhammer(b, s))/(pochhammer(c, s)*factorial(s))*(z)^(s), s = 0..infinity) Hypergeometric2F1[a, b, c, z]= Sum[Divide[Pochhammer[a, s]*Pochhammer[b, s],Pochhammer[c, s]*(s)!]*(z)^(s), {s, 0, Infinity}] Failure Successful Skip -
15.2.E2 𝐅 ⁑ ( a , b ; c ; z ) = βˆ‘ s = 0 ∞ ( a ) s ⁒ ( b ) s Ξ“ ⁑ ( c + s ) ⁒ s ! ⁒ z s scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript subscript 𝑠 0 Pochhammer π‘Ž 𝑠 Pochhammer 𝑏 𝑠 Euler-Gamma 𝑐 𝑠 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\sum_{s=0}^{\infty}% \frac{{\left(a\right)_{s}}{\left(b\right)_{s}}}{\Gamma\left(c+s\right)s!}z^{s}}} hypergeom([a, b], [c], z)/GAMMA(c)= sum((pochhammer(a, s)*pochhammer(b, s))/(GAMMA(c + s)*factorial(s))*(z)^(s), s = 0..infinity) Hypergeometric2F1Regularized[a, b, c, z]= Sum[Divide[Pochhammer[a, s]*Pochhammer[b, s],Gamma[c + s]*(s)!]*(z)^(s), {s, 0, Infinity}] Successful Failure - Skip
15.2.E3 𝐅 ⁑ ( a , b c ; x + i ⁒ 0 ) - 𝐅 ⁑ ( a , b c ; x - i ⁒ 0 ) = 2 ⁒ Ο€ ⁒ i Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ ( x - 1 ) c - a - b ⁒ 𝐅 ⁑ ( c - a , c - b c - a - b + 1 ; 1 - x ) scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 π‘₯ imaginary-unit 0 scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 π‘₯ imaginary-unit 0 2 πœ‹ imaginary-unit Euler-Gamma π‘Ž Euler-Gamma 𝑏 superscript π‘₯ 1 𝑐 π‘Ž 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 π‘Ž 𝑏 1 1 π‘₯ {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop c};x+\mathrm{i}0\right)-% \mathbf{F}\left({a,b\atop c};x-\mathrm{i}0\right)=\frac{2\pi\mathrm{i}}{\Gamma% \left(a\right)\Gamma\left(b\right)}(x-1)^{c-a-b}\mathbf{F}\left({c-a,c-b\atop c% -a-b+1};1-x\right)}} hypergeom([a, b], [c], x + I*0)/GAMMA(c)- hypergeom([a, b], [c], x - I*0)/GAMMA(c)=(2*Pi*I)/(GAMMA(a)*GAMMA(b))*(x - 1)^(c - a - b)* hypergeom([c - a, c - b], [c - a - b + 1], 1 - x)/GAMMA(c - a - b + 1) Hypergeometric2F1Regularized[a, b, c, x + I*0]- Hypergeometric2F1Regularized[a, b, c, x - I*0]=Divide[2*Pi*I,Gamma[a]*Gamma[b]]*(x - 1)^(c - a - b)* Hypergeometric2F1Regularized[c - a, c - b, c - a - b + 1, 1 - x] Failure Failure
Fail
-487.8169477+316.7970546*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), x = 3/2}
-50479.20446+110828.3499*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), x = 3/2}
-163338913.7+140350694.8*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = -2^(1/2)-I*2^(1/2), x = 3/2}
45522.85325+151628.5675*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = -2^(1/2)+I*2^(1/2), x = 3/2}
... skip entries to safe data
Fail
Complex[-487.81694810081785, 316.7970557265091] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, Rational[3, 2]]}
Complex[-50479.2047214623, 110828.3501851795] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, Rational[3, 2]]}
Complex[-1.633389146290397*^8, 1.4035069565108505*^8] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, Rational[3, 2]]}
Complex[45522.853876442554, 151628.56778915678] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, Rational[3, 2]]}
... skip entries to safe data
15.2#Ex1 lim c β†’ - n ⁑ F ⁑ ( a , b ; c ; z ) Ξ“ ⁑ ( c ) = 𝐅 ⁑ ( a , b ; - n ; z ) subscript β†’ 𝑐 𝑛 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Euler-Gamma 𝑐 scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑛 𝑧 {\displaystyle{\displaystyle\lim_{c\to-n}\frac{F\left(a,b;c;z\right)}{\Gamma% \left(c\right)}=\mathbf{F}\left(a,b;-n;z\right)}} limit((hypergeom([a, b], [c], z))/(GAMMA(c)), c = - n)= hypergeom([a, b], [- n], z)/GAMMA(- n) Limit[Divide[Hypergeometric2F1[a, b, c, z],Gamma[c]], c -> - n]= Hypergeometric2F1Regularized[a, b, - n, z] Successful Successful - -
15.2#Ex1 𝐅 ⁑ ( a , b ; - n ; z ) = ( a ) n + 1 ⁒ ( b ) n + 1 ( n + 1 ) ! ⁒ z n + 1 ⁒ F ⁑ ( a + n + 1 , b + n + 1 ; n + 2 ; z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑛 𝑧 Pochhammer π‘Ž 𝑛 1 Pochhammer 𝑏 𝑛 1 𝑛 1 superscript 𝑧 𝑛 1 Gauss-hypergeometric-F π‘Ž 𝑛 1 𝑏 𝑛 1 𝑛 2 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;-n;z\right)=\frac{{\left(a% \right)_{n+1}}{\left(b\right)_{n+1}}}{(n+1)!}z^{n+1}F\left(a+n+1,b+n+1;n+2;z% \right)}} hypergeom([a, b], [- n], z)/GAMMA(- n)=(pochhammer(a, n + 1)*pochhammer(b, n + 1))/(factorial(n + 1))*(z)^(n + 1)* hypergeom([a + n + 1, b + n + 1], [n + 2], z) Hypergeometric2F1Regularized[a, b, - n, z]=Divide[Pochhammer[a, n + 1]*Pochhammer[b, n + 1],(n + 1)!]*(z)^(n + 1)* Hypergeometric2F1[a + n + 1, b + n + 1, n + 2, z] Failure Failure
Fail
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
15.2.E4 F ⁑ ( - m , b ; c ; z ) = βˆ‘ n = 0 m ( - m ) n ⁒ ( b ) n ( c ) n ⁒ n ! ⁒ z n Gauss-hypergeometric-F π‘š 𝑏 𝑐 𝑧 superscript subscript 𝑛 0 π‘š Pochhammer π‘š 𝑛 Pochhammer 𝑏 𝑛 Pochhammer 𝑐 𝑛 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle F\left(-m,b;c;z\right)=\sum_{n=0}^{m}\frac{{\left% (-m\right)_{n}}{\left(b\right)_{n}}}{{\left(c\right)_{n}}{n!}}z^{n}}} hypergeom([- m, b], [c], z)= sum((pochhammer(- m, n)*pochhammer(b, n))/(pochhammer(c, n)*factorial(n))*(z)^(n), n = 0..m) Hypergeometric2F1[- m, b, c, z]= Sum[Divide[Pochhammer[- m, n]*Pochhammer[b, n],Pochhammer[c, n]*(n)!]*(z)^(n), {n, 0, m}] Successful Successful - -
15.2.E4 βˆ‘ n = 0 m ( - m ) n ⁒ ( b ) n ( c ) n ⁒ n ! ⁒ z n = βˆ‘ n = 0 m ( - 1 ) n ⁒ ( m n ) ⁒ ( b ) n ( c ) n ⁒ z n superscript subscript 𝑛 0 π‘š Pochhammer π‘š 𝑛 Pochhammer 𝑏 𝑛 Pochhammer 𝑐 𝑛 𝑛 superscript 𝑧 𝑛 superscript subscript 𝑛 0 π‘š superscript 1 𝑛 binomial π‘š 𝑛 Pochhammer 𝑏 𝑛 Pochhammer 𝑐 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\sum_{n=0}^{m}\frac{{\left(-m\right)_{n}}{\left(b% \right)_{n}}}{{\left(c\right)_{n}}{n!}}z^{n}=\sum_{n=0}^{m}(-1)^{n}\genfrac{(}% {)}{0.0pt}{}{m}{n}\frac{{\left(b\right)_{n}}}{{\left(c\right)_{n}}}z^{n}}} sum((pochhammer(- m, n)*pochhammer(b, n))/(pochhammer(c, n)*factorial(n))*(z)^(n), n = 0..m)= sum((- 1)^(n)*binomial(m,n)*(pochhammer(b, n))/(pochhammer(c, n))*(z)^(n), n = 0..m) Sum[Divide[Pochhammer[- m, n]*Pochhammer[b, n],Pochhammer[c, n]*(n)!]*(z)^(n), {n, 0, m}]= Sum[(- 1)^(n)*Binomial[m,n]*Divide[Pochhammer[b, n],Pochhammer[c, n]]*(z)^(n), {n, 0, m}] Successful Successful - -
15.2.E5 F ⁑ ( - m , b - m - β„“ ; z ) = lim c β†’ - m - β„“ ⁑ ( lim a β†’ - m ⁑ F ⁑ ( a , b c ; z ) ) Gauss-hypergeometric-F π‘š 𝑏 π‘š β„“ 𝑧 subscript β†’ 𝑐 π‘š β„“ subscript β†’ π‘Ž π‘š Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle F\left({-m,b\atop-m-\ell};z\right)=\lim_{c\to-m-% \ell}\left(\lim_{a\to-m}F\left({a,b\atop c};z\right)\right)}} hypergeom([- m, b], [- m - ell], z)= limit(limit(hypergeom([a, b], [c], z), a = - m), c = - m - ell) Hypergeometric2F1[- m, b, - m - \[ScriptL], z]= Limit[Limit[Hypergeometric2F1[a, b, c, z], a -> - m], c -> - m - \[ScriptL]] Failure Successful Skip -
15.2.E6 F ⁑ ( - m , b - m - β„“ ; z ) = lim a β†’ - m ⁑ F ⁑ ( a , b a - β„“ ; z ) Gauss-hypergeometric-F π‘š 𝑏 π‘š β„“ 𝑧 subscript β†’ π‘Ž π‘š Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž β„“ 𝑧 {\displaystyle{\displaystyle F\left({-m,b\atop-m-\ell};z\right)=\lim_{a\to-m}F% \left({a,b\atop a-\ell};z\right)}} hypergeom([- m, b], [- m - ell], z)= limit(hypergeom([a, b], [a - ell], z), a = - m) Hypergeometric2F1[- m, b, - m - \[ScriptL], z]= Limit[Hypergeometric2F1[a, b, a - \[ScriptL], z], a -> - m] Successful Successful - -
15.4.E1 F ⁑ ( 1 , 1 ; 2 ; z ) = - z - 1 ⁒ ln ⁑ ( 1 - z ) Gauss-hypergeometric-F 1 1 2 𝑧 superscript 𝑧 1 1 𝑧 {\displaystyle{\displaystyle F\left(1,1;2;z\right)=-z^{-1}\ln\left(1-z\right)}} hypergeom([1, 1], [2], z)= - (z)^(- 1)* ln(1 - z) Hypergeometric2F1[1, 1, 2, z]= - (z)^(- 1)* Log[1 - z] Successful Successful - -
15.4.E2 F ⁑ ( 1 2 , 1 ; 3 2 ; z 2 ) = 1 2 ⁒ z ⁒ ln ⁑ ( 1 + z 1 - z ) Gauss-hypergeometric-F 1 2 1 3 2 superscript 𝑧 2 1 2 𝑧 1 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},1;\tfrac{3}{2};z^{2}\right)=% \frac{1}{2z}\ln\left(\frac{1+z}{1-z}\right)}} hypergeom([(1)/(2), 1], [(3)/(2)], (z)^(2))=(1)/(2*z)*ln((1 + z)/(1 - z)) Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], (z)^(2)]=Divide[1,2*z]*Log[Divide[1 + z,1 - z]] Successful Failure - Successful
15.4.E3 F ⁑ ( 1 2 , 1 ; 3 2 ; - z 2 ) = z - 1 ⁒ arctan ⁑ z Gauss-hypergeometric-F 1 2 1 3 2 superscript 𝑧 2 superscript 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},1;\tfrac{3}{2};-z^{2}\right)=% z^{-1}\operatorname{arctan}z}} hypergeom([(1)/(2), 1], [(3)/(2)], - (z)^(2))= (z)^(- 1)* arctan(z) Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], - (z)^(2)]= (z)^(- 1)* ArcTan[z] Failure Successful Successful -
15.4.E4 F ⁑ ( 1 2 , 1 2 ; 3 2 ; z 2 ) = z - 1 ⁒ arcsin ⁑ z Gauss-hypergeometric-F 1 2 1 2 3 2 superscript 𝑧 2 superscript 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},\tfrac{1}{2};\tfrac{3}{2};z^{% 2}\right)=z^{-1}\operatorname{arcsin}z}} hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], (z)^(2))= (z)^(- 1)* arcsin(z) Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], (z)^(2)]= (z)^(- 1)* ArcSin[z] Successful Successful - -
15.4.E5 F ⁑ ( 1 2 , 1 2 ; 3 2 ; - z 2 ) = z - 1 ⁒ ln ⁑ ( z + 1 + z 2 ) Gauss-hypergeometric-F 1 2 1 2 3 2 superscript 𝑧 2 superscript 𝑧 1 𝑧 1 superscript 𝑧 2 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},\tfrac{1}{2};\tfrac{3}{2};-z^% {2}\right)=z^{-1}\ln\left(z+\sqrt{1+z^{2}}\right)}} hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], - (z)^(2))= (z)^(- 1)* ln(z +sqrt(1 + (z)^(2))) Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], - (z)^(2)]= (z)^(- 1)* Log[z +Sqrt[1 + (z)^(2)]] Failure Successful Successful -
15.4#Ex1 F ⁑ ( a , b ; a ; z ) = ( 1 - z ) - b Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑧 superscript 1 𝑧 𝑏 {\displaystyle{\displaystyle F\left(a,b;a;z\right)=(1-z)^{-b}}} hypergeom([a, b], [a], z)=(1 - z)^(- b) Hypergeometric2F1[a, b, a, z]=(1 - z)^(- b) Successful Successful - -
15.4#Ex2 F ⁑ ( a , b ; b ; z ) = ( 1 - z ) - a Gauss-hypergeometric-F π‘Ž 𝑏 𝑏 𝑧 superscript 1 𝑧 π‘Ž {\displaystyle{\displaystyle F\left(a,b;b;z\right)=(1-z)^{-a}}} hypergeom([a, b], [b], z)=(1 - z)^(- a) Hypergeometric2F1[a, b, b, z]=(1 - z)^(- a) Successful Successful - -
15.4.E7 F ⁑ ( a , 1 2 + a ; 1 2 ; z 2 ) = 1 2 ⁒ ( ( 1 + z ) - 2 ⁒ a + ( 1 - z ) - 2 ⁒ a ) Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 1 2 superscript 𝑧 2 1 2 superscript 1 𝑧 2 π‘Ž superscript 1 𝑧 2 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{1}{2};z^{2}\right)% =\tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right)}} hypergeom([a, (1)/(2)+ a], [(1)/(2)], (z)^(2))=(1)/(2)*((1 + z)^(- 2*a)+(1 - z)^(- 2*a)) Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], (z)^(2)]=Divide[1,2]*((1 + z)^(- 2*a)+(1 - z)^(- 2*a)) Successful Successful - -
15.4.E8 F ⁑ ( a , 1 2 + a ; 1 2 ; - tan 2 ⁑ z ) = ( cos ⁑ z ) 2 ⁒ a ⁒ cos ⁑ ( 2 ⁒ a ⁒ z ) Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 1 2 2 𝑧 superscript 𝑧 2 π‘Ž 2 π‘Ž 𝑧 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{1}{2};-{\tan^{2}}z% \right)=(\cos z)^{2a}\cos\left(2az\right)}} hypergeom([a, (1)/(2)+ a], [(1)/(2)], - (tan(z))^(2))=(cos(z))^(2*a)* cos(2*a*z) Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], - (Tan[z])^(2)]=(Cos[z])^(2*a)* Cos[2*a*z] Failure Failure
Fail
.62e-2-.88e-2*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.62e-2-.88e-2*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.62e-2+.88e-2*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
.62e-2+.88e-2*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
Successful
15.4.E9 F ⁑ ( a , 1 2 + a ; 3 2 ; z 2 ) = 1 ( 2 - 4 ⁒ a ) ⁒ z ⁒ ( ( 1 + z ) 1 - 2 ⁒ a - ( 1 - z ) 1 - 2 ⁒ a ) Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 3 2 superscript 𝑧 2 1 2 4 π‘Ž 𝑧 superscript 1 𝑧 1 2 π‘Ž superscript 1 𝑧 1 2 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{3}{2};z^{2}\right)% =\frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right)}} hypergeom([a, (1)/(2)+ a], [(3)/(2)], (z)^(2))=(1)/((2 - 4*a)* z)*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a)) Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], (z)^(2)]=Divide[1,(2 - 4*a)* z]*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a)) Successful Successful - -
15.4.E10 F ⁑ ( a , 1 2 + a ; 3 2 ; - tan 2 ⁑ z ) = ( cos ⁑ z ) 2 ⁒ a ⁒ sin ⁑ ( ( 1 - 2 ⁒ a ) ⁒ z ) ( 1 - 2 ⁒ a ) ⁒ sin ⁑ z Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 3 2 2 𝑧 superscript 𝑧 2 π‘Ž 1 2 π‘Ž 𝑧 1 2 π‘Ž 𝑧 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{3}{2};-{\tan^{2}}z% \right)=(\cos z)^{2a}\frac{\sin\left((1-2a)z\right)}{(1-2a)\sin z}}} hypergeom([a, (1)/(2)+ a], [(3)/(2)], - (tan(z))^(2))=(cos(z))^(2*a)*(sin((1 - 2*a)* z))/((1 - 2*a)* sin(z)) Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], - (Tan[z])^(2)]=(Cos[z])^(2*a)*Divide[Sin[(1 - 2*a)* z],(1 - 2*a)* Sin[z]] Failure Failure Successful Successful
15.4.E11 F ⁑ ( - a , a ; 1 2 ; - z 2 ) = 1 2 ⁒ ( ( 1 + z 2 + z ) 2 ⁒ a + ( 1 + z 2 - z ) 2 ⁒ a ) Gauss-hypergeometric-F π‘Ž π‘Ž 1 2 superscript 𝑧 2 1 2 superscript 1 superscript 𝑧 2 𝑧 2 π‘Ž superscript 1 superscript 𝑧 2 𝑧 2 π‘Ž {\displaystyle{\displaystyle F\left(-a,a;\tfrac{1}{2};-z^{2}\right)=\tfrac{1}{% 2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}% \right)}} hypergeom([- a, a], [(1)/(2)], - (z)^(2))=(1)/(2)*((sqrt(1 + (z)^(2))+ z)^(2*a)+(sqrt(1 + (z)^(2))- z)^(2*a)) Hypergeometric2F1[- a, a, Divide[1,2], - (z)^(2)]=Divide[1,2]*((Sqrt[1 + (z)^(2)]+ z)^(2*a)+(Sqrt[1 + (z)^(2)]- z)^(2*a)) Failure Failure Successful Successful
15.4.E12 F ⁑ ( - a , a ; 1 2 ; sin 2 ⁑ z ) = cos ⁑ ( 2 ⁒ a ⁒ z ) Gauss-hypergeometric-F π‘Ž π‘Ž 1 2 2 𝑧 2 π‘Ž 𝑧 {\displaystyle{\displaystyle F\left(-a,a;\tfrac{1}{2};{\sin^{2}}z\right)=\cos% \left(2az\right)}} hypergeom([- a, a], [(1)/(2)], (sin(z))^(2))= cos(2*a*z) Hypergeometric2F1[- a, a, Divide[1,2], (Sin[z])^(2)]= Cos[2*a*z] Failure Failure Successful Successful
15.4.E13 F ⁑ ( a , 1 - a ; 1 2 ; - z 2 ) = 1 2 ⁒ 1 + z 2 ⁒ ( ( 1 + z 2 + z ) 2 ⁒ a - 1 + ( 1 + z 2 - z ) 2 ⁒ a - 1 ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 1 2 superscript 𝑧 2 1 2 1 superscript 𝑧 2 superscript 1 superscript 𝑧 2 𝑧 2 π‘Ž 1 superscript 1 superscript 𝑧 2 𝑧 2 π‘Ž 1 {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{1}{2};-z^{2}\right)=\frac{1}{% 2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}% }-z\right)^{2a-1}\right)}} hypergeom([a, 1 - a], [(1)/(2)], - (z)^(2))=(1)/(2*sqrt(1 + (z)^(2)))*((sqrt(1 + (z)^(2))+ z)^(2*a - 1)+(sqrt(1 + (z)^(2))- z)^(2*a - 1)) Hypergeometric2F1[a, 1 - a, Divide[1,2], - (z)^(2)]=Divide[1,2*Sqrt[1 + (z)^(2)]]*((Sqrt[1 + (z)^(2)]+ z)^(2*a - 1)+(Sqrt[1 + (z)^(2)]- z)^(2*a - 1)) Successful Failure - Successful
15.4.E14 F ⁑ ( a , 1 - a ; 1 2 ; sin 2 ⁑ z ) = cos ⁑ ( ( 2 ⁒ a - 1 ) ⁒ z ) cos ⁑ z Gauss-hypergeometric-F π‘Ž 1 π‘Ž 1 2 2 𝑧 2 π‘Ž 1 𝑧 𝑧 {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{1}{2};{\sin^{2}}z\right)=% \frac{\cos\left((2a-1)z\right)}{\cos z}}} hypergeom([a, 1 - a], [(1)/(2)], (sin(z))^(2))=(cos((2*a - 1)* z))/(cos(z)) Hypergeometric2F1[a, 1 - a, Divide[1,2], (Sin[z])^(2)]=Divide[Cos[(2*a - 1)* z],Cos[z]] Failure Failure Successful Successful
15.4.E15 F ⁑ ( a , 1 - a ; 3 2 ; - z 2 ) = 1 ( 2 - 4 ⁒ a ) ⁒ z ⁒ ( ( 1 + z 2 + z ) 1 - 2 ⁒ a - ( 1 + z 2 - z ) 1 - 2 ⁒ a ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 3 2 superscript 𝑧 2 1 2 4 π‘Ž 𝑧 superscript 1 superscript 𝑧 2 𝑧 1 2 π‘Ž superscript 1 superscript 𝑧 2 𝑧 1 2 π‘Ž {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{3}{2};-z^{2}\right)=\frac{1}{% (2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z% \right)^{1-2a}\right)}} hypergeom([a, 1 - a], [(3)/(2)], - (z)^(2))=(1)/((2 - 4*a)* z)*((sqrt(1 + (z)^(2))+ z)^(1 - 2*a)-(sqrt(1 + (z)^(2))- z)^(1 - 2*a)) Hypergeometric2F1[a, 1 - a, Divide[3,2], - (z)^(2)]=Divide[1,(2 - 4*a)* z]*((Sqrt[1 + (z)^(2)]+ z)^(1 - 2*a)-(Sqrt[1 + (z)^(2)]- z)^(1 - 2*a)) Failure Failure Successful Successful
15.4.E16 F ⁑ ( a , 1 - a ; 3 2 ; sin 2 ⁑ z ) = sin ⁑ ( ( 2 ⁒ a - 1 ) ⁒ z ) ( 2 ⁒ a - 1 ) ⁒ sin ⁑ z Gauss-hypergeometric-F π‘Ž 1 π‘Ž 3 2 2 𝑧 2 π‘Ž 1 𝑧 2 π‘Ž 1 𝑧 {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{3}{2};{\sin^{2}}z\right)=% \frac{\sin\left((2a-1)z\right)}{(2a-1)\sin z}}} hypergeom([a, 1 - a], [(3)/(2)], (sin(z))^(2))=(sin((2*a - 1)* z))/((2*a - 1)* sin(z)) Hypergeometric2F1[a, 1 - a, Divide[3,2], (Sin[z])^(2)]=Divide[Sin[(2*a - 1)* z],(2*a - 1)* Sin[z]] Successful Failure - Successful
15.4.E17 F ⁑ ( a , 1 2 + a ; 1 + 2 ⁒ a ; z ) = ( 1 2 + 1 2 ⁒ 1 - z ) - 2 ⁒ a Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 1 2 π‘Ž 𝑧 superscript 1 2 1 2 1 𝑧 2 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;1+2a;z\right)=\left(% \tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a}}} hypergeom([a, (1)/(2)+ a], [1 + 2*a], z)=((1)/(2)+(1)/(2)*sqrt(1 - z))^(- 2*a) Hypergeometric2F1[a, Divide[1,2]+ a, 1 + 2*a, z]=(Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(- 2*a) Failure Successful Successful -
15.4.E18 F ⁑ ( a , 1 2 + a ; 2 ⁒ a ; z ) = 1 1 - z ⁒ ( 1 2 + 1 2 ⁒ 1 - z ) 1 - 2 ⁒ a Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 2 π‘Ž 𝑧 1 1 𝑧 superscript 1 2 1 2 1 𝑧 1 2 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;2a;z\right)=\frac{1}{% \sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a}}} hypergeom([a, (1)/(2)+ a], [2*a], z)=(1)/(sqrt(1 - z))*((1)/(2)+(1)/(2)*sqrt(1 - z))^(1 - 2*a) Hypergeometric2F1[a, Divide[1,2]+ a, 2*a, z]=Divide[1,Sqrt[1 - z]]*(Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(1 - 2*a) Failure Successful Successful -
15.4.E19 F ⁑ ( a + 1 , b ; a ; z ) = ( 1 - ( 1 - ( b / a ) ) ⁒ z ) ⁒ ( 1 - z ) - 1 - b Gauss-hypergeometric-F π‘Ž 1 𝑏 π‘Ž 𝑧 1 1 𝑏 π‘Ž 𝑧 superscript 1 𝑧 1 𝑏 {\displaystyle{\displaystyle F\left(a+1,b;a;z\right)=\left(1-(1-(\ifrac{b}{a})% )z\right)(1-z)^{-1-b}}} hypergeom([a + 1, b], [a], z)=(1 -(1 -((b)/(a)))*z)*(1 - z)^(- 1 - b) Hypergeometric2F1[a + 1, b, a, z]=(1 -(1 -(Divide[b,a]))*z)*(1 - z)^(- 1 - b) Successful Successful - -
15.4.E20 F ⁑ ( a , b ; c ; 1 ) = Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( c - a - b ) Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 Euler-Gamma 𝑐 Euler-Gamma 𝑐 π‘Ž 𝑏 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 {\displaystyle{\displaystyle F\left(a,b;c;1\right)=\frac{\Gamma\left(c\right)% \Gamma\left(c-a-b\right)}{\Gamma\left(c-a\right)\Gamma\left(c-b\right)}}} hypergeom([a, b], [c], 1)=(GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b)) Hypergeometric2F1[a, b, c, 1]=Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]] Successful Failure -
Fail
DirectedInfinity[] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
15.4.E21 lim z β†’ 1 - ⁑ F ⁑ ( a , b ; a + b ; z ) - ln ⁑ ( 1 - z ) = Ξ“ ⁑ ( a + b ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) subscript β†’ 𝑧 limit-from 1 Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 𝑧 1 𝑧 Euler-Gamma π‘Ž 𝑏 Euler-Gamma π‘Ž Euler-Gamma 𝑏 {\displaystyle{\displaystyle\lim_{z\to 1-}\frac{F\left(a,b;a+b;z\right)}{-\ln% \left(1-z\right)}=\frac{\Gamma\left(a+b\right)}{\Gamma\left(a\right)\Gamma% \left(b\right)}}} limit((hypergeom([a, b], [a + b], z))/(- ln(1 - z)), z = 1, left)=(GAMMA(a + b))/(GAMMA(a)*GAMMA(b)) Limit[Divide[Hypergeometric2F1[a, b, a + b, z],- Log[1 - z]], z -> 1, Direction -> "FromBelow"]=Divide[Gamma[a + b],Gamma[a]*Gamma[b]] Successful Successful - -
15.4.E22 lim z β†’ 1 - ⁑ ( 1 - z ) a + b - c ⁒ ( F ⁑ ( a , b ; c ; z ) - Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( c - a - b ) Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) ) = Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( a + b - c ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) subscript β†’ 𝑧 limit-from 1 superscript 1 𝑧 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Euler-Gamma 𝑐 Euler-Gamma 𝑐 π‘Ž 𝑏 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 Euler-Gamma 𝑐 Euler-Gamma π‘Ž 𝑏 𝑐 Euler-Gamma π‘Ž Euler-Gamma 𝑏 {\displaystyle{\displaystyle\lim_{z\to 1-}(1-z)^{a+b-c}\left(F\left(a,b;c;z% \right)-\frac{\Gamma\left(c\right)\Gamma\left(c-a-b\right)}{\Gamma\left(c-a% \right)\Gamma\left(c-b\right)}\right)=\frac{\Gamma\left(c\right)\Gamma\left(a+% b-c\right)}{\Gamma\left(a\right)\Gamma\left(b\right)}}} limit((1 - z)^(a + b - c)*(hypergeom([a, b], [c], z)-(GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))), z = 1, left)=(GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b)) Limit[(1 - z)^(a + b - c)*(Hypergeometric2F1[a, b, c, z]-Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]), z -> 1, Direction -> "FromBelow"]=Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]] Failure Failure Skip Skip
15.4.E23 lim z β†’ 1 - ⁑ F ⁑ ( a , b ; c ; z ) ( 1 - z ) c - a - b = Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( a + b - c ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) subscript β†’ 𝑧 limit-from 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Euler-Gamma 𝑐 Euler-Gamma π‘Ž 𝑏 𝑐 Euler-Gamma π‘Ž Euler-Gamma 𝑏 {\displaystyle{\displaystyle\lim_{z\to 1-}\frac{F\left(a,b;c;z\right)}{(1-z)^{% c-a-b}}=\frac{\Gamma\left(c\right)\Gamma\left(a+b-c\right)}{\Gamma\left(a% \right)\Gamma\left(b\right)}}} limit((hypergeom([a, b], [c], z))/((1 - z)^(c - a - b)), z = 1, left)=(GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b)) Limit[Divide[Hypergeometric2F1[a, b, c, z],(1 - z)^(c - a - b)], z -> 1, Direction -> "FromBelow"]=Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]] Failure Failure Skip
Fail
DirectedInfinity[] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
15.4.E24 F ⁑ ( - n , b ; c ; 1 ) = ( c - b ) n ( c ) n Gauss-hypergeometric-F 𝑛 𝑏 𝑐 1 Pochhammer 𝑐 𝑏 𝑛 Pochhammer 𝑐 𝑛 {\displaystyle{\displaystyle F\left(-n,b;c;1\right)=\frac{{\left(c-b\right)_{n% }}}{{\left(c\right)_{n}}}}} hypergeom([- n, b], [c], 1)=(pochhammer(c - b, n))/(pochhammer(c, n)) Hypergeometric2F1[- n, b, c, 1]=Divide[Pochhammer[c - b, n],Pochhammer[c, n]] Successful Failure - Successful
15.4.E25 βˆ‘ n = - ∞ ∞ Ξ“ ⁑ ( a + n ) ⁒ Ξ“ ⁑ ( b + n ) Ξ“ ⁑ ( c + n ) ⁒ Ξ“ ⁑ ( d + n ) = Ο€ 2 sin ⁑ ( Ο€ ⁒ a ) ⁒ sin ⁑ ( Ο€ ⁒ b ) ⁒ Ξ“ ⁑ ( c + d - a - b - 1 ) Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( d - a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ Ξ“ ⁑ ( d - b ) superscript subscript 𝑛 Euler-Gamma π‘Ž 𝑛 Euler-Gamma 𝑏 𝑛 Euler-Gamma 𝑐 𝑛 Euler-Gamma 𝑑 𝑛 superscript πœ‹ 2 πœ‹ π‘Ž πœ‹ 𝑏 Euler-Gamma 𝑐 𝑑 π‘Ž 𝑏 1 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑑 π‘Ž Euler-Gamma 𝑐 𝑏 Euler-Gamma 𝑑 𝑏 {\displaystyle{\displaystyle\sum_{n=-\infty}^{\infty}\frac{\Gamma\left(a+n% \right)\Gamma\left(b+n\right)}{\Gamma\left(c+n\right)\Gamma\left(d+n\right)}=% \frac{\pi^{2}}{\sin\left(\pi a\right)\sin\left(\pi b\right)}\*\frac{\Gamma% \left(c+d-a-b-1\right)}{\Gamma\left(c-a\right)\Gamma\left(d-a\right)\Gamma% \left(c-b\right)\Gamma\left(d-b\right)}}} sum((GAMMA(a + n)*GAMMA(b + n))/(GAMMA(c + n)*GAMMA(d + n)), n = - infinity..infinity)=((Pi)^(2))/(sin(Pi*a)*sin(Pi*b))*(GAMMA(c + d - a - b - 1))/(GAMMA(c - a)*GAMMA(d - a)*GAMMA(c - b)*GAMMA(d - b)) Sum[Divide[Gamma[a + n]*Gamma[b + n],Gamma[c + n]*Gamma[d + n]], {n, - Infinity, Infinity}]=Divide[(Pi)^(2),Sin[Pi*a]*Sin[Pi*b]]*Divide[Gamma[c + d - a - b - 1],Gamma[c - a]*Gamma[d - a]*Gamma[c - b]*Gamma[d - b]] Failure Failure Skip Error
15.4.E26 F ⁑ ( a , b ; a - b + 1 ; - 1 ) = Ξ“ ⁑ ( a - b + 1 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ a + 1 ) Ξ“ ⁑ ( a + 1 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ a - b + 1 ) Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 1 1 Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma 1 2 π‘Ž 1 Euler-Gamma π‘Ž 1 Euler-Gamma 1 2 π‘Ž 𝑏 1 {\displaystyle{\displaystyle F\left(a,b;a-b+1;-1\right)=\frac{\Gamma\left(a-b+% 1\right)\Gamma\left(\tfrac{1}{2}a+1\right)}{\Gamma\left(a+1\right)\Gamma\left(% \tfrac{1}{2}a-b+1\right)}}} hypergeom([a, b], [a - b + 1], - 1)=(GAMMA(a - b + 1)*GAMMA((1)/(2)*a + 1))/(GAMMA(a + 1)*GAMMA((1)/(2)*a - b + 1)) Hypergeometric2F1[a, b, a - b + 1, - 1]=Divide[Gamma[a - b + 1]*Gamma[Divide[1,2]*a + 1],Gamma[a + 1]*Gamma[Divide[1,2]*a - b + 1]] Successful Successful - -
15.4.E27 F ⁑ ( 1 , a ; a + 1 ; - 1 ) = 1 2 ⁒ a ⁒ ( ψ ⁑ ( 1 2 ⁒ a + 1 2 ) - ψ ⁑ ( 1 2 ⁒ a ) ) Gauss-hypergeometric-F 1 π‘Ž π‘Ž 1 1 1 2 π‘Ž digamma 1 2 π‘Ž 1 2 digamma 1 2 π‘Ž {\displaystyle{\displaystyle F\left(1,a;a+1;-1\right)=\tfrac{1}{2}a\left(\psi% \left(\tfrac{1}{2}a+\tfrac{1}{2}\right)-\psi\left(\tfrac{1}{2}a\right)\right)}} hypergeom([1, a], [a + 1], - 1)=(1)/(2)*a*(Psi((1)/(2)*a +(1)/(2))- Psi((1)/(2)*a)) Hypergeometric2F1[1, a, a + 1, - 1]=Divide[1,2]*a*(PolyGamma[Divide[1,2]*a +Divide[1,2]]- PolyGamma[Divide[1,2]*a]) Successful Successful - -
15.4.E28 F ⁑ ( a , b ; 1 2 ⁒ a + 1 2 ⁒ b + 1 2 ; 1 2 ) = Ο€ ⁒ Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ⁒ b + 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b + 1 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 1 2 𝑏 1 2 1 2 πœ‹ Euler-Gamma 1 2 π‘Ž 1 2 𝑏 1 2 Euler-Gamma 1 2 π‘Ž 1 2 Euler-Gamma 1 2 𝑏 1 2 {\displaystyle{\displaystyle F\left(a,b;\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{% 2};\tfrac{1}{2}\right)=\sqrt{\pi}\frac{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}b% +\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}\right)\Gamma\left% (\tfrac{1}{2}b+\tfrac{1}{2}\right)}}} hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b +(1)/(2)], (1)/(2))=sqrt(Pi)*(GAMMA((1)/(2)*a +(1)/(2)*b +(1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b +(1)/(2))) Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b +Divide[1,2], Divide[1,2]]=Sqrt[Pi]*Divide[Gamma[Divide[1,2]*a +Divide[1,2]*b +Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b +Divide[1,2]]] Successful Successful - -
15.4.E29 F ⁑ ( a , b ; 1 2 ⁒ a + 1 2 ⁒ b + 1 ; 1 2 ) = 2 ⁒ Ο€ a - b ⁒ Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ⁒ b + 1 ) ⁒ ( 1 Ξ“ ⁑ ( 1 2 ⁒ a ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b + 1 2 ) - 1 Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b ) ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 1 2 𝑏 1 1 2 2 πœ‹ π‘Ž 𝑏 Euler-Gamma 1 2 π‘Ž 1 2 𝑏 1 1 Euler-Gamma 1 2 π‘Ž Euler-Gamma 1 2 𝑏 1 2 1 Euler-Gamma 1 2 π‘Ž 1 2 Euler-Gamma 1 2 𝑏 {\displaystyle{\displaystyle F\left(a,b;\tfrac{1}{2}a+\tfrac{1}{2}b+1;\tfrac{1% }{2}\right)=\frac{2\sqrt{\pi}}{a-b}\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}b+1% \right)\*\left(\frac{1}{\Gamma\left(\tfrac{1}{2}a\right)\Gamma\left(\tfrac{1}{% 2}b+\tfrac{1}{2}\right)}-\frac{1}{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}\right% )\Gamma\left(\tfrac{1}{2}b\right)}\right)}} hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b + 1], (1)/(2))=(2*sqrt(Pi))/(a - b)*GAMMA((1)/(2)*a +(1)/(2)*b + 1)*((1)/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*b +(1)/(2)))-(1)/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b))) Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b + 1, Divide[1,2]]=Divide[2*Sqrt[Pi],a - b]*Gamma[Divide[1,2]*a +Divide[1,2]*b + 1]*(Divide[1,Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*b +Divide[1,2]]]-Divide[1,Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b]]) Failure Failure
Fail
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2)}
Float(undefined)+Float(undefined)*I <- {a = 2^(1/2)-I*2^(1/2), b = 2^(1/2)-I*2^(1/2)}
Float(undefined)+Float(undefined)*I <- {a = -2^(1/2)-I*2^(1/2), b = -2^(1/2)-I*2^(1/2)}
Float(undefined)+Float(undefined)*I <- {a = -2^(1/2)+I*2^(1/2), b = -2^(1/2)+I*2^(1/2)}
Successful
15.4.E30 F ⁑ ( a , 1 - a ; b ; 1 2 ) = 2 1 - b ⁒ Ο€ ⁒ Ξ“ ⁑ ( b ) Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ⁒ b ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b - 1 2 ⁒ a + 1 2 ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 𝑏 1 2 superscript 2 1 𝑏 πœ‹ Euler-Gamma 𝑏 Euler-Gamma 1 2 π‘Ž 1 2 𝑏 Euler-Gamma 1 2 𝑏 1 2 π‘Ž 1 2 {\displaystyle{\displaystyle F\left(a,1-a;b;\tfrac{1}{2}\right)=\frac{2^{1-b}% \sqrt{\pi}\Gamma\left(b\right)}{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}b\right)% \Gamma\left(\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}\right)}}} hypergeom([a, 1 - a], [b], (1)/(2))=((2)^(1 - b)*sqrt(Pi)*GAMMA(b))/(GAMMA((1)/(2)*a +(1)/(2)*b)*GAMMA((1)/(2)*b -(1)/(2)*a +(1)/(2))) Hypergeometric2F1[a, 1 - a, b, Divide[1,2]]=Divide[(2)^(1 - b)*Sqrt[Pi]*Gamma[b],Gamma[Divide[1,2]*a +Divide[1,2]*b]*Gamma[Divide[1,2]*b -Divide[1,2]*a +Divide[1,2]]] Successful Failure - Successful
15.4.E31 F ⁑ ( a , 1 2 + a ; 3 2 - 2 ⁒ a ; - 1 3 ) = ( 8 9 ) - 2 ⁒ a ⁒ Ξ“ ⁑ ( 4 3 ) ⁒ Ξ“ ⁑ ( 3 2 - 2 ⁒ a ) Ξ“ ⁑ ( 3 2 ) ⁒ Ξ“ ⁑ ( 4 3 - 2 ⁒ a ) Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 3 2 2 π‘Ž 1 3 superscript 8 9 2 π‘Ž Euler-Gamma 4 3 Euler-Gamma 3 2 2 π‘Ž Euler-Gamma 3 2 Euler-Gamma 4 3 2 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{3}{2}-2a;-\tfrac{1% }{3}\right)=\left(\frac{8}{9}\right)^{-2a}\frac{\Gamma\left(\tfrac{4}{3}\right% )\Gamma\left(\tfrac{3}{2}-2a\right)}{\Gamma\left(\tfrac{3}{2}\right)\Gamma% \left(\tfrac{4}{3}-2a\right)}}} hypergeom([a, (1)/(2)+ a], [(3)/(2)- 2*a], -(1)/(3))=((8)/(9))^(- 2*a)*(GAMMA((4)/(3))*GAMMA((3)/(2)- 2*a))/(GAMMA((3)/(2))*GAMMA((4)/(3)- 2*a)) Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2]- 2*a, -Divide[1,3]]=(Divide[8,9])^(- 2*a)*Divide[Gamma[Divide[4,3]]*Gamma[Divide[3,2]- 2*a],Gamma[Divide[3,2]]*Gamma[Divide[4,3]- 2*a]] Failure Failure Successful Successful
15.4.E32 F ⁑ ( a , 1 2 + a ; 5 6 + 2 3 ⁒ a ; 1 9 ) = Ο€ ⁒ ( 3 4 ) a ⁒ Ξ“ ⁑ ( 5 6 + 2 3 ⁒ a ) Ξ“ ⁑ ( 1 2 + 1 3 ⁒ a ) ⁒ Ξ“ ⁑ ( 5 6 + 1 3 ⁒ a ) Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 5 6 2 3 π‘Ž 1 9 πœ‹ superscript 3 4 π‘Ž Euler-Gamma 5 6 2 3 π‘Ž Euler-Gamma 1 2 1 3 π‘Ž Euler-Gamma 5 6 1 3 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{5}{6}+\tfrac{2}{3}% a;\tfrac{1}{9}\right)=\sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\Gamma\left(% \tfrac{5}{6}+\tfrac{2}{3}a\right)}{\Gamma\left(\tfrac{1}{2}+\tfrac{1}{3}a% \right)\Gamma\left(\tfrac{5}{6}+\tfrac{1}{3}a\right)}}} hypergeom([a, (1)/(2)+ a], [(5)/(6)+(2)/(3)*a], (1)/(9))=sqrt(Pi)*((3)/(4))^(a)*(GAMMA((5)/(6)+(2)/(3)*a))/(GAMMA((1)/(2)+(1)/(3)*a)*GAMMA((5)/(6)+(1)/(3)*a)) Hypergeometric2F1[a, Divide[1,2]+ a, Divide[5,6]+Divide[2,3]*a, Divide[1,9]]=Sqrt[Pi]*(Divide[3,4])^(a)*Divide[Gamma[Divide[5,6]+Divide[2,3]*a],Gamma[Divide[1,2]+Divide[1,3]*a]*Gamma[Divide[5,6]+Divide[1,3]*a]] Failure Failure Successful Successful
15.4.E33 F ⁑ ( 3 ⁒ a , 1 3 + a ; 2 3 + 2 ⁒ a ; e i ⁒ Ο€ / 3 ) = Ο€ ⁒ e i ⁒ Ο€ ⁒ a / 2 ⁒ ( 16 27 ) ( 3 ⁒ a + 1 ) / 6 ⁒ Ξ“ ⁑ ( 5 6 + a ) Ξ“ ⁑ ( 2 3 + a ) ⁒ Ξ“ ⁑ ( 2 3 ) Gauss-hypergeometric-F 3 π‘Ž 1 3 π‘Ž 2 3 2 π‘Ž superscript 𝑒 imaginary-unit πœ‹ 3 πœ‹ superscript 𝑒 imaginary-unit πœ‹ π‘Ž 2 superscript 16 27 3 π‘Ž 1 6 Euler-Gamma 5 6 π‘Ž Euler-Gamma 2 3 π‘Ž Euler-Gamma 2 3 {\displaystyle{\displaystyle F\left(3a,\tfrac{1}{3}+a;\tfrac{2}{3}+2a;e^{% \ifrac{\mathrm{i}\pi}{3}}\right)=\sqrt{\pi}e^{\ifrac{\mathrm{i}\pi a}{2}}\left% (\frac{16}{27}\right)^{(3a+1)/6}\frac{\Gamma\left(\frac{5}{6}+a\right)}{\Gamma% \left(\frac{2}{3}+a\right)\Gamma\left(\frac{2}{3}\right)}}} hypergeom([3*a, (1)/(3)+ a], [(2)/(3)+ 2*a], exp((I*Pi)/(3)))=sqrt(Pi)*exp((I*Pi*a)/(2))*((16)/(27))^((3*a + 1)/ 6)*(GAMMA((5)/(6)+ a))/(GAMMA((2)/(3)+ a)*GAMMA((2)/(3))) Hypergeometric2F1[3*a, Divide[1,3]+ a, Divide[2,3]+ 2*a, Exp[Divide[I*Pi,3]]]=Sqrt[Pi]*Exp[Divide[I*Pi*a,2]]*(Divide[16,27])^((3*a + 1)/ 6)*Divide[Gamma[Divide[5,6]+ a],Gamma[Divide[2,3]+ a]*Gamma[Divide[2,3]]] Failure Failure Successful Successful
15.5.E1 d d z ⁑ F ⁑ ( a , b ; c ; z ) = a ⁒ b c ⁒ F ⁑ ( a + 1 , b + 1 ; c + 1 ; z ) derivative 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 1 𝑏 1 𝑐 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}F\left(a,b;c;z\right% )=\frac{ab}{c}F\left(a+1,b+1;c+1;z\right)}} diff(hypergeom([a, b], [c], z), z)=(a*b)/(c)*hypergeom([a + 1, b + 1], [c + 1], z) D[Hypergeometric2F1[a, b, c, z], z]=Divide[a*b,c]*Hypergeometric2F1[a + 1, b + 1, c + 1, z] Successful Successful - -
15.5.E2 d n d z n ⁑ F ⁑ ( a , b ; c ; z ) = ( a ) n ⁒ ( b ) n ( c ) n ⁒ F ⁑ ( a + n , b + n ; c + n ; z ) derivative 𝑧 𝑛 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer π‘Ž 𝑛 Pochhammer 𝑏 𝑛 Pochhammer 𝑐 𝑛 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑛 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}F\left(a% ,b;c;z\right)=\frac{{\left(a\right)_{n}}{\left(b\right)_{n}}}{{\left(c\right)_% {n}}}\*F\left(a+n,b+n;c+n;z\right)}} diff(hypergeom([a, b], [c], z), [z$(n)])=(pochhammer(a, n)*pochhammer(b, n))/(pochhammer(c, n))* hypergeom([a + n, b + n], [c + n], z) D[Hypergeometric2F1[a, b, c, z], {z, n}]=Divide[Pochhammer[a, n]*Pochhammer[b, n],Pochhammer[c, n]]* Hypergeometric2F1[a + n, b + n, c + n, z] Successful Successful - -
15.5.E3 ( z ⁒ d d z ⁑ z ) n ⁒ ( z a - 1 ⁒ F ⁑ ( a , b ; c ; z ) ) = ( a ) n ⁒ z a + n - 1 ⁒ F ⁑ ( a + n , b ; c ; z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑧 π‘Ž 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer π‘Ž 𝑛 superscript 𝑧 π‘Ž 𝑛 1 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(z^{a-1}F\left(a,b;c;z\right)\right)={\left(a\right)_{n}}z^{a+n-1}F\left(% a+n,b;c;z\right)}} (z*diff(z, z))^(n)*((z)^(a - 1)* hypergeom([a, b], [c], z))= pochhammer(a, n)*(z)^(a + n - 1)* hypergeom([a + n, b], [c], z) (z*D[z, z])^(n)*((z)^(a - 1)* Hypergeometric2F1[a, b, c, z])= Pochhammer[a, n]*(z)^(a + n - 1)* Hypergeometric2F1[a + n, b, c, z] Failure Failure
Fail
-.6225095031e-1-.5644186814e-1*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
.1785845766+.2832629970e-1*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
-.7314115943-.4867699196*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
-34.57094218-72.21034026*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
15.5.E4 d n d z n ⁑ ( z c - 1 ⁒ F ⁑ ( a , b ; c ; z ) ) = ( c - n ) n ⁒ z c - n - 1 ⁒ F ⁑ ( a , b ; c - n ; z ) derivative 𝑧 𝑛 superscript 𝑧 𝑐 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer 𝑐 𝑛 𝑛 superscript 𝑧 𝑐 𝑛 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(z^% {c-1}F\left(a,b;c;z\right)\right)={\left(c-n\right)_{n}}z^{c-n-1}F\left(a,b;c-% n;z\right)}} diff((z)^(c - 1)* hypergeom([a, b], [c], z), [z$(n)])= pochhammer(c - n, n)*(z)^(c - n - 1)* hypergeom([a, b], [c - n], z) D[(z)^(c - 1)* Hypergeometric2F1[a, b, c, z], {z, n}]= Pochhammer[c - n, n]*(z)^(c - n - 1)* Hypergeometric2F1[a, b, c - n, z] Failure Failure Skip Skip
15.5.E5 ( z ⁒ d d z ⁑ z ) n ⁒ ( z c - a - 1 ⁒ ( 1 - z ) a + b - c ⁒ F ⁑ ( a , b ; c ; z ) ) = ( c - a ) n ⁒ z c - a + n - 1 ⁒ ( 1 - z ) a - n + b - c ⁒ F ⁑ ( a - n , b ; c ; z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑧 𝑐 π‘Ž 1 superscript 1 𝑧 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer 𝑐 π‘Ž 𝑛 superscript 𝑧 𝑐 π‘Ž 𝑛 1 superscript 1 𝑧 π‘Ž 𝑛 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(z^{c-a-1}(1-z)^{a+b-c}F\left(a,b;c;z\right)\right)={\left(c-a\right)_{n}% }z^{c-a+n-1}(1-z)^{a-n+b-c}\*F\left(a-n,b;c;z\right)}} (z*diff(z, z))^(n)*((z)^(c - a - 1)*(1 - z)^(a + b - c)* hypergeom([a, b], [c], z))= pochhammer(c - a, n)*(z)^(c - a + n - 1)*(1 - z)^(a - n + b - c)* hypergeom([a - n, b], [c], z) (z*D[z, z])^(n)*((z)^(c - a - 1)*(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z])= Pochhammer[c - a, n]*(z)^(c - a + n - 1)*(1 - z)^(a - n + b - c)* Hypergeometric2F1[a - n, b, c, z] Failure Failure
Fail
1.000000000-.2828427124e-9*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
1.414213562+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
.1131370849e-8+3.999999998*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
1.000000000+0.*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
15.5.E6 d n d z n ⁑ ( ( 1 - z ) a + b - c ⁒ F ⁑ ( a , b ; c ; z ) ) = ( c - a ) n ⁒ ( c - b ) n ( c ) n ⁒ ( 1 - z ) a + b - c - n ⁒ F ⁑ ( a , b ; c + n ; z ) derivative 𝑧 𝑛 superscript 1 𝑧 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer 𝑐 π‘Ž 𝑛 Pochhammer 𝑐 𝑏 𝑛 Pochhammer 𝑐 𝑛 superscript 1 𝑧 π‘Ž 𝑏 𝑐 𝑛 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left((1% -z)^{a+b-c}F\left(a,b;c;z\right)\right)=\frac{{\left(c-a\right)_{n}}{\left(c-b% \right)_{n}}}{{\left(c\right)_{n}}}(1-z)^{a+b-c-n}\*F\left(a,b;c+n;z\right)}} diff((1 - z)^(a + b - c)* hypergeom([a, b], [c], z), [z$(n)])=(pochhammer(c - a, n)*pochhammer(c - b, n))/(pochhammer(c, n))*(1 - z)^(a + b - c - n)* hypergeom([a, b], [c + n], z) D[(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z], {z, n}]=Divide[Pochhammer[c - a, n]*Pochhammer[c - b, n],Pochhammer[c, n]]*(1 - z)^(a + b - c - n)* Hypergeometric2F1[a, b, c + n, z] Failure Failure Skip Skip
15.5.E7 ( ( 1 - z ) ⁒ d d z ⁑ ( 1 - z ) ) n ⁒ ( ( 1 - z ) a - 1 ⁒ F ⁑ ( a , b ; c ; z ) ) = ( - 1 ) n ⁒ ( a ) n ⁒ ( c - b ) n ( c ) n ⁒ ( 1 - z ) a + n - 1 ⁒ F ⁑ ( a + n , b ; c + n ; z ) superscript 1 𝑧 derivative 𝑧 1 𝑧 𝑛 superscript 1 𝑧 π‘Ž 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 superscript 1 𝑛 Pochhammer π‘Ž 𝑛 Pochhammer 𝑐 𝑏 𝑛 Pochhammer 𝑐 𝑛 superscript 1 𝑧 π‘Ž 𝑛 1 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\left((1-z)\frac{\mathrm{d}}{\mathrm{d}z}(1-z)% \right)^{n}\left((1-z)^{a-1}F\left(a,b;c;z\right)\right)=(-1)^{n}\frac{{\left(% a\right)_{n}}{\left(c-b\right)_{n}}}{{\left(c\right)_{n}}}(1-z)^{a+n-1}\*F% \left(a+n,b;c+n;z\right)}} ((1 - z)*diff(1 - z, z))^(n)*((1 - z)^(a - 1)* hypergeom([a, b], [c], z))=(- 1)^(n)*(pochhammer(a, n)*pochhammer(c - b, n))/(pochhammer(c, n))*(1 - z)^(a + n - 1)* hypergeom([a + n, b], [c + n], z) ((1 - z)*D[1 - z, z])^(n)*((1 - z)^(a - 1)* Hypergeometric2F1[a, b, c, z])=(- 1)^(n)*Divide[Pochhammer[a, n]*Pochhammer[c - b, n],Pochhammer[c, n]]*(1 - z)^(a + n - 1)* Hypergeometric2F1[a + n, b, c + n, z] Failure Failure
Fail
-1.000000000+.574091994e-10*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
-.4142135623-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
1.828427125-1.171572874*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
-1.000000000+.254335130e-10*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
15.5.E8 ( ( 1 - z ) ⁒ d d z ⁑ ( 1 - z ) ) n ⁒ ( z c - 1 ⁒ ( 1 - z ) b - c ⁒ F ⁑ ( a , b ; c ; z ) ) = ( c - n ) n ⁒ z c - n - 1 ⁒ ( 1 - z ) b - c + n ⁒ F ⁑ ( a - n , b ; c - n ; z ) superscript 1 𝑧 derivative 𝑧 1 𝑧 𝑛 superscript 𝑧 𝑐 1 superscript 1 𝑧 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer 𝑐 𝑛 𝑛 superscript 𝑧 𝑐 𝑛 1 superscript 1 𝑧 𝑏 𝑐 𝑛 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\left((1-z)\frac{\mathrm{d}}{\mathrm{d}z}(1-z)% \right)^{n}\left(z^{c-1}(1-z)^{b-c}F\left(a,b;c;z\right)\right)={\left(c-n% \right)_{n}}z^{c-n-1}(1-z)^{b-c+n}\*F\left(a-n,b;c-n;z\right)}} ((1 - z)*diff(1 - z, z))^(n)*((z)^(c - 1)*(1 - z)^(b - c)* hypergeom([a, b], [c], z))= pochhammer(c - n, n)*(z)^(c - n - 1)*(1 - z)^(b - c + n)* hypergeom([a - n, b], [c - n], z) ((1 - z)*D[1 - z, z])^(n)*((z)^(c - 1)*(1 - z)^(b - c)* Hypergeometric2F1[a, b, c, z])= Pochhammer[c - n, n]*(z)^(c - n - 1)*(1 - z)^(b - c + n)* Hypergeometric2F1[a - n, b, c - n, z] Failure Failure
Fail
.7567079467e-2-.4498677196e-1*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 1}
.3281146176e-1-.3488816280e-1*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 2}
.1860334783e-1+.1631943039e-1*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), n = 3}
-43.13343073-5.34730687*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
15.5.E9 d n d z n ⁑ ( z c - 1 ⁒ ( 1 - z ) a + b - c ⁒ F ⁑ ( a , b ; c ; z ) ) = ( c - n ) n ⁒ z c - n - 1 ⁒ ( 1 - z ) a + b - c - n ⁒ F ⁑ ( a - n , b - n ; c - n ; z ) derivative 𝑧 𝑛 superscript 𝑧 𝑐 1 superscript 1 𝑧 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer 𝑐 𝑛 𝑛 superscript 𝑧 𝑐 𝑛 1 superscript 1 𝑧 π‘Ž 𝑏 𝑐 𝑛 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑛 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(z^% {c-1}(1-z)^{a+b-c}F\left(a,b;c;z\right)\right)={\left(c-n\right)_{n}}z^{c-n-1}% (1-z)^{a+b-c-n}\*F\left(a-n,b-n;c-n;z\right)}} diff((z)^(c - 1)*(1 - z)^(a + b - c)* hypergeom([a, b], [c], z), [z$(n)])= pochhammer(c - n, n)*(z)^(c - n - 1)*(1 - z)^(a + b - c - n)* hypergeom([a - n, b - n], [c - n], z) D[(z)^(c - 1)*(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z], {z, n}]= Pochhammer[c - n, n]*(z)^(c - n - 1)*(1 - z)^(a + b - c - n)* Hypergeometric2F1[a - n, b - n, c - n, z] Failure Failure Skip Skip
15.5.E10 ( z ⁒ d d z ⁑ z ) n = z n ⁒ d n d z n ⁑ z n superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑧 𝑛 derivative 𝑧 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}=% z^{n}\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}z^{n}}} (z*diff(z, z))^(n)= (z)^(n)* diff((z)^(n), [z$(n)]) (z*D[z, z])^(n)= (z)^(n)* D[(z)^(n), {z, n}] Failure Failure
Fail
28.28427122-28.28427122*I <- {z = 2^(1/2)+I*2^(1/2), n = 3}
28.28427122+28.28427122*I <- {z = 2^(1/2)-I*2^(1/2), n = 3}
-28.28427122+28.28427122*I <- {z = -2^(1/2)-I*2^(1/2), n = 3}
-28.28427122-28.28427122*I <- {z = -2^(1/2)+I*2^(1/2), n = 3}
Fail
Complex[28.284271247461902, -28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[28.284271247461902, 28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-28.284271247461902, 28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-28.284271247461902, -28.284271247461902] <- {Rule[n, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
15.5.E11 ( c - a ) ⁒ F ⁑ ( a - 1 , b ; c ; z ) + ( 2 ⁒ a - c + ( b - a ) ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) + a ⁒ ( z - 1 ) ⁒ F ⁑ ( a + 1 , b ; c ; z ) = 0 𝑐 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 2 π‘Ž 𝑐 𝑏 π‘Ž 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž 𝑧 1 Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 0 {\displaystyle{\displaystyle(c-a)F\left(a-1,b;c;z\right)+\left(2a-c+(b-a)z% \right)F\left(a,b;c;z\right)+a(z-1)F\left(a+1,b;c;z\right)=0}} (c - a)* hypergeom([a - 1, b], [c], z)+(2*a - c +(b - a)*z)* hypergeom([a, b], [c], z)+ a*(z - 1)* hypergeom([a + 1, b], [c], z)= 0 (c - a)* Hypergeometric2F1[a - 1, b, c, z]+(2*a - c +(b - a)*z)* Hypergeometric2F1[a, b, c, z]+ a*(z - 1)* Hypergeometric2F1[a + 1, b, c, z]= 0 Successful Successful - -
15.5.E12 ( b - a ) ⁒ F ⁑ ( a , b ; c ; z ) + a ⁒ F ⁑ ( a + 1 , b ; c ; z ) - b ⁒ F ⁑ ( a , b + 1 ; c ; z ) = 0 𝑏 π‘Ž Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑏 Gauss-hypergeometric-F π‘Ž 𝑏 1 𝑐 𝑧 0 {\displaystyle{\displaystyle(b-a)F\left(a,b;c;z\right)+aF\left(a+1,b;c;z\right% )-bF\left(a,b+1;c;z\right)=0}} (b - a)* hypergeom([a, b], [c], z)+ a*hypergeom([a + 1, b], [c], z)- b*hypergeom([a, b + 1], [c], z)= 0 (b - a)* Hypergeometric2F1[a, b, c, z]+ a*Hypergeometric2F1[a + 1, b, c, z]- b*Hypergeometric2F1[a, b + 1, c, z]= 0 Successful Successful - -
15.5.E13 ( c - a - b ) ⁒ F ⁑ ( a , b ; c ; z ) + a ⁒ ( 1 - z ) ⁒ F ⁑ ( a + 1 , b ; c ; z ) - ( c - b ) ⁒ F ⁑ ( a , b - 1 ; c ; z ) = 0 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž 1 𝑧 Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑐 𝑏 Gauss-hypergeometric-F π‘Ž 𝑏 1 𝑐 𝑧 0 {\displaystyle{\displaystyle(c-a-b)F\left(a,b;c;z\right)+a(1-z)F\left(a+1,b;c;% z\right)-(c-b)F\left(a,b-1;c;z\right)=0}} (c - a - b)* hypergeom([a, b], [c], z)+ a*(1 - z)* hypergeom([a + 1, b], [c], z)-(c - b)* hypergeom([a, b - 1], [c], z)= 0 (c - a - b)* Hypergeometric2F1[a, b, c, z]+ a*(1 - z)* Hypergeometric2F1[a + 1, b, c, z]-(c - b)* Hypergeometric2F1[a, b - 1, c, z]= 0 Successful Successful - -
15.5.E14 c ⁒ ( a + ( b - c ) ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) - a ⁒ c ⁒ ( 1 - z ) ⁒ F ⁑ ( a + 1 , b ; c ; z ) + ( c - a ) ⁒ ( c - b ) ⁒ z ⁒ F ⁑ ( a , b ; c + 1 ; z ) = 0 𝑐 π‘Ž 𝑏 𝑐 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž 𝑐 1 𝑧 Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑐 π‘Ž 𝑐 𝑏 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 0 {\displaystyle{\displaystyle c\left(a+(b-c)z\right)F\left(a,b;c;z\right)-ac(1-% z)F\left(a+1,b;c;z\right)+(c-a)(c-b)zF\left(a,b;c+1;z\right)=0}} c*(a +(b - c)*z)* hypergeom([a, b], [c], z)- a*c*(1 - z)* hypergeom([a + 1, b], [c], z)+(c - a)*(c - b)* z*hypergeom([a, b], [c + 1], z)= 0 c*(a +(b - c)*z)* Hypergeometric2F1[a, b, c, z]- a*c*(1 - z)* Hypergeometric2F1[a + 1, b, c, z]+(c - a)*(c - b)* z*Hypergeometric2F1[a, b, c + 1, z]= 0 Successful Successful - -
15.5.E15 ( c - a - 1 ) ⁒ F ⁑ ( a , b ; c ; z ) + a ⁒ F ⁑ ( a + 1 , b ; c ; z ) - ( c - 1 ) ⁒ F ⁑ ( a , b ; c - 1 ; z ) = 0 𝑐 π‘Ž 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑐 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 0 {\displaystyle{\displaystyle(c-a-1)F\left(a,b;c;z\right)+aF\left(a+1,b;c;z% \right)-(c-1)F\left(a,b;c-1;z\right)=0}} (c - a - 1)* hypergeom([a, b], [c], z)+ a*hypergeom([a + 1, b], [c], z)-(c - 1)* hypergeom([a, b], [c - 1], z)= 0 (c - a - 1)* Hypergeometric2F1[a, b, c, z]+ a*Hypergeometric2F1[a + 1, b, c, z]-(c - 1)* Hypergeometric2F1[a, b, c - 1, z]= 0 Successful Successful - -
15.5.E16 c ⁒ ( 1 - z ) ⁒ F ⁑ ( a , b ; c ; z ) - c ⁒ F ⁑ ( a - 1 , b ; c ; z ) + ( c - b ) ⁒ z ⁒ F ⁑ ( a , b ; c + 1 ; z ) = 0 𝑐 1 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑐 Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑐 𝑏 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 0 {\displaystyle{\displaystyle c(1-z)F\left(a,b;c;z\right)-cF\left(a-1,b;c;z% \right)+(c-b)zF\left(a,b;c+1;z\right)=0}} c*(1 - z)* hypergeom([a, b], [c], z)- c*hypergeom([a - 1, b], [c], z)+(c - b)* z*hypergeom([a, b], [c + 1], z)= 0 c*(1 - z)* Hypergeometric2F1[a, b, c, z]- c*Hypergeometric2F1[a - 1, b, c, z]+(c - b)* z*Hypergeometric2F1[a, b, c + 1, z]= 0 Successful Successful - -
15.5.E17 ( a - 1 + ( b + 1 - c ) ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) + ( c - a ) ⁒ F ⁑ ( a - 1 , b ; c ; z ) - ( c - 1 ) ⁒ ( 1 - z ) ⁒ F ⁑ ( a , b ; c - 1 ; z ) = 0 π‘Ž 1 𝑏 1 𝑐 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑐 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑐 1 1 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 0 {\displaystyle{\displaystyle\left(a-1+(b+1-c)z\right)F\left(a,b;c;z\right)+(c-% a)F\left(a-1,b;c;z\right)-(c-1)(1-z)F\left(a,b;c-1;z\right)=0}} (a - 1 +(b + 1 - c)*z)* hypergeom([a, b], [c], z)+(c - a)* hypergeom([a - 1, b], [c], z)-(c - 1)*(1 - z)* hypergeom([a, b], [c - 1], z)= 0 (a - 1 +(b + 1 - c)*z)* Hypergeometric2F1[a, b, c, z]+(c - a)* Hypergeometric2F1[a - 1, b, c, z]-(c - 1)*(1 - z)* Hypergeometric2F1[a, b, c - 1, z]= 0 Successful Successful - -
15.5.E18 c ⁒ ( c - 1 ) ⁒ ( z - 1 ) ⁒ F ⁑ ( a , b ; c - 1 ; z ) + c ⁒ ( c - 1 - ( 2 ⁒ c - a - b - 1 ) ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) + ( c - a ) ⁒ ( c - b ) ⁒ z ⁒ F ⁑ ( a , b ; c + 1 ; z ) = 0 𝑐 𝑐 1 𝑧 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 𝑐 𝑐 1 2 𝑐 π‘Ž 𝑏 1 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑐 π‘Ž 𝑐 𝑏 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 0 {\displaystyle{\displaystyle c(c-1)(z-1)F\left(a,b;c-1;z\right)+{c\left(c-1-(2% c-a-b-1)z\right)}F\left(a,b;c;z\right)+(c-a)(c-b)zF\left(a,b;c+1;z\right)=0}} c*(c - 1)*(z - 1)* hypergeom([a, b], [c - 1], z)+c*(c - 1 -(2*c - a - b - 1)*z)*hypergeom([a, b], [c], z)+(c - a)*(c - b)* z*hypergeom([a, b], [c + 1], z)= 0 c*(c - 1)*(z - 1)* Hypergeometric2F1[a, b, c - 1, z]+c*(c - 1 -(2*c - a - b - 1)*z)*Hypergeometric2F1[a, b, c, z]+(c - a)*(c - b)* z*Hypergeometric2F1[a, b, c + 1, z]= 0 Successful Successful - -
15.5.E19 z ⁒ ( 1 - z ) ⁒ ( a + 1 ) ⁒ ( b + 1 ) ⁒ F ⁑ ( a + 2 , b + 2 ; c + 2 ; z ) + ( c - ( a + b + 1 ) ⁒ z ) ⁒ ( c + 1 ) ⁒ F ⁑ ( a + 1 , b + 1 ; c + 1 ; z ) - c ⁒ ( c + 1 ) ⁒ F ⁑ ( a , b ; c ; z ) = 0 𝑧 1 𝑧 π‘Ž 1 𝑏 1 Gauss-hypergeometric-F π‘Ž 2 𝑏 2 𝑐 2 𝑧 𝑐 π‘Ž 𝑏 1 𝑧 𝑐 1 Gauss-hypergeometric-F π‘Ž 1 𝑏 1 𝑐 1 𝑧 𝑐 𝑐 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 0 {\displaystyle{\displaystyle{z(1-z)(a+1)(b+1)}F\left(a+2,b+2;c+2;z\right)+{(c-% (a+b+1)z)(c+1)}F\left(a+1,b+1;c+1;z\right)-{c(c+1)}F\left(a,b;c;z\right)=0}} z*(1 - z)*(a + 1)*(b + 1)*hypergeom([a + 2, b + 2], [c + 2], z)+(c -(a + b + 1)*z)*(c + 1)*hypergeom([a + 1, b + 1], [c + 1], z)-c*(c + 1)*hypergeom([a, b], [c], z)= 0 z*(1 - z)*(a + 1)*(b + 1)*Hypergeometric2F1[a + 2, b + 2, c + 2, z]+(c -(a + b + 1)*z)*(c + 1)*Hypergeometric2F1[a + 1, b + 1, c + 1, z]-c*(c + 1)*Hypergeometric2F1[a, b, c, z]= 0 Successful Successful - -
15.5.E20 z ⁒ ( 1 - z ) ⁒ ( d F ⁑ ( a , b ; c ; z ) / d z ) = ( c - a ) ⁒ F ⁑ ( a - 1 , b ; c ; z ) + ( a - c + b ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) 𝑧 1 𝑧 derivative Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑧 𝑐 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 π‘Ž 𝑐 𝑏 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle z(1-z)\left(\ifrac{\mathrm{d}F\left(a,b;c;z\right% )}{\mathrm{d}z}\right)=(c-a)F\left(a-1,b;c;z\right)+(a-c+bz)F\left(a,b;c;z% \right)}} z*(1 - z)*(diff(hypergeom([a, b], [c], z), z))=(c - a)* hypergeom([a - 1, b], [c], z)+(a - c + b*z)* hypergeom([a, b], [c], z) z*(1 - z)*(D[Hypergeometric2F1[a, b, c, z], z])=(c - a)* Hypergeometric2F1[a - 1, b, c, z]+(a - c + b*z)* Hypergeometric2F1[a, b, c, z] Successful Successful - -
15.5.E20 ( c - a ) ⁒ F ⁑ ( a - 1 , b ; c ; z ) + ( a - c + b ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) = ( c - b ) ⁒ F ⁑ ( a , b - 1 ; c ; z ) + ( b - c + a ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) 𝑐 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 π‘Ž 𝑐 𝑏 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑐 𝑏 Gauss-hypergeometric-F π‘Ž 𝑏 1 𝑐 𝑧 𝑏 𝑐 π‘Ž 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle(c-a)F\left(a-1,b;c;z\right)+(a-c+bz)F\left(a,b;c;% z\right)=(c-b)F\left(a,b-1;c;z\right)+(b-c+az)F\left(a,b;c;z\right)}} (c - a)* hypergeom([a - 1, b], [c], z)+(a - c + b*z)* hypergeom([a, b], [c], z)=(c - b)* hypergeom([a, b - 1], [c], z)+(b - c + a*z)* hypergeom([a, b], [c], z) (c - a)* Hypergeometric2F1[a - 1, b, c, z]+(a - c + b*z)* Hypergeometric2F1[a, b, c, z]=(c - b)* Hypergeometric2F1[a, b - 1, c, z]+(b - c + a*z)* Hypergeometric2F1[a, b, c, z] Successful Successful - -
15.5.E21 c ⁒ ( 1 - z ) ⁒ ( d F ⁑ ( a , b ; c ; z ) / d z ) = ( c - a ) ⁒ ( c - b ) ⁒ F ⁑ ( a , b ; c + 1 ; z ) + c ⁒ ( a + b - c ) ⁒ F ⁑ ( a , b ; c ; z ) 𝑐 1 𝑧 derivative Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑧 𝑐 π‘Ž 𝑐 𝑏 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 𝑐 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle c(1-z)\left(\ifrac{\mathrm{d}F\left(a,b;c;z\right% )}{\mathrm{d}z}\right)=(c-a)(c-b)F\left(a,b;c+1;z\right)+c(a+b-c)F\left(a,b;c;% z\right)}} c*(1 - z)*(diff(hypergeom([a, b], [c], z), z))=(c - a)*(c - b)* hypergeom([a, b], [c + 1], z)+ c*(a + b - c)* hypergeom([a, b], [c], z) c*(1 - z)*(D[Hypergeometric2F1[a, b, c, z], z])=(c - a)*(c - b)* Hypergeometric2F1[a, b, c + 1, z]+ c*(a + b - c)* Hypergeometric2F1[a, b, c, z] Successful Successful - -
15.8.E1 𝐅 ⁑ ( a , b c ; z ) = ( 1 - z ) - a ⁒ 𝐅 ⁑ ( a , c - b c ; z z - 1 ) scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript 1 𝑧 π‘Ž scaled-hypergeometric-bold-F π‘Ž 𝑐 𝑏 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop c};z\right)=(1-z)^{-a}% \mathbf{F}\left({a,c-b\atop c};\frac{z}{z-1}\right)}} hypergeom([a, b], [c], z)/GAMMA(c)=(1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1))/GAMMA(c) Hypergeometric2F1Regularized[a, b, c, z]=(1 - z)^(- a)* Hypergeometric2F1Regularized[a, c - b, c, Divide[z,z - 1]] Failure Failure Skip Skip
15.8.E1 ( 1 - z ) - a ⁒ 𝐅 ⁑ ( a , c - b c ; z z - 1 ) = ( 1 - z ) - b ⁒ 𝐅 ⁑ ( c - a , b c ; z z - 1 ) superscript 1 𝑧 π‘Ž scaled-hypergeometric-bold-F π‘Ž 𝑐 𝑏 𝑐 𝑧 𝑧 1 superscript 1 𝑧 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 𝑏 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle(1-z)^{-a}\mathbf{F}\left({a,c-b\atop c};\frac{z}{% z-1}\right)=(1-z)^{-b}\mathbf{F}\left({c-a,b\atop c};\frac{z}{z-1}\right)}} (1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1))/GAMMA(c)=(1 - z)^(- b)* hypergeom([c - a, b], [c], (z)/(z - 1))/GAMMA(c) (1 - z)^(- a)* Hypergeometric2F1Regularized[a, c - b, c, Divide[z,z - 1]]=(1 - z)^(- b)* Hypergeometric2F1Regularized[c - a, b, c, Divide[z,z - 1]] Failure Failure Skip Skip
15.8.E1 ( 1 - z ) - b ⁒ 𝐅 ⁑ ( c - a , b c ; z z - 1 ) = ( 1 - z ) c - a - b ⁒ 𝐅 ⁑ ( c - a , c - b c ; z ) superscript 1 𝑧 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 𝑏 𝑐 𝑧 𝑧 1 superscript 1 𝑧 𝑐 π‘Ž 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle(1-z)^{-b}\mathbf{F}\left({c-a,b\atop c};\frac{z}{% z-1}\right)=(1-z)^{c-a-b}\mathbf{F}\left({c-a,c-b\atop c};z\right)}} (1 - z)^(- b)* hypergeom([c - a, b], [c], (z)/(z - 1))/GAMMA(c)=(1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c], z)/GAMMA(c) (1 - z)^(- b)* Hypergeometric2F1Regularized[c - a, b, c, Divide[z,z - 1]]=(1 - z)^(c - a - b)* Hypergeometric2F1Regularized[c - a, c - b, c, z] Failure Failure Skip Skip
15.8.E2 sin ⁑ ( Ο€ ⁒ ( b - a ) ) Ο€ ⁒ 𝐅 ⁑ ( a , b c ; z ) = ( - z ) - a Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ 𝐅 ⁑ ( a , a - c + 1 a - b + 1 ; 1 z ) - ( - z ) - b Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ 𝐅 ⁑ ( b , b - c + 1 b - a + 1 ; 1 z ) πœ‹ 𝑏 π‘Ž πœ‹ scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript 𝑧 π‘Ž Euler-Gamma 𝑏 Euler-Gamma 𝑐 π‘Ž scaled-hypergeometric-bold-F π‘Ž π‘Ž 𝑐 1 π‘Ž 𝑏 1 1 𝑧 superscript 𝑧 𝑏 Euler-Gamma π‘Ž Euler-Gamma 𝑐 𝑏 scaled-hypergeometric-bold-F 𝑏 𝑏 𝑐 1 𝑏 π‘Ž 1 1 𝑧 {\displaystyle{\displaystyle\frac{\sin\left(\pi(b-a)\right)}{\pi}\mathbf{F}% \left({a,b\atop c};z\right)=\frac{(-z)^{-a}}{\Gamma\left(b\right)\Gamma\left(c% -a\right)}\mathbf{F}\left({a,a-c+1\atop a-b+1};\frac{1}{z}\right)-\frac{(-z)^{% -b}}{\Gamma\left(a\right)\Gamma\left(c-b\right)}\mathbf{F}\left({b,b-c+1\atop b% -a+1};\frac{1}{z}\right)}} (sin(Pi*(b - a)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c)=((- z)^(- a))/(GAMMA(b)*GAMMA(c - a))*hypergeom([a, a - c + 1], [a - b + 1], (1)/(z))/GAMMA(a - b + 1)-((- z)^(- b))/(GAMMA(a)*GAMMA(c - b))*hypergeom([b, b - c + 1], [b - a + 1], (1)/(z))/GAMMA(b - a + 1) Divide[Sin[Pi*(b - a)],Pi]*Hypergeometric2F1Regularized[a, b, c, z]=Divide[(- z)^(- a),Gamma[b]*Gamma[c - a]]*Hypergeometric2F1Regularized[a, a - c + 1, a - b + 1, Divide[1,z]]-Divide[(- z)^(- b),Gamma[a]*Gamma[c - b]]*Hypergeometric2F1Regularized[b, b - c + 1, b - a + 1, Divide[1,z]] Failure Failure Skip Skip
15.8.E3 sin ⁑ ( Ο€ ⁒ ( b - a ) ) Ο€ ⁒ 𝐅 ⁑ ( a , b c ; z ) = ( 1 - z ) - a Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ 𝐅 ⁑ ( a , c - b a - b + 1 ; 1 1 - z ) - ( 1 - z ) - b Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ 𝐅 ⁑ ( b , c - a b - a + 1 ; 1 1 - z ) πœ‹ 𝑏 π‘Ž πœ‹ scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript 1 𝑧 π‘Ž Euler-Gamma 𝑏 Euler-Gamma 𝑐 π‘Ž scaled-hypergeometric-bold-F π‘Ž 𝑐 𝑏 π‘Ž 𝑏 1 1 1 𝑧 superscript 1 𝑧 𝑏 Euler-Gamma π‘Ž Euler-Gamma 𝑐 𝑏 scaled-hypergeometric-bold-F 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 1 1 1 𝑧 {\displaystyle{\displaystyle\frac{\sin\left(\pi(b-a)\right)}{\pi}\mathbf{F}% \left({a,b\atop c};z\right)=\frac{(1-z)^{-a}}{\Gamma\left(b\right)\Gamma\left(% c-a\right)}\mathbf{F}\left({a,c-b\atop a-b+1};\frac{1}{1-z}\right)-\frac{(1-z)% ^{-b}}{\Gamma\left(a\right)\Gamma\left(c-b\right)}\mathbf{F}\left({b,c-a\atop b% -a+1};\frac{1}{1-z}\right)}} (sin(Pi*(b - a)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c)=((1 - z)^(- a))/(GAMMA(b)*GAMMA(c - a))*hypergeom([a, c - b], [a - b + 1], (1)/(1 - z))/GAMMA(a - b + 1)-((1 - z)^(- b))/(GAMMA(a)*GAMMA(c - b))*hypergeom([b, c - a], [b - a + 1], (1)/(1 - z))/GAMMA(b - a + 1) Divide[Sin[Pi*(b - a)],Pi]*Hypergeometric2F1Regularized[a, b, c, z]=Divide[(1 - z)^(- a),Gamma[b]*Gamma[c - a]]*Hypergeometric2F1Regularized[a, c - b, a - b + 1, Divide[1,1 - z]]-Divide[(1 - z)^(- b),Gamma[a]*Gamma[c - b]]*Hypergeometric2F1Regularized[b, c - a, b - a + 1, Divide[1,1 - z]] Failure Failure Skip Skip
15.8.E4 sin ⁑ ( Ο€ ⁒ ( c - a - b ) ) Ο€ ⁒ 𝐅 ⁑ ( a , b c ; z ) = 1 Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ 𝐅 ⁑ ( a , b a + b - c + 1 ; 1 - z ) - ( 1 - z ) c - a - b Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ 𝐅 ⁑ ( c - a , c - b c - a - b + 1 ; 1 - z ) πœ‹ 𝑐 π‘Ž 𝑏 πœ‹ scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 1 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 scaled-hypergeometric-bold-F π‘Ž 𝑏 π‘Ž 𝑏 𝑐 1 1 𝑧 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Euler-Gamma π‘Ž Euler-Gamma 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 π‘Ž 𝑏 1 1 𝑧 {\displaystyle{\displaystyle\frac{\sin\left(\pi(c-a-b)\right)}{\pi}\mathbf{F}% \left({a,b\atop c};z\right)=\frac{1}{\Gamma\left(c-a\right)\Gamma\left(c-b% \right)}\mathbf{F}\left({a,b\atop a+b-c+1};1-z\right)-\frac{(1-z)^{c-a-b}}{% \Gamma\left(a\right)\Gamma\left(b\right)}\mathbf{F}\left({c-a,c-b\atop c-a-b+1% };1-z\right)}} (sin(Pi*(c - a - b)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c)=(1)/(GAMMA(c - a)*GAMMA(c - b))*hypergeom([a, b], [a + b - c + 1], 1 - z)/GAMMA(a + b - c + 1)-((1 - z)^(c - a - b))/(GAMMA(a)*GAMMA(b))*hypergeom([c - a, c - b], [c - a - b + 1], 1 - z)/GAMMA(c - a - b + 1) Divide[Sin[Pi*(c - a - b)],Pi]*Hypergeometric2F1Regularized[a, b, c, z]=Divide[1,Gamma[c - a]*Gamma[c - b]]*Hypergeometric2F1Regularized[a, b, a + b - c + 1, 1 - z]-Divide[(1 - z)^(c - a - b),Gamma[a]*Gamma[b]]*Hypergeometric2F1Regularized[c - a, c - b, c - a - b + 1, 1 - z] Failure Failure Skip Skip
15.8.E5 sin ⁑ ( Ο€ ⁒ ( c - a - b ) ) Ο€ ⁒ 𝐅 ⁑ ( a , b c ; z ) = z - a Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ 𝐅 ⁑ ( a , a - c + 1 a + b - c + 1 ; 1 - 1 z ) - ( 1 - z ) c - a - b ⁒ z a - c Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ 𝐅 ⁑ ( c - a , 1 - a c - a - b + 1 ; 1 - 1 z ) πœ‹ 𝑐 π‘Ž 𝑏 πœ‹ scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript 𝑧 π‘Ž Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 scaled-hypergeometric-bold-F π‘Ž π‘Ž 𝑐 1 π‘Ž 𝑏 𝑐 1 1 1 𝑧 superscript 1 𝑧 𝑐 π‘Ž 𝑏 superscript 𝑧 π‘Ž 𝑐 Euler-Gamma π‘Ž Euler-Gamma 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 1 π‘Ž 𝑐 π‘Ž 𝑏 1 1 1 𝑧 {\displaystyle{\displaystyle\frac{\sin\left(\pi(c-a-b)\right)}{\pi}\mathbf{F}% \left({a,b\atop c};z\right)=\frac{z^{-a}}{\Gamma\left(c-a\right)\Gamma\left(c-% b\right)}\mathbf{F}\left({a,a-c+1\atop a+b-c+1};1-\frac{1}{z}\right)-\frac{(1-% z)^{c-a-b}z^{a-c}}{\Gamma\left(a\right)\Gamma\left(b\right)}\mathbf{F}\left({c% -a,1-a\atop c-a-b+1};1-\frac{1}{z}\right)}} (sin(Pi*(c - a - b)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c)=((z)^(- a))/(GAMMA(c - a)*GAMMA(c - b))*hypergeom([a, a - c + 1], [a + b - c + 1], 1 -(1)/(z))/GAMMA(a + b - c + 1)-((1 - z)^(c - a - b)* (z)^(a - c))/(GAMMA(a)*GAMMA(b))*hypergeom([c - a, 1 - a], [c - a - b + 1], 1 -(1)/(z))/GAMMA(c - a - b + 1) Divide[Sin[Pi*(c - a - b)],Pi]*Hypergeometric2F1Regularized[a, b, c, z]=Divide[(z)^(- a),Gamma[c - a]*Gamma[c - b]]*Hypergeometric2F1Regularized[a, a - c + 1, a + b - c + 1, 1 -Divide[1,z]]-Divide[(1 - z)^(c - a - b)* (z)^(a - c),Gamma[a]*Gamma[b]]*Hypergeometric2F1Regularized[c - a, 1 - a, c - a - b + 1, 1 -Divide[1,z]] Failure Failure Skip Skip
15.8.E6 F ⁑ ( - m , b c ; z ) = ( b ) m ( c ) m ⁒ ( - z ) m ⁒ F ⁑ ( - m , 1 - c - m 1 - b - m ; 1 z ) Gauss-hypergeometric-F π‘š 𝑏 𝑐 𝑧 subscript 𝑏 π‘š subscript 𝑐 π‘š superscript 𝑧 π‘š Gauss-hypergeometric-F π‘š 1 𝑐 π‘š 1 𝑏 π‘š 1 𝑧 {\displaystyle{\displaystyle F\left({-m,b\atop c};z\right)=\frac{(b)_{m}}{(c)_% {m}}(-z)^{m}F\left({-m,1-c-m\atop 1-b-m};\frac{1}{z}\right)}} hypergeom([- m, b], [c], z)=(b[m])/(c[m])*(- z)^(m)* hypergeom([- m, 1 - c - m], [1 - b - m], (1)/(z)) Hypergeometric2F1[- m, b, c, z]=Divide[Subscript[b, m],Subscript[c, m]]*(- z)^(m)* Hypergeometric2F1[- m, 1 - c - m, 1 - b - m, Divide[1,z]] Failure Failure Skip Skip
15.8.E6 ( b ) m ( c ) m ⁒ ( - z ) m ⁒ F ⁑ ( - m , 1 - c - m 1 - b - m ; 1 z ) = ( b ) m ( c ) m ⁒ ( 1 - z ) m ⁒ F ⁑ ( - m , c - b 1 - b - m ; 1 1 - z ) subscript 𝑏 π‘š subscript 𝑐 π‘š superscript 𝑧 π‘š Gauss-hypergeometric-F π‘š 1 𝑐 π‘š 1 𝑏 π‘š 1 𝑧 subscript 𝑏 π‘š subscript 𝑐 π‘š superscript 1 𝑧 π‘š Gauss-hypergeometric-F π‘š 𝑐 𝑏 1 𝑏 π‘š 1 1 𝑧 {\displaystyle{\displaystyle\frac{(b)_{m}}{(c)_{m}}(-z)^{m}F\left({-m,1-c-m% \atop 1-b-m};\frac{1}{z}\right)=\frac{(b)_{m}}{(c)_{m}}(1-z)^{m}F\left({-m,c-b% \atop 1-b-m};\frac{1}{1-z}\right)}} (b[m])/(c[m])*(- z)^(m)* hypergeom([- m, 1 - c - m], [1 - b - m], (1)/(z))=(b[m])/(c[m])*(1 - z)^(m)* hypergeom([- m, c - b], [1 - b - m], (1)/(1 - z)) Divide[Subscript[b, m],Subscript[c, m]]*(- z)^(m)* Hypergeometric2F1[- m, 1 - c - m, 1 - b - m, Divide[1,z]]=Divide[Subscript[b, m],Subscript[c, m]]*(1 - z)^(m)* Hypergeometric2F1[- m, c - b, 1 - b - m, Divide[1,1 - z]] Failure Failure Skip Skip
15.8.E7 F ⁑ ( - m , b c ; z ) = ( c - b ) m ( c ) m ⁒ F ⁑ ( - m , b b - c - m + 1 ; 1 - z ) Gauss-hypergeometric-F π‘š 𝑏 𝑐 𝑧 subscript 𝑐 𝑏 π‘š subscript 𝑐 π‘š Gauss-hypergeometric-F π‘š 𝑏 𝑏 𝑐 π‘š 1 1 𝑧 {\displaystyle{\displaystyle F\left({-m,b\atop c};z\right)=\frac{(c-b)_{m}}{(c% )_{m}}F\left({-m,b\atop b-c-m+1};1-z\right)}} hypergeom([- m, b], [c], z)=(c - b[m])/(c[m])*hypergeom([- m, b], [b - c - m + 1], 1 - z) Hypergeometric2F1[- m, b, c, z]=Divide[Subscript[c - b, m],Subscript[c, m]]*Hypergeometric2F1[- m, b, b - c - m + 1, 1 - z] Failure Failure Skip Skip
15.8.E7 ( c - b ) m ( c ) m ⁒ F ⁑ ( - m , b b - c - m + 1 ; 1 - z ) = ( c - b ) m ( c ) m ⁒ z m ⁒ F ⁑ ( - m , 1 - c - m b - c - m + 1 ; 1 - 1 z ) subscript 𝑐 𝑏 π‘š subscript 𝑐 π‘š Gauss-hypergeometric-F π‘š 𝑏 𝑏 𝑐 π‘š 1 1 𝑧 subscript 𝑐 𝑏 π‘š subscript 𝑐 π‘š superscript 𝑧 π‘š Gauss-hypergeometric-F π‘š 1 𝑐 π‘š 𝑏 𝑐 π‘š 1 1 1 𝑧 {\displaystyle{\displaystyle\frac{(c-b)_{m}}{(c)_{m}}F\left({-m,b\atop b-c-m+1% };1-z\right)=\frac{(c-b)_{m}}{(c)_{m}}z^{m}F\left({-m,1-c-m\atop b-c-m+1};1-% \frac{1}{z}\right)}} (c - b[m])/(c[m])*hypergeom([- m, b], [b - c - m + 1], 1 - z)=(c - b[m])/(c[m])*(z)^(m)* hypergeom([- m, 1 - c - m], [b - c - m + 1], 1 -(1)/(z)) Divide[Subscript[c - b, m],Subscript[c, m]]*Hypergeometric2F1[- m, b, b - c - m + 1, 1 - z]=Divide[Subscript[c - b, m],Subscript[c, m]]*(z)^(m)* Hypergeometric2F1[- m, 1 - c - m, b - c - m + 1, 1 -Divide[1,z]] Failure Failure Skip Skip
15.8.E13 F ⁑ ( a , b 2 ⁒ b ; z ) = ( 1 - 1 2 ⁒ z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 b + 1 2 ; ( z 2 - z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 2 𝑏 𝑧 superscript 1 1 2 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 1 2 𝑏 1 2 superscript 𝑧 2 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop 2b};z\right)=\left(1-\tfrac{1}{2% }z\right)^{-a}F\left({\tfrac{1}{2}a,\tfrac{1}{2}a+\tfrac{1}{2}\atop b+\tfrac{1% }{2}};\left(\frac{z}{2-z}\right)^{2}\right)}} hypergeom([a, b], [2*b], z)=(1 -(1)/(2)*z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [b +(1)/(2)], ((z)/(2 - z))^(2)) Hypergeometric2F1[a, b, 2*b, z]=(1 -Divide[1,2]*z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], b +Divide[1,2], (Divide[z,2 - z])^(2)] Failure Failure Skip Skip
15.8.E14 F ⁑ ( a , b 2 ⁒ b ; z ) = ( 1 - z ) - a / 2 ⁒ F ⁑ ( 1 2 ⁒ a , b - 1 2 ⁒ a b + 1 2 ; z 2 4 ⁒ z - 4 ) Gauss-hypergeometric-F π‘Ž 𝑏 2 𝑏 𝑧 superscript 1 𝑧 π‘Ž 2 Gauss-hypergeometric-F 1 2 π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 2 superscript 𝑧 2 4 𝑧 4 {\displaystyle{\displaystyle F\left({a,b\atop 2b};z\right)=\left(1-z\right)^{-% \ifrac{a}{2}}F\left({\tfrac{1}{2}a,b-\tfrac{1}{2}a\atop b+\tfrac{1}{2}};\frac{% z^{2}}{4z-4}\right)}} hypergeom([a, b], [2*b], z)=(1 - z)^(-(a)/(2))* hypergeom([(1)/(2)*a, b -(1)/(2)*a], [b +(1)/(2)], ((z)^(2))/(4*z - 4)) Hypergeometric2F1[a, b, 2*b, z]=(1 - z)^(-Divide[a,2])* Hypergeometric2F1[Divide[1,2]*a, b -Divide[1,2]*a, b +Divide[1,2], Divide[(z)^(2),4*z - 4]] Failure Failure Skip Successful
15.8.E15 F ⁑ ( a , b a - b + 1 ; z ) = ( 1 + z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 a - b + 1 ; 4 ⁒ z ( 1 + z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 1 𝑧 superscript 1 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 1 2 π‘Ž 𝑏 1 4 𝑧 superscript 1 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop a-b+1};z\right)=(1+z)^{-a}F\left% ({\frac{1}{2}a,\frac{1}{2}a+\frac{1}{2}\atop a-b+1};\frac{4z}{(1+z)^{2}}\right% )}} hypergeom([a, b], [a - b + 1], z)=(1 + z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [a - b + 1], (4*z)/((1 + z)^(2))) Hypergeometric2F1[a, b, a - b + 1, z]=(1 + z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], a - b + 1, Divide[4*z,(1 + z)^(2)]] Failure Failure Successful Successful
15.8.E16 F ⁑ ( a , b a - b + 1 ; z ) = ( 1 - z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a - b + 1 2 a - b + 1 ; - 4 ⁒ z ( 1 - z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 1 𝑧 superscript 1 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 4 𝑧 superscript 1 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop a-b+1};z\right)=(1-z)^{-a}F\left% ({\frac{1}{2}a,\frac{1}{2}a-b+\frac{1}{2}\atop a-b+1};\frac{-4z}{(1-z)^{2}}% \right)}} hypergeom([a, b], [a - b + 1], z)=(1 - z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a - b +(1)/(2)], [a - b + 1], (- 4*z)/((1 - z)^(2))) Hypergeometric2F1[a, b, a - b + 1, z]=(1 - z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a - b +Divide[1,2], a - b + 1, Divide[- 4*z,(1 - z)^(2)]] Failure Failure Successful Successful
15.8.E17 F ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = ( 1 - 2 ⁒ z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 1 2 ⁒ ( a + b + 1 ) ; 4 ⁒ z ⁒ ( z - 1 ) ( 1 - 2 ⁒ z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 𝑧 superscript 1 2 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 1 2 1 2 π‘Ž 𝑏 1 4 𝑧 𝑧 1 superscript 1 2 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop\frac{1}{2}(a+b+1)};z\right)=(1-2% z)^{-a}F\left({\frac{1}{2}a,\frac{1}{2}a+\frac{1}{2}\atop\frac{1}{2}(a+b+1)};% \frac{4z(z-1)}{(1-2z)^{2}}\right)}} hypergeom([a, b], [(1)/(2)*(a + b + 1)], z)=(1 - 2*z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [(1)/(2)*(a + b + 1)], (4*z*(z - 1))/((1 - 2*z)^(2))) Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z]=(1 - 2*z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], Divide[1,2]*(a + b + 1), Divide[4*z*(z - 1),(1 - 2*z)^(2)]] Failure Failure Successful Successful
15.8.E18 F ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ b 1 2 ⁒ ( a + b + 1 ) ; 4 ⁒ z ⁒ ( 1 - z ) ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 𝑧 Gauss-hypergeometric-F 1 2 π‘Ž 1 2 𝑏 1 2 π‘Ž 𝑏 1 4 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left({a,b\atop\frac{1}{2}(a+b+1)};z\right)=F% \left({\frac{1}{2}a,\frac{1}{2}b\atop\frac{1}{2}(a+b+1)};4z(1-z)\right)}} hypergeom([a, b], [(1)/(2)*(a + b + 1)], z)= hypergeom([(1)/(2)*a, (1)/(2)*b], [(1)/(2)*(a + b + 1)], 4*z*(1 - z)) Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z]= Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*b, Divide[1,2]*(a + b + 1), 4*z*(1 - z)] Failure Failure Successful Successful
15.8.E19 F ⁑ ( a , 1 - a c ; z ) = ( 1 - 2 ⁒ z ) 1 - a - c ⁒ ( 1 - z ) c - 1 ⁒ F ⁑ ( 1 2 ⁒ ( a + c ) , 1 2 ⁒ ( a + c - 1 ) c ; 4 ⁒ z ⁒ ( z - 1 ) ( 1 - 2 ⁒ z ) 2 ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 𝑐 𝑧 superscript 1 2 𝑧 1 π‘Ž 𝑐 superscript 1 𝑧 𝑐 1 Gauss-hypergeometric-F 1 2 π‘Ž 𝑐 1 2 π‘Ž 𝑐 1 𝑐 4 𝑧 𝑧 1 superscript 1 2 𝑧 2 {\displaystyle{\displaystyle F\left({a,1-a\atop c};z\right)=(1-2z)^{1-a-c}(1-z% )^{c-1}F\left({\frac{1}{2}(a+c),\frac{1}{2}(a+c-1)\atop c};\frac{4z(z-1)}{(1-2% z)^{2}}\right)}} hypergeom([a, 1 - a], [c], z)=(1 - 2*z)^(1 - a - c)*(1 - z)^(c - 1)* hypergeom([(1)/(2)*(a + c), (1)/(2)*(a + c - 1)], [c], (4*z*(z - 1))/((1 - 2*z)^(2))) Hypergeometric2F1[a, 1 - a, c, z]=(1 - 2*z)^(1 - a - c)*(1 - z)^(c - 1)* Hypergeometric2F1[Divide[1,2]*(a + c), Divide[1,2]*(a + c - 1), c, Divide[4*z*(z - 1),(1 - 2*z)^(2)]] Failure Failure Successful Successful
15.8.E20 F ⁑ ( a , 1 - a c ; z ) = ( 1 - z ) c - 1 ⁒ F ⁑ ( 1 2 ⁒ ( c - a ) , 1 2 ⁒ ( a + c - 1 ) c ; 4 ⁒ z ⁒ ( 1 - z ) ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 𝑐 𝑧 superscript 1 𝑧 𝑐 1 Gauss-hypergeometric-F 1 2 𝑐 π‘Ž 1 2 π‘Ž 𝑐 1 𝑐 4 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left({a,1-a\atop c};z\right)=(1-z)^{c-1}F\left(% {\frac{1}{2}(c-a),\frac{1}{2}(a+c-1)\atop c};4z(1-z)\right)}} hypergeom([a, 1 - a], [c], z)=(1 - z)^(c - 1)* hypergeom([(1)/(2)*(c - a), (1)/(2)*(a + c - 1)], [c], 4*z*(1 - z)) Hypergeometric2F1[a, 1 - a, c, z]=(1 - z)^(c - 1)* Hypergeometric2F1[Divide[1,2]*(c - a), Divide[1,2]*(a + c - 1), c, 4*z*(1 - z)] Failure Failure Successful Successful
15.8.E21 F ⁑ ( a , b a - b + 1 ; z ) = ( 1 + z ) - 2 ⁒ a ⁒ F ⁑ ( a , a - b + 1 2 2 ⁒ a - 2 ⁒ b + 1 ; 4 ⁒ z ( 1 + z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 1 𝑧 superscript 1 𝑧 2 π‘Ž Gauss-hypergeometric-F π‘Ž π‘Ž 𝑏 1 2 2 π‘Ž 2 𝑏 1 4 𝑧 superscript 1 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop a-b+1};z\right)=\left(1+\sqrt{z}% \right)^{-2a}F\left({a,a-b+\tfrac{1}{2}\atop 2a-2b+1};\frac{4\sqrt{z}}{(1+% \sqrt{z})^{2}}\right)}} hypergeom([a, b], [a - b + 1], z)=(1 +sqrt(z))^(- 2*a)* hypergeom([a, a - b +(1)/(2)], [2*a - 2*b + 1], (4*sqrt(z))/((1 +sqrt(z))^(2))) Hypergeometric2F1[a, b, a - b + 1, z]=(1 +Sqrt[z])^(- 2*a)* Hypergeometric2F1[a, a - b +Divide[1,2], 2*a - 2*b + 1, Divide[4*Sqrt[z],(1 +Sqrt[z])^(2)]] Failure Failure Error Error
15.8.E22 F ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = ( 1 - z - 1 - 1 1 - z - 1 + 1 ) a ⁒ F ⁑ ( a , 1 2 ⁒ ( a + b ) a + b ; 4 ⁒ 1 - z - 1 ( 1 - z - 1 + 1 ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 𝑧 superscript 1 superscript 𝑧 1 1 1 superscript 𝑧 1 1 π‘Ž Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 𝑏 π‘Ž 𝑏 4 1 superscript 𝑧 1 superscript 1 superscript 𝑧 1 1 2 {\displaystyle{\displaystyle F\left({a,b\atop\tfrac{1}{2}(a+b+1)};z\right)=% \left(\frac{\sqrt{1-z^{-1}}-1}{\sqrt{1-z^{-1}}+1}\right)^{a}F\left({a,\tfrac{1% }{2}(a+b)\atop a+b};\frac{4\sqrt{1-z^{-1}}}{\left(\sqrt{1-z^{-1}}+1\right)^{2}% }\right)}} hypergeom([a, b], [(1)/(2)*(a + b + 1)], z)=((sqrt(1 - (z)^(- 1))- 1)/(sqrt(1 - (z)^(- 1))+ 1))^(a)* hypergeom([a, (1)/(2)*(a + b)], [a + b], (4*sqrt(1 - (z)^(- 1)))/((sqrt(1 - (z)^(- 1))+ 1)^(2))) Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z]=(Divide[Sqrt[1 - (z)^(- 1)]- 1,Sqrt[1 - (z)^(- 1)]+ 1])^(a)* Hypergeometric2F1[a, Divide[1,2]*(a + b), a + b, Divide[4*Sqrt[1 - (z)^(- 1)],(Sqrt[1 - (z)^(- 1)]+ 1)^(2)]] Failure Failure Skip Successful
15.8.E23 F ⁑ ( a , 1 - a c ; z ) = ( 1 - z - 1 - 1 ) 1 - a ⁒ ( 1 - z - 1 + 1 ) a - 2 ⁒ c + 1 ⁒ ( 1 - z - 1 ) c - 1 ⁒ F ⁑ ( c - a , c - 1 2 2 ⁒ c - 1 ; 4 ⁒ 1 - z - 1 ( 1 - z - 1 + 1 ) 2 ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 𝑐 𝑧 superscript 1 superscript 𝑧 1 1 1 π‘Ž superscript 1 superscript 𝑧 1 1 π‘Ž 2 𝑐 1 superscript 1 superscript 𝑧 1 𝑐 1 Gauss-hypergeometric-F 𝑐 π‘Ž 𝑐 1 2 2 𝑐 1 4 1 superscript 𝑧 1 superscript 1 superscript 𝑧 1 1 2 {\displaystyle{\displaystyle F\left({a,1-a\atop c};z\right)=\left(\sqrt{1-z^{-% 1}}-1\right)^{1-a}\left(\sqrt{1-z^{-1}}+1\right)^{a-2c+1}\left(1-z^{-1}\right)% ^{c-1}F\left({c-a,c-\tfrac{1}{2}\atop 2c-1};\frac{4\sqrt{1-z^{-1}}}{\left(% \sqrt{1-z^{-1}}+1\right)^{2}}\right)}} hypergeom([a, 1 - a], [c], z)=(sqrt(1 - (z)^(- 1))- 1)^(1 - a)*(sqrt(1 - (z)^(- 1))+ 1)^(a - 2*c + 1)*(1 - (z)^(- 1))^(c - 1)* hypergeom([c - a, c -(1)/(2)], [2*c - 1], (4*sqrt(1 - (z)^(- 1)))/((sqrt(1 - (z)^(- 1))+ 1)^(2))) Hypergeometric2F1[a, 1 - a, c, z]=(Sqrt[1 - (z)^(- 1)]- 1)^(1 - a)*(Sqrt[1 - (z)^(- 1)]+ 1)^(a - 2*c + 1)*(1 - (z)^(- 1))^(c - 1)* Hypergeometric2F1[c - a, c -Divide[1,2], 2*c - 1, Divide[4*Sqrt[1 - (z)^(- 1)],(Sqrt[1 - (z)^(- 1)]+ 1)^(2)]] Failure Failure Skip Successful
15.8.E24 F ⁑ ( a , b a - b + 1 ; z ) = ( 1 - z ) - a ⁒ Ξ“ ⁑ ( a - b + 1 ) ⁒ Ξ“ ⁑ ( 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ a - b + 1 ) ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a - b + 1 2 1 2 ; ( z + 1 z - 1 ) 2 ) + ( 1 + z ) ⁒ ( 1 - z ) - a - 1 ⁒ Ξ“ ⁑ ( a - b + 1 ) ⁒ Ξ“ ⁑ ( - 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ a ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ a - b + 1 2 ) ⁒ F ⁑ ( 1 2 ⁒ a + 1 2 , 1 2 ⁒ a - b + 1 3 2 ; ( z + 1 z - 1 ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 1 𝑧 superscript 1 𝑧 π‘Ž Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma 1 2 Euler-Gamma 1 2 π‘Ž 1 2 Euler-Gamma 1 2 π‘Ž 𝑏 1 Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 𝑏 1 2 1 2 superscript 𝑧 1 𝑧 1 2 1 𝑧 superscript 1 𝑧 π‘Ž 1 Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma 1 2 Euler-Gamma 1 2 π‘Ž Euler-Gamma 1 2 π‘Ž 𝑏 1 2 Gauss-hypergeometric-F 1 2 π‘Ž 1 2 1 2 π‘Ž 𝑏 1 3 2 superscript 𝑧 1 𝑧 1 2 {\displaystyle{\displaystyle F\left({a,b\atop a-b+1};z\right)=(1-z)^{-a}\frac{% \Gamma\left(a-b+1\right)\Gamma\left(\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}% {2}a+\tfrac{1}{2}\right)\Gamma\left(\tfrac{1}{2}a-b+1\right)}F\left({\tfrac{1}% {2}a,\tfrac{1}{2}a-b+\tfrac{1}{2}\atop\tfrac{1}{2}};\left(\frac{z+1}{z-1}% \right)^{2}\right)+(1+z)(1-z)^{-a-1}\frac{\Gamma\left(a-b+1\right)\Gamma\left(% -\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}a\right)\Gamma\left(\tfrac{1}{2}% a-b+\tfrac{1}{2}\right)}F\left({\tfrac{1}{2}a+\tfrac{1}{2},\tfrac{1}{2}a-b+1% \atop\tfrac{3}{2}};\left(\frac{z+1}{z-1}\right)^{2}\right)}} hypergeom([a, b], [a - b + 1], z)=(1 - z)^(- a)*(GAMMA(a - b + 1)*GAMMA((1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*a - b + 1))*hypergeom([(1)/(2)*a, (1)/(2)*a - b +(1)/(2)], [(1)/(2)], ((z + 1)/(z - 1))^(2))+(1 + z)*(1 - z)^(- a - 1)*(GAMMA(a - b + 1)*GAMMA(-(1)/(2)))/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*a - b +(1)/(2)))*hypergeom([(1)/(2)*a +(1)/(2), (1)/(2)*a - b + 1], [(3)/(2)], ((z + 1)/(z - 1))^(2)) Hypergeometric2F1[a, b, a - b + 1, z]=(1 - z)^(- a)*Divide[Gamma[a - b + 1]*Gamma[Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*a - b + 1]]*Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a - b +Divide[1,2], Divide[1,2], (Divide[z + 1,z - 1])^(2)]+(1 + z)*(1 - z)^(- a - 1)*Divide[Gamma[a - b + 1]*Gamma[-Divide[1,2]],Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*a - b +Divide[1,2]]]*Hypergeometric2F1[Divide[1,2]*a +Divide[1,2], Divide[1,2]*a - b + 1, Divide[3,2], (Divide[z + 1,z - 1])^(2)] Failure Failure Skip Skip
15.8.E25 F ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = Ξ“ ⁑ ( 1 2 ⁒ ( a + b + 1 ) ) ⁒ Ξ“ ⁑ ( 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b + 1 2 ) ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ b 1 2 ; ( 1 - 2 ⁒ z ) 2 ) + ( 1 - 2 ⁒ z ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ ( a + b + 1 ) ) ⁒ Ξ“ ⁑ ( - 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ a ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b ) ⁒ F ⁑ ( 1 2 ⁒ a + 1 2 , 1 2 ⁒ b + 1 2 3 2 ; ( 1 - 2 ⁒ z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 𝑧 Euler-Gamma 1 2 π‘Ž 𝑏 1 Euler-Gamma 1 2 Euler-Gamma 1 2 π‘Ž 1 2 Euler-Gamma 1 2 𝑏 1 2 Gauss-hypergeometric-F 1 2 π‘Ž 1 2 𝑏 1 2 superscript 1 2 𝑧 2 1 2 𝑧 Euler-Gamma 1 2 π‘Ž 𝑏 1 Euler-Gamma 1 2 Euler-Gamma 1 2 π‘Ž Euler-Gamma 1 2 𝑏 Gauss-hypergeometric-F 1 2 π‘Ž 1 2 1 2 𝑏 1 2 3 2 superscript 1 2 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop\tfrac{1}{2}(a+b+1)};z\right)=% \frac{\Gamma\left(\tfrac{1}{2}(a+b+1)\right)\Gamma\left(\tfrac{1}{2}\right)}{% \Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}\right)\Gamma\left(\tfrac{1}{2}b+\tfrac{% 1}{2}\right)}F\left({\tfrac{1}{2}a,\tfrac{1}{2}b\atop\tfrac{1}{2}};(1-2z)^{2}% \right)+(1-2z)\frac{\Gamma\left(\tfrac{1}{2}(a+b+1)\right)\Gamma\left(-\tfrac{% 1}{2}\right)}{\Gamma\left(\tfrac{1}{2}a\right)\Gamma\left(\tfrac{1}{2}b\right)% }F\left({\tfrac{1}{2}a+\tfrac{1}{2},\tfrac{1}{2}b+\tfrac{1}{2}\atop\tfrac{3}{2% }};(1-2z)^{2}\right)}} hypergeom([a, b], [(1)/(2)*(a + b + 1)], z)=(GAMMA((1)/(2)*(a + b + 1))*GAMMA((1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b +(1)/(2)))*hypergeom([(1)/(2)*a, (1)/(2)*b], [(1)/(2)], (1 - 2*z)^(2))+(1 - 2*z)*(GAMMA((1)/(2)*(a + b + 1))*GAMMA(-(1)/(2)))/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*b))*hypergeom([(1)/(2)*a +(1)/(2), (1)/(2)*b +(1)/(2)], [(3)/(2)], (1 - 2*z)^(2)) Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z]=Divide[Gamma[Divide[1,2]*(a + b + 1)]*Gamma[Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b +Divide[1,2]]]*Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*b, Divide[1,2], (1 - 2*z)^(2)]+(1 - 2*z)*Divide[Gamma[Divide[1,2]*(a + b + 1)]*Gamma[-Divide[1,2]],Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*b]]*Hypergeometric2F1[Divide[1,2]*a +Divide[1,2], Divide[1,2]*b +Divide[1,2], Divide[3,2], (1 - 2*z)^(2)] Failure Failure Skip Skip
15.8.E26 F ⁑ ( a , 1 - a c ; z ) = ( 1 - z ) c - 1 ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ ( c - a + 1 ) ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ c + 1 2 ⁒ a ) ⁒ F ⁑ ( 1 2 ⁒ c - 1 2 ⁒ a , 1 2 ⁒ c + 1 2 ⁒ a - 1 2 1 2 ; ( 1 - 2 ⁒ z ) 2 ) + ( 1 - 2 ⁒ z ) ⁒ ( 1 - z ) c - 1 ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( - 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ c - 1 2 ⁒ a ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ ( c + a - 1 ) ) ⁒ F ⁑ ( 1 2 ⁒ c - 1 2 ⁒ a + 1 2 , 1 2 ⁒ c + 1 2 ⁒ a 3 2 ; ( 1 - 2 ⁒ z ) 2 ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 𝑐 𝑧 superscript 1 𝑧 𝑐 1 Euler-Gamma 𝑐 Euler-Gamma 1 2 Euler-Gamma 1 2 𝑐 π‘Ž 1 Euler-Gamma 1 2 𝑐 1 2 π‘Ž Gauss-hypergeometric-F 1 2 𝑐 1 2 π‘Ž 1 2 𝑐 1 2 π‘Ž 1 2 1 2 superscript 1 2 𝑧 2 1 2 𝑧 superscript 1 𝑧 𝑐 1 Euler-Gamma 𝑐 Euler-Gamma 1 2 Euler-Gamma 1 2 𝑐 1 2 π‘Ž Euler-Gamma 1 2 𝑐 π‘Ž 1 Gauss-hypergeometric-F 1 2 𝑐 1 2 π‘Ž 1 2 1 2 𝑐 1 2 π‘Ž 3 2 superscript 1 2 𝑧 2 {\displaystyle{\displaystyle F\left({a,1-a\atop c};z\right)=(1-z)^{c-1}\frac{% \Gamma\left(c\right)\Gamma\left(\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}(% c-a+1)\right)\Gamma\left(\tfrac{1}{2}c+\tfrac{1}{2}a\right)}F\left({\tfrac{1}{% 2}c-\tfrac{1}{2}a,\tfrac{1}{2}c+\tfrac{1}{2}a-\tfrac{1}{2}\atop\tfrac{1}{2}};(% 1-2z)^{2}\right)+(1-2z)(1-z)^{c-1}\frac{\Gamma\left(c\right)\Gamma\left(-% \tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}c-\tfrac{1}{2}a\right)\Gamma\left% (\tfrac{1}{2}(c+a-1)\right)}F\left({\tfrac{1}{2}c-\tfrac{1}{2}a+\tfrac{1}{2},% \tfrac{1}{2}c+\tfrac{1}{2}a\atop\tfrac{3}{2}};(1-2z)^{2}\right)}} hypergeom([a, 1 - a], [c], z)=(1 - z)^(c - 1)*(GAMMA(c)*GAMMA((1)/(2)))/(GAMMA((1)/(2)*(c - a + 1))*GAMMA((1)/(2)*c +(1)/(2)*a))*hypergeom([(1)/(2)*c -(1)/(2)*a, (1)/(2)*c +(1)/(2)*a -(1)/(2)], [(1)/(2)], (1 - 2*z)^(2))+(1 - 2*z)*(1 - z)^(c - 1)*(GAMMA(c)*GAMMA(-(1)/(2)))/(GAMMA((1)/(2)*c -(1)/(2)*a)*GAMMA((1)/(2)*(c + a - 1)))*hypergeom([(1)/(2)*c -(1)/(2)*a +(1)/(2), (1)/(2)*c +(1)/(2)*a], [(3)/(2)], (1 - 2*z)^(2)) Hypergeometric2F1[a, 1 - a, c, z]=(1 - z)^(c - 1)*Divide[Gamma[c]*Gamma[Divide[1,2]],Gamma[Divide[1,2]*(c - a + 1)]*Gamma[Divide[1,2]*c +Divide[1,2]*a]]*Hypergeometric2F1[Divide[1,2]*c -Divide[1,2]*a, Divide[1,2]*c +Divide[1,2]*a -Divide[1,2], Divide[1,2], (1 - 2*z)^(2)]+(1 - 2*z)*(1 - z)^(c - 1)*Divide[Gamma[c]*Gamma[-Divide[1,2]],Gamma[Divide[1,2]*c -Divide[1,2]*a]*Gamma[Divide[1,2]*(c + a - 1)]]*Hypergeometric2F1[Divide[1,2]*c -Divide[1,2]*a +Divide[1,2], Divide[1,2]*c +Divide[1,2]*a, Divide[3,2], (1 - 2*z)^(2)] Failure Failure Skip Successful
15.8.E27 2 ⁒ Ξ“ ⁑ ( 1 2 ) ⁒ Ξ“ ⁑ ( a + b + 1 2 ) Ξ“ ⁑ ( a + 1 2 ) ⁒ Ξ“ ⁑ ( b + 1 2 ) ⁒ F ⁑ ( a , b ; 1 2 ; z ) = F ⁑ ( 2 ⁒ a , 2 ⁒ b ; a + b + 1 2 ; 1 2 - 1 2 ⁒ z ) + F ⁑ ( 2 ⁒ a , 2 ⁒ b ; a + b + 1 2 ; 1 2 + 1 2 ⁒ z ) 2 Euler-Gamma 1 2 Euler-Gamma π‘Ž 𝑏 1 2 Euler-Gamma π‘Ž 1 2 Euler-Gamma 𝑏 1 2 Gauss-hypergeometric-F π‘Ž 𝑏 1 2 𝑧 Gauss-hypergeometric-F 2 π‘Ž 2 𝑏 π‘Ž 𝑏 1 2 1 2 1 2 𝑧 Gauss-hypergeometric-F 2 π‘Ž 2 𝑏 π‘Ž 𝑏 1 2 1 2 1 2 𝑧 {\displaystyle{\displaystyle\frac{2\Gamma\left(\tfrac{1}{2}\right)\Gamma\left(% a+b+\tfrac{1}{2}\right)}{\Gamma\left(a+\tfrac{1}{2}\right)\Gamma\left(b+\tfrac% {1}{2}\right)}F\left(a,b;\tfrac{1}{2};z\right)=F\left(2a,2b;a+b+\tfrac{1}{2};% \tfrac{1}{2}-\tfrac{1}{2}\sqrt{z}\right)+F\left(2a,2b;a+b+\tfrac{1}{2};\tfrac{% 1}{2}+\tfrac{1}{2}\sqrt{z}\right)}} (2*GAMMA((1)/(2))*GAMMA(a + b +(1)/(2)))/(GAMMA(a +(1)/(2))*GAMMA(b +(1)/(2)))*hypergeom([a, b], [(1)/(2)], z)= hypergeom([2*a, 2*b], [a + b +(1)/(2)], (1)/(2)-(1)/(2)*sqrt(z))+ hypergeom([2*a, 2*b], [a + b +(1)/(2)], (1)/(2)+(1)/(2)*sqrt(z)) Divide[2*Gamma[Divide[1,2]]*Gamma[a + b +Divide[1,2]],Gamma[a +Divide[1,2]]*Gamma[b +Divide[1,2]]]*Hypergeometric2F1[a, b, Divide[1,2], z]= Hypergeometric2F1[2*a, 2*b, a + b +Divide[1,2], Divide[1,2]-Divide[1,2]*Sqrt[z]]+ Hypergeometric2F1[2*a, 2*b, a + b +Divide[1,2], Divide[1,2]+Divide[1,2]*Sqrt[z]] Failure Failure Skip Skip
15.8.E28 2 ⁒ z ⁒ Ξ“ ⁑ ( - 1 2 ) ⁒ Ξ“ ⁑ ( a + b - 1 2 ) Ξ“ ⁑ ( a - 1 2 ) ⁒ Ξ“ ⁑ ( b - 1 2 ) ⁒ F ⁑ ( a , b ; 3 2 ; z ) = F ⁑ ( 2 ⁒ a - 1 , 2 ⁒ b - 1 ; a + b - 1 2 ; 1 2 - 1 2 ⁒ z ) - F ⁑ ( 2 ⁒ a - 1 , 2 ⁒ b - 1 ; a + b - 1 2 ; 1 2 + 1 2 ⁒ z ) 2 𝑧 Euler-Gamma 1 2 Euler-Gamma π‘Ž 𝑏 1 2 Euler-Gamma π‘Ž 1 2 Euler-Gamma 𝑏 1 2 Gauss-hypergeometric-F π‘Ž 𝑏 3 2 𝑧 Gauss-hypergeometric-F 2 π‘Ž 1 2 𝑏 1 π‘Ž 𝑏 1 2 1 2 1 2 𝑧 Gauss-hypergeometric-F 2 π‘Ž 1 2 𝑏 1 π‘Ž 𝑏 1 2 1 2 1 2 𝑧 {\displaystyle{\displaystyle\frac{2\sqrt{z}\Gamma\left(-\tfrac{1}{2}\right)% \Gamma\left(a+b-\tfrac{1}{2}\right)}{\Gamma\left(a-\tfrac{1}{2}\right)\Gamma% \left(b-\tfrac{1}{2}\right)}F\left(a,b;\tfrac{3}{2};z\right)=F\left(2a-1,2b-1;% a+b-\tfrac{1}{2};\tfrac{1}{2}-\tfrac{1}{2}\sqrt{z}\right)-F\left(2a-1,2b-1;a+b% -\tfrac{1}{2};\tfrac{1}{2}+\tfrac{1}{2}\sqrt{z}\right)}} (2*sqrt(z)*GAMMA(-(1)/(2))*GAMMA(a + b -(1)/(2)))/(GAMMA(a -(1)/(2))*GAMMA(b -(1)/(2)))*hypergeom([a, b], [(3)/(2)], z)= hypergeom([2*a - 1, 2*b - 1], [a + b -(1)/(2)], (1)/(2)-(1)/(2)*sqrt(z))- hypergeom([2*a - 1, 2*b - 1], [a + b -(1)/(2)], (1)/(2)+(1)/(2)*sqrt(z)) Divide[2*Sqrt[z]*Gamma[-Divide[1,2]]*Gamma[a + b -Divide[1,2]],Gamma[a -Divide[1,2]]*Gamma[b -Divide[1,2]]]*Hypergeometric2F1[a, b, Divide[3,2], z]= Hypergeometric2F1[2*a - 1, 2*b - 1, a + b -Divide[1,2], Divide[1,2]-Divide[1,2]*Sqrt[z]]- Hypergeometric2F1[2*a - 1, 2*b - 1, a + b -Divide[1,2], Divide[1,2]+Divide[1,2]*Sqrt[z]] Failure Failure Skip Skip
15.8.E29 F ⁑ ( a , 1 3 ⁒ a + 1 3 2 3 ⁒ a + 2 3 ; z ) = ( 1 + z ) - 2 ⁒ a ⁒ F ⁑ ( a , 2 3 ⁒ a + 1 6 4 3 ⁒ a + 1 3 ; 4 ⁒ z ( 1 + z ) 2 ) Gauss-hypergeometric-F π‘Ž 1 3 π‘Ž 1 3 2 3 π‘Ž 2 3 𝑧 superscript 1 𝑧 2 π‘Ž Gauss-hypergeometric-F π‘Ž 2 3 π‘Ž 1 6 4 3 π‘Ž 1 3 4 𝑧 superscript 1 𝑧 2 {\displaystyle{\displaystyle F\left({a,\tfrac{1}{3}a+\tfrac{1}{3}\atop\tfrac{2% }{3}a+\tfrac{2}{3}};z\right)=\left(1+\sqrt{z}\right)^{-2a}\*F\left({a,\tfrac{2% }{3}a+\tfrac{1}{6}\atop\tfrac{4}{3}a+\tfrac{1}{3}};\frac{4\sqrt{z}}{(1+\sqrt{z% })^{2}}\right)}} hypergeom([a, (1)/(3)*a +(1)/(3)], [(2)/(3)*a +(2)/(3)], z)=(1 +sqrt(z))^(- 2*a)* hypergeom([a, (2)/(3)*a +(1)/(6)], [(4)/(3)*a +(1)/(3)], (4*sqrt(z))/((1 +sqrt(z))^(2))) Hypergeometric2F1[a, Divide[1,3]*a +Divide[1,3], Divide[2,3]*a +Divide[2,3], z]=(1 +Sqrt[z])^(- 2*a)* Hypergeometric2F1[a, Divide[2,3]*a +Divide[1,6], Divide[4,3]*a +Divide[1,3], Divide[4*Sqrt[z],(1 +Sqrt[z])^(2)]] Failure Failure
Fail
1.372516024+1.825805270*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.6051524755-3.068921398*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
.2975793921-.5999898475*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.990518232e-1-9.951495097*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[1.372516027919868, 1.8258052682131423] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.6051524788001073, -3.068921398743132] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.29757939171102116, -0.5999898475376467] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.09905183258496669, -9.951495092476645] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
15.8.E30 ( 1 - 1 2 ⁒ z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 1 3 ⁒ a + 5 6 ; ( z 2 - z ) 2 ) = F ⁑ ( a , 1 3 ⁒ a + 1 3 2 3 ⁒ a + 2 3 ; z ) superscript 1 1 2 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 1 2 1 3 π‘Ž 5 6 superscript 𝑧 2 𝑧 2 Gauss-hypergeometric-F π‘Ž 1 3 π‘Ž 1 3 2 3 π‘Ž 2 3 𝑧 {\displaystyle{\displaystyle\left(1-\tfrac{1}{2}z\right)^{-a}F\left({\tfrac{1}% {2}a,\tfrac{1}{2}a+\tfrac{1}{2}\atop\tfrac{1}{3}a+\tfrac{5}{6}};\left(\frac{z}% {2-z}\right)^{2}\right)=F\left({a,\tfrac{1}{3}a+\tfrac{1}{3}\atop\tfrac{2}{3}a% +\tfrac{2}{3}};z\right)}} (1 -(1)/(2)*z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [(1)/(3)*a +(5)/(6)], ((z)/(2 - z))^(2))= hypergeom([a, (1)/(3)*a +(1)/(3)], [(2)/(3)*a +(2)/(3)], z) (1 -Divide[1,2]*z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], Divide[1,3]*a +Divide[5,6], (Divide[z,2 - z])^(2)]= Hypergeometric2F1[a, Divide[1,3]*a +Divide[1,3], Divide[2,3]*a +Divide[2,3], z] Failure Failure Successful Successful
15.8.E30 F ⁑ ( a , 1 3 ⁒ a + 1 3 2 3 ⁒ a + 2 3 ; z ) = ( 1 + z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 2 3 ⁒ a + 2 3 ; 4 ⁒ z ( 1 + z ) 2 ) Gauss-hypergeometric-F π‘Ž 1 3 π‘Ž 1 3 2 3 π‘Ž 2 3 𝑧 superscript 1 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 1 2 2 3 π‘Ž 2 3 4 𝑧 superscript 1 𝑧 2 {\displaystyle{\displaystyle F\left({a,\tfrac{1}{3}a+\tfrac{1}{3}\atop\tfrac{2% }{3}a+\tfrac{2}{3}};z\right)=(1+z)^{-a}F\left({\tfrac{1}{2}a,\tfrac{1}{2}a+% \tfrac{1}{2}\atop\tfrac{2}{3}a+\tfrac{2}{3}};\frac{4z}{(1+z)^{2}}\right)}} hypergeom([a, (1)/(3)*a +(1)/(3)], [(2)/(3)*a +(2)/(3)], z)=(1 + z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [(2)/(3)*a +(2)/(3)], (4*z)/((1 + z)^(2))) Hypergeometric2F1[a, Divide[1,3]*a +Divide[1,3], Divide[2,3]*a +Divide[2,3], z]=(1 + z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], Divide[2,3]*a +Divide[2,3], Divide[4*z,(1 + z)^(2)]] Failure Failure
Fail
1.372516027+1.825805270*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.6051524754-3.068921398*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
.2975793922-.5999898476*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.990518493e-1-9.951495087*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[1.372516027919873, 1.825805268213136] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.605152478800107, -3.0689213987431314] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.2975793917110212, -0.5999898475376467] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.09905183258496181, -9.951495092476698] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
15.8.E31 F ⁑ ( 3 ⁒ a , 3 ⁒ a + 1 2 4 ⁒ a + 2 3 ; z ) = ( 1 - 9 8 ⁒ z ) - 2 ⁒ a ⁒ F ⁑ ( a , a + 1 2 2 ⁒ a + 5 6 ; 27 ⁒ z 2 ⁒ ( z - 1 ) ( 9 ⁒ z - 8 ) 2 ) Gauss-hypergeometric-F 3 π‘Ž 3 π‘Ž 1 2 4 π‘Ž 2 3 𝑧 superscript 1 9 8 𝑧 2 π‘Ž Gauss-hypergeometric-F π‘Ž π‘Ž 1 2 2 π‘Ž 5 6 27 superscript 𝑧 2 𝑧 1 superscript 9 𝑧 8 2 {\displaystyle{\displaystyle F\left({3a,3a+\frac{1}{2}\atop 4a+\frac{2}{3}};z% \right)=\left(1-\tfrac{9}{8}z\right)^{-2a}\*F\left({a,a+\frac{1}{2}\atop 2a+% \frac{5}{6}};\frac{27z^{2}(z-1)}{(9z-8)^{2}}\right)}} hypergeom([3*a, 3*a +(1)/(2)], [4*a +(2)/(3)], z)=(1 -(9)/(8)*z)^(- 2*a)* hypergeom([a, a +(1)/(2)], [2*a +(5)/(6)], (27*(z)^(2)*(z - 1))/((9*z - 8)^(2))) Hypergeometric2F1[3*a, 3*a +Divide[1,2], 4*a +Divide[2,3], z]=(1 -Divide[9,8]*z)^(- 2*a)* Hypergeometric2F1[a, a +Divide[1,2], 2*a +Divide[5,6], Divide[27*(z)^(2)*(z - 1),(9*z - 8)^(2)]] Failure Failure Successful Successful
15.8.E32 ( 1 - z 3 ) a ( - z ) 3 ⁒ a ⁒ ( 1 Ξ“ ⁑ ( a + 2 3 ) ⁒ Ξ“ ⁑ ( 2 3 ) ⁒ F ⁑ ( a , a + 1 3 2 3 ; z - 3 ) + e 1 3 ⁒ Ο€ ⁒ i z ⁒ Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( 4 3 ) ⁒ F ⁑ ( a + 1 3 , a + 2 3 4 3 ; z - 3 ) ) = 3 3 2 ⁒ a + 1 2 ⁒ e 1 2 ⁒ a ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a + 1 3 ) ⁒ ( 1 - ΞΆ ) a 2 ⁒ Ο€ ⁒ Ξ“ ⁑ ( 2 ⁒ a + 2 3 ) ⁒ ( - ΞΆ ) 2 ⁒ a ⁒ F ⁑ ( a + 1 3 , 3 ⁒ a 2 ⁒ a + 2 3 ; ΞΆ - 1 ) superscript 1 superscript 𝑧 3 π‘Ž superscript 𝑧 3 π‘Ž 1 Euler-Gamma π‘Ž 2 3 Euler-Gamma 2 3 Gauss-hypergeometric-F π‘Ž π‘Ž 1 3 2 3 superscript 𝑧 3 superscript 𝑒 1 3 πœ‹ imaginary-unit 𝑧 Euler-Gamma π‘Ž Euler-Gamma 4 3 Gauss-hypergeometric-F π‘Ž 1 3 π‘Ž 2 3 4 3 superscript 𝑧 3 superscript 3 3 2 π‘Ž 1 2 superscript 𝑒 1 2 π‘Ž πœ‹ imaginary-unit Euler-Gamma π‘Ž 1 3 superscript 1 𝜁 π‘Ž 2 πœ‹ Euler-Gamma 2 π‘Ž 2 3 superscript 𝜁 2 π‘Ž Gauss-hypergeometric-F π‘Ž 1 3 3 π‘Ž 2 π‘Ž 2 3 superscript 𝜁 1 {\displaystyle{\displaystyle\frac{\left(1-z^{3}\right)^{a}}{\left(-z\right)^{3% a}}\left(\frac{1}{\Gamma\left(a+\frac{2}{3}\right)\Gamma\left(\frac{2}{3}% \right)}F\left({a,a+\frac{1}{3}\atop\frac{2}{3}};z^{-3}\right)+\frac{e^{\frac{% 1}{3}\pi\mathrm{i}}}{z\Gamma\left(a\right)\Gamma\left(\frac{4}{3}\right)}F% \left({a+\frac{1}{3},a+\frac{2}{3}\atop\frac{4}{3}};z^{-3}\right)\right)=\frac% {3^{\frac{3}{2}a+\frac{1}{2}}e^{\frac{1}{2}a\pi\mathrm{i}}\Gamma\left(a+\frac{% 1}{3}\right)(1-\zeta)^{a}}{2\pi\Gamma\left(2a+\frac{2}{3}\right)(-\zeta)^{2a}}% F\left({a+\frac{1}{3},3a\atop 2a+\frac{2}{3}};\zeta^{-1}\right)}} ((1 - (z)^(3))^(a))/((- z)^(3*a))*((1)/(GAMMA(a +(2)/(3))*GAMMA((2)/(3)))*hypergeom([a, a +(1)/(3)], [(2)/(3)], (z)^(- 3))+(exp((1)/(3)*Pi*I))/(z*GAMMA(a)*GAMMA((4)/(3)))*hypergeom([a +(1)/(3), a +(2)/(3)], [(4)/(3)], (z)^(- 3)))=((3)^((3)/(2)*a +(1)/(2))* exp((1)/(2)*a*Pi*I)*GAMMA(a +(1)/(3))*(1 - zeta)^(a))/(2*Pi*GAMMA(2*a +(2)/(3))*(- zeta)^(2*a))*hypergeom([a +(1)/(3), 3*a], [2*a +(2)/(3)], (zeta)^(- 1)) Divide[(1 - (z)^(3))^(a),(- z)^(3*a)]*(Divide[1,Gamma[a +Divide[2,3]]*Gamma[Divide[2,3]]]*Hypergeometric2F1[a, a +Divide[1,3], Divide[2,3], (z)^(- 3)]+Divide[Exp[Divide[1,3]*Pi*I],z*Gamma[a]*Gamma[Divide[4,3]]]*Hypergeometric2F1[a +Divide[1,3], a +Divide[2,3], Divide[4,3], (z)^(- 3)])=Divide[(3)^(Divide[3,2]*a +Divide[1,2])* Exp[Divide[1,2]*a*Pi*I]*Gamma[a +Divide[1,3]]*(1 - \[zeta])^(a),2*Pi*Gamma[2*a +Divide[2,3]]*(- \[zeta])^(2*a)]*Hypergeometric2F1[a +Divide[1,3], 3*a, 2*a +Divide[2,3], (\[zeta])^(- 1)] Failure Failure Error Error
15.8.E33 F ⁑ ( 1 3 , 2 3 1 ; 1 - ( 1 - z 1 + 2 ⁒ z ) 3 ) = ( 1 + 2 ⁒ z ) ⁒ F ⁑ ( 1 3 , 2 3 1 ; z 3 ) Gauss-hypergeometric-F 1 3 2 3 1 1 superscript 1 𝑧 1 2 𝑧 3 1 2 𝑧 Gauss-hypergeometric-F 1 3 2 3 1 superscript 𝑧 3 {\displaystyle{\displaystyle F\left({\frac{1}{3},\frac{2}{3}\atop 1};1-\left(% \frac{1-z}{1+2z}\right)^{3}\right)=(1+2z)F\left({\frac{1}{3},\frac{2}{3}\atop 1% };z^{3}\right)}} hypergeom([(1)/(3), (2)/(3)], [1], 1 -((1 - z)/(1 + 2*z))^(3))=(1 + 2*z)* hypergeom([(1)/(3), (2)/(3)], [1], (z)^(3)) Hypergeometric2F1[Divide[1,3], Divide[2,3], 1, 1 -(Divide[1 - z,1 + 2*z])^(3)]=(1 + 2*z)* Hypergeometric2F1[Divide[1,3], Divide[2,3], 1, (z)^(3)] Failure Failure
Fail
-.10742540e-1-1.736124843*I <- {z = 2^(1/2)+I*2^(1/2)}
-.10742540e-1+1.736124843*I <- {z = 2^(1/2)-I*2^(1/2)}
3.107241801+.4009013497*I <- {z = -2^(1/2)-I*2^(1/2)}
3.107241801-.4009013497*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.010742539950905128, -1.7361248428967333] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.010742539950905128, 1.7361248428967333] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.107241800778924, 0.40090134898439433] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.107241800778924, -0.40090134898439433] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
15.9.E1 P n ( Ξ± , Ξ² ) ⁑ ( x ) = ( Ξ± + 1 ) n n ! ⁒ F ⁑ ( - n , n + Ξ± + Ξ² + 1 Ξ± + 1 ; 1 - x 2 ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ Pochhammer 𝛼 1 𝑛 𝑛 Gauss-hypergeometric-F 𝑛 𝑛 𝛼 𝛽 1 𝛼 1 1 π‘₯ 2 {\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}\left(x\right)=\frac{{\left% (\alpha+1\right)_{n}}}{n!}F\left({-n,n+\alpha+\beta+1\atop\alpha+1};\frac{1-x}% {2}\right)}} JacobiP(n, alpha, beta, x)=(pochhammer(alpha + 1, n))/(factorial(n))*hypergeom([- n, n + alpha + beta + 1], [alpha + 1], (1 - x)/(2)) JacobiP[n, \[Alpha], \[Beta], x]=Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*Hypergeometric2F1[- n, n + \[Alpha]+ \[Beta]+ 1, \[Alpha]+ 1, Divide[1 - x,2]] Successful Successful - -
15.9.E2 C n ( Ξ» ) ⁑ ( x ) = ( 2 ⁒ Ξ» ) n n ! ⁒ F ⁑ ( - n , n + 2 ⁒ Ξ» Ξ» + 1 2 ; 1 - x 2 ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ Pochhammer 2 πœ† 𝑛 𝑛 Gauss-hypergeometric-F 𝑛 𝑛 2 πœ† πœ† 1 2 1 π‘₯ 2 {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(x\right)=\frac{{\left(2% \lambda\right)_{n}}}{n!}F\left({-n,n+2\lambda\atop\lambda+\frac{1}{2}};\frac{1% -x}{2}\right)}} GegenbauerC(n, lambda, x)=(pochhammer(2*lambda, n))/(factorial(n))*hypergeom([- n, n + 2*lambda], [lambda +(1)/(2)], (1 - x)/(2)) GegenbauerC[n, \[Lambda], x]=Divide[Pochhammer[2*\[Lambda], n],(n)!]*Hypergeometric2F1[- n, n + 2*\[Lambda], \[Lambda]+Divide[1,2], Divide[1 - x,2]] Successful Successful - -
15.9.E3 C n ( Ξ» ) ⁑ ( x ) = ( 2 ⁒ x ) n ⁒ ( Ξ» ) n n ! ⁒ F ⁑ ( - 1 2 ⁒ n , 1 2 ⁒ ( 1 - n ) 1 - Ξ» - n ; 1 x 2 ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ superscript 2 π‘₯ 𝑛 Pochhammer πœ† 𝑛 𝑛 Gauss-hypergeometric-F 1 2 𝑛 1 2 1 𝑛 1 πœ† 𝑛 1 superscript π‘₯ 2 {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(x\right)=(2x)^{n}\frac{{% \left(\lambda\right)_{n}}}{n!}F\left({-\frac{1}{2}n,\frac{1}{2}(1-n)\atop 1-% \lambda-n};\frac{1}{x^{2}}\right)}} GegenbauerC(n, lambda, x)=(2*x)^(n)*(pochhammer(lambda, n))/(factorial(n))*hypergeom([-(1)/(2)*n, (1)/(2)*(1 - n)], [1 - lambda - n], (1)/((x)^(2))) GegenbauerC[n, \[Lambda], x]=(2*x)^(n)*Divide[Pochhammer[\[Lambda], n],(n)!]*Hypergeometric2F1[-Divide[1,2]*n, Divide[1,2]*(1 - n), 1 - \[Lambda]- n, Divide[1,(x)^(2)]] Failure Failure Successful Successful
15.9.E4 C n ( Ξ» ) ⁑ ( cos ⁑ ΞΈ ) = e n ⁒ i ⁒ ΞΈ ⁒ ( Ξ» ) n n ! ⁒ F ⁑ ( - n , Ξ» 1 - Ξ» - n ; e - 2 ⁒ i ⁒ ΞΈ ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 πœƒ superscript 𝑒 𝑛 imaginary-unit πœƒ Pochhammer πœ† 𝑛 𝑛 Gauss-hypergeometric-F 𝑛 πœ† 1 πœ† 𝑛 superscript 𝑒 2 imaginary-unit πœƒ {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(\cos\theta\right)=e^{n% \mathrm{i}\theta}\frac{{\left(\lambda\right)_{n}}}{n!}F\left({-n,\lambda\atop 1% -\lambda-n};e^{-2\mathrm{i}\theta}\right)}} GegenbauerC(n, lambda, cos(theta))= exp(n*I*theta)*(pochhammer(lambda, n))/(factorial(n))*hypergeom([- n, lambda], [1 - lambda - n], exp(- 2*I*theta)) GegenbauerC[n, \[Lambda], Cos[\[Theta]]]= Exp[n*I*\[Theta]]*Divide[Pochhammer[\[Lambda], n],(n)!]*Hypergeometric2F1[- n, \[Lambda], 1 - \[Lambda]- n, Exp[- 2*I*\[Theta]]] Failure Failure Successful Successful
15.9.E5 T n ⁑ ( x ) = F ⁑ ( - n , n 1 2 ; 1 - x 2 ) Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ Gauss-hypergeometric-F 𝑛 𝑛 1 2 1 π‘₯ 2 {\displaystyle{\displaystyle T_{n}\left(x\right)=F\left({-n,n\atop\frac{1}{2}}% ;\frac{1-x}{2}\right)}} ChebyshevT(n, x)= hypergeom([- n, n], [(1)/(2)], (1 - x)/(2)) ChebyshevT[n, x]= Hypergeometric2F1[- n, n, Divide[1,2], Divide[1 - x,2]] Successful Successful - -
15.9.E6 U n ⁑ ( x ) = ( n + 1 ) ⁒ F ⁑ ( - n , n + 2 3 2 ; 1 - x 2 ) Chebyshev-polynomial-second-kind-U 𝑛 π‘₯ 𝑛 1 Gauss-hypergeometric-F 𝑛 𝑛 2 3 2 1 π‘₯ 2 {\displaystyle{\displaystyle U_{n}\left(x\right)=(n+1)F\left({-n,n+2\atop\frac% {3}{2}};\frac{1-x}{2}\right)}} ChebyshevU(n, x)=(n + 1)* hypergeom([- n, n + 2], [(3)/(2)], (1 - x)/(2)) ChebyshevU[n, x]=(n + 1)* Hypergeometric2F1[- n, n + 2, Divide[3,2], Divide[1 - x,2]] Successful Failure - Successful
15.9.E7 P n ⁑ ( x ) = F ⁑ ( - n , n + 1 1 ; 1 - x 2 ) Legendre-spherical-polynomial 𝑛 π‘₯ Gauss-hypergeometric-F 𝑛 𝑛 1 1 1 π‘₯ 2 {\displaystyle{\displaystyle P_{n}\left(x\right)=F\left({-n,n+1\atop 1};\frac{% 1-x}{2}\right)}} LegendreP(n, x)= hypergeom([- n, n + 1], [1], (1 - x)/(2)) LegendreP[n, x]= Hypergeometric2F1[- n, n + 1, 1, Divide[1 - x,2]] Successful Successful - -
15.9.E11 Ο• Ξ» ( Ξ± , Ξ² ) ⁑ ( t ) = F ⁑ ( 1 2 ⁒ ( Ξ± + Ξ² + 1 - i ⁒ Ξ» ) , 1 2 ⁒ ( Ξ± + Ξ² + 1 + i ⁒ Ξ» ) Ξ± + 1 ; - sinh 2 ⁑ t ) Jacobi-hypergeometric-phi 𝛼 𝛽 πœ† 𝑑 Gauss-hypergeometric-F 1 2 𝛼 𝛽 1 imaginary-unit πœ† 1 2 𝛼 𝛽 1 imaginary-unit πœ† 𝛼 1 2 𝑑 {\displaystyle{\displaystyle\phi^{(\alpha,\beta)}_{\lambda}\left(t\right)=F% \left({\tfrac{1}{2}(\alpha+\beta+1-\mathrm{i}\lambda),\tfrac{1}{2}(\alpha+% \beta+1+\mathrm{i}\lambda)\atop\alpha+1};-{\sinh^{2}}t\right)}} hypergeom([((alpha)+(beta)+1-I*(lambda))/2, ((alpha)+(beta)+1+I*(lambda))], [(alpha)+1], -sinh(t)^2)= hypergeom([(1)/(2)*(alpha + beta + 1 - I*lambda), (1)/(2)*(alpha + beta + 1 + I*lambda)], [alpha + 1], - (sinh(t))^(2)) Error Failure Error
Fail
1042.578545-886.9426609*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2)}
.4942284159e-3+.1205933063e-2*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), t = 2^(1/2)-I*2^(1/2)}
1042.578545-886.9426609*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), t = -2^(1/2)-I*2^(1/2)}
.4942284159e-3+.1205933063e-2*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), t = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
-
15.9.E15 C Ξ± ( Ξ» ) ⁑ ( z ) = Ξ“ ⁑ ( Ξ± + 2 ⁒ Ξ» ) Ξ“ ⁑ ( 2 ⁒ Ξ» ) ⁒ Ξ“ ⁑ ( Ξ± + 1 ) ⁒ F ⁑ ( - Ξ± , Ξ± + 2 ⁒ Ξ» Ξ» + 1 2 ; 1 - z 2 ) ultraspherical-Gegenbauer-polynomial πœ† 𝛼 𝑧 Euler-Gamma 𝛼 2 πœ† Euler-Gamma 2 πœ† Euler-Gamma 𝛼 1 Gauss-hypergeometric-F 𝛼 𝛼 2 πœ† πœ† 1 2 1 𝑧 2 {\displaystyle{\displaystyle C^{(\lambda)}_{\alpha}\left(z\right)=\frac{\Gamma% \left(\alpha+2\lambda\right)}{\Gamma\left(2\lambda\right)\Gamma\left(\alpha+1% \right)}F\left({-\alpha,\alpha+2\lambda\atop\lambda+\tfrac{1}{2}};\frac{1-z}{2% }\right)}} GegenbauerC(alpha, lambda, z)=(GAMMA(alpha + 2*lambda))/(GAMMA(2*lambda)*GAMMA(alpha + 1))*hypergeom([- alpha, alpha + 2*lambda], [lambda +(1)/(2)], (1 - z)/(2)) GegenbauerC[\[Alpha], \[Lambda], z]=Divide[Gamma[\[Alpha]+ 2*\[Lambda]],Gamma[2*\[Lambda]]*Gamma[\[Alpha]+ 1]]*Hypergeometric2F1[- \[Alpha], \[Alpha]+ 2*\[Lambda], \[Lambda]+Divide[1,2], Divide[1 - z,2]] Successful Successful - -
15.9.E16 𝐅 ⁑ ( a , b 2 ⁒ b ; z ) = Ο€ Ξ“ ⁑ ( b ) ⁒ z - b + ( 1 / 2 ) ⁒ ( 1 - z ) ( b - a - ( 1 / 2 ) ) / 2 ⁒ P a - b - ( 1 / 2 ) - b + ( 1 / 2 ) ⁑ ( 2 - z 2 ⁒ 1 - z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 2 𝑏 𝑧 πœ‹ Euler-Gamma 𝑏 superscript 𝑧 𝑏 1 2 superscript 1 𝑧 𝑏 π‘Ž 1 2 2 Legendre-P-first-kind 𝑏 1 2 π‘Ž 𝑏 1 2 2 𝑧 2 1 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop 2b};z\right)=\frac{\sqrt% {\pi}}{\Gamma\left(b\right)}z^{-b+(\ifrac{1}{2})}(1-z)^{(b-a-(\ifrac{1}{2}))/2% }\*P^{-b+(\ifrac{1}{2})}_{a-b-(\ifrac{1}{2})}\left(\frac{2-z}{2\sqrt{1-z}}% \right)}} hypergeom([a, b], [2*b], z)/GAMMA(2*b)=(sqrt(Pi))/(GAMMA(b))*(z)^(- b +((1)/(2)))*(1 - z)^((b - a -((1)/(2)))/ 2)* LegendreP(a - b -((1)/(2)), - b +((1)/(2)), (2 - z)/(2*sqrt(1 - z))) Hypergeometric2F1Regularized[a, b, 2*b, z]=Divide[Sqrt[Pi],Gamma[b]]*(z)^(- b +(Divide[1,2]))*(1 - z)^((b - a -(Divide[1,2]))/ 2)* LegendreP[a - b -(Divide[1,2]), - b +(Divide[1,2]), 3, Divide[2 - z,2*Sqrt[1 - z]]] Failure Failure Error Error
15.9.E17 𝐅 ⁑ ( a , a + 1 2 c ; z ) = 2 c - 1 ⁒ z ( 1 - c ) / 2 ⁒ ( 1 - z ) - a + ( ( c - 1 ) / 2 ) ⁒ P 2 ⁒ a - c 1 - c ⁑ ( 1 1 - z ) scaled-hypergeometric-bold-F π‘Ž π‘Ž 1 2 𝑐 𝑧 superscript 2 𝑐 1 superscript 𝑧 1 𝑐 2 superscript 1 𝑧 π‘Ž 𝑐 1 2 Legendre-P-first-kind 1 𝑐 2 π‘Ž 𝑐 1 1 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,a+\tfrac{1}{2}\atop c};z\right)% =2^{c-1}z^{\ifrac{(1-c)}{2}}(1-z)^{-a+(\ifrac{(c-1)}{2})}\*P^{1-c}_{2a-c}\left% (\frac{1}{\sqrt{1-z}}\right)}} hypergeom([a, a +(1)/(2)], [c], z)/GAMMA(c)= (2)^(c - 1)* (z)^((1 - c)/(2))*(1 - z)^(- a +((c - 1)/(2)))* LegendreP(2*a - c, 1 - c, (1)/(sqrt(1 - z))) Hypergeometric2F1Regularized[a, a +Divide[1,2], c, z]= (2)^(c - 1)* (z)^(Divide[1 - c,2])*(1 - z)^(- a +(Divide[c - 1,2]))* LegendreP[2*a - c, 1 - c, 3, Divide[1,Sqrt[1 - z]]] Failure Failure Skip Successful
15.9.E19 𝐅 ⁑ ( a , b a - b + 1 ; z ) = z ( b - a ) / 2 ⁒ ( 1 - z ) - b ⁒ P - b b - a ⁑ ( 1 + z 1 - z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 π‘Ž 𝑏 1 𝑧 superscript 𝑧 𝑏 π‘Ž 2 superscript 1 𝑧 𝑏 Legendre-P-first-kind 𝑏 π‘Ž 𝑏 1 𝑧 1 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop a-b+1};z\right)=z^{% \ifrac{(b-a)}{2}}(1-z)^{-b}\*P^{b-a}_{-b}\left(\frac{1+z}{1-z}\right)}} hypergeom([a, b], [a - b + 1], z)/GAMMA(a - b + 1)= (z)^((b - a)/(2))*(1 - z)^(- b)* LegendreP(- b, b - a, (1 + z)/(1 - z)) Hypergeometric2F1Regularized[a, b, a - b + 1, z]= (z)^(Divide[b - a,2])*(1 - z)^(- b)* LegendreP[- b, b - a, 3, Divide[1 + z,1 - z]] Successful Failure - Successful
15.9.E20 𝐅 ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = ( - z ⁒ ( 1 - z ) ) ( 1 - a - b ) / 4 ⁒ P ( a - b - 1 ) / 2 ( 1 - a - b ) / 2 ⁑ ( 1 - 2 ⁒ z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 𝑧 superscript 𝑧 1 𝑧 1 π‘Ž 𝑏 4 Legendre-P-first-kind 1 π‘Ž 𝑏 2 π‘Ž 𝑏 1 2 1 2 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop\tfrac{1}{2}(a+b+1)};z% \right)=\left(-z(1-z)\right)^{\ifrac{(1-a-b)}{4}}\*P^{\ifrac{(1-a-b)}{2}}_{% \ifrac{(a-b-1)}{2}}\left(1-2z\right)}} hypergeom([a, b], [(1)/(2)*(a + b + 1)], z)/GAMMA((1)/(2)*(a + b + 1))=(- z*(1 - z))^((1 - a - b)/(4))* LegendreP((a - b - 1)/(2), (1 - a - b)/(2), 1 - 2*z) Hypergeometric2F1Regularized[a, b, Divide[1,2]*(a + b + 1), z]=(- z*(1 - z))^(Divide[1 - a - b,4])* LegendreP[Divide[a - b - 1,2], Divide[1 - a - b,2], 3, 1 - 2*z] Failure Failure Skip
Fail
Complex[6.0300259512809715, 8.154472102119673] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-17.372827152675953, -0.5381367643934912] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.4668594623806452, -1.8721092491501343] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.4668594623806426, 1.8721092491501325] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
15.9.E21 𝐅 ⁑ ( a , 1 - a c ; z ) = ( - z 1 - z ) ( 1 - c ) / 2 ⁒ P - a 1 - c ⁑ ( 1 - 2 ⁒ z ) scaled-hypergeometric-bold-F π‘Ž 1 π‘Ž 𝑐 𝑧 superscript 𝑧 1 𝑧 1 𝑐 2 Legendre-P-first-kind 1 𝑐 π‘Ž 1 2 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,1-a\atop c};z\right)=\left(% \frac{-z}{1-z}\right)^{\ifrac{(1-c)}{2}}\*P^{1-c}_{-a}\left(1-2z\right)}} hypergeom([a, 1 - a], [c], z)/GAMMA(c)=((- z)/(1 - z))^((1 - c)/(2))* LegendreP(- a, 1 - c, 1 - 2*z) Hypergeometric2F1Regularized[a, 1 - a, c, z]=(Divide[- z,1 - z])^(Divide[1 - c,2])* LegendreP[- a, 1 - c, 3, 1 - 2*z] Failure Successful Skip -
15.10.E1 z ⁒ ( 1 - z ) ⁒ d 2 w d z 2 + ( c - ( a + b + 1 ) ⁒ z ) ⁒ d w d z - a ⁒ b ⁒ w = 0 𝑧 1 𝑧 derivative 𝑀 𝑧 2 𝑐 π‘Ž 𝑏 1 𝑧 derivative 𝑀 𝑧 π‘Ž 𝑏 𝑀 0 {\displaystyle{\displaystyle z(1-z)\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}% +\left(c-(a+b+1)z\right)\frac{\mathrm{d}w}{\mathrm{d}z}-abw=0}} z*(1 - z)* diff(w, [z$(2)])+(c -(a + b + 1)*z)* diff(w, z)- a*b*w = 0 z*(1 - z)* D[w, {z, 2}]+(c -(a + b + 1)*z)* D[w, z]- a*b*w = 0 Failure Failure
Fail
5.656854245-5.656854245*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
-5.656854245-5.656854245*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
-5.656854245+5.656854245*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
5.656854245+5.656854245*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[5.656854249492381, -5.656854249492381] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-5.656854249492381, -5.656854249492381] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.656854249492381, 5.656854249492381] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[5.656854249492381, 5.656854249492381] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
15.10#Ex1 f 1 ⁒ ( z ) = F ⁑ ( a , b c ; z ) subscript 𝑓 1 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle f_{1}(z)=F\left({a,b\atop c};z\right)}} f[1]*(z)= hypergeom([a, b], [c], z) Subscript[f, 1]*(z)= Hypergeometric2F1[a, b, c, z] Failure Failure Skip Skip
15.10#Ex2 f 2 ⁒ ( z ) = z 1 - c ⁒ F ⁑ ( a - c + 1 , b - c + 1 2 - c ; z ) subscript 𝑓 2 𝑧 superscript 𝑧 1 𝑐 Gauss-hypergeometric-F π‘Ž 𝑐 1 𝑏 𝑐 1 2 𝑐 𝑧 {\displaystyle{\displaystyle f_{2}(z)=z^{1-c}F\left({a-c+1,b-c+1\atop 2-c};z% \right)}} f[2]*(z)= (z)^(1 - c)* hypergeom([a - c + 1, b - c + 1], [2 - c], z) Subscript[f, 2]*(z)= (z)^(1 - c)* Hypergeometric2F1[a - c + 1, b - c + 1, 2 - c, z] Failure Failure Skip Skip
15.10#Ex3 f 1 ⁒ ( z ) = F ⁑ ( a , b a + b + 1 - c ; 1 - z ) subscript 𝑓 1 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 1 𝑐 1 𝑧 {\displaystyle{\displaystyle f_{1}(z)=F\left({a,b\atop a+b+1-c};1-z\right)}} f[1]*(z)= hypergeom([a, b], [a + b + 1 - c], 1 - z) Subscript[f, 1]*(z)= Hypergeometric2F1[a, b, a + b + 1 - c, 1 - z] Failure Failure Skip Skip
15.10#Ex4 f 2 ⁒ ( z ) = ( 1 - z ) c - a - b ⁒ F ⁑ ( c - a , c - b c - a - b + 1 ; 1 - z ) subscript 𝑓 2 𝑧 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 π‘Ž 𝑏 1 1 𝑧 {\displaystyle{\displaystyle f_{2}(z)=(1-z)^{c-a-b}F\left({c-a,c-b\atop c-a-b+% 1};1-z\right)}} f[2]*(z)=(1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c - a - b + 1], 1 - z) Subscript[f, 2]*(z)=(1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c - a - b + 1, 1 - z] Failure Failure Skip Skip
15.10#Ex5 f 1 ⁒ ( z ) = z - a ⁒ F ⁑ ( a , a - c + 1 a - b + 1 ; 1 z ) subscript 𝑓 1 𝑧 superscript 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž π‘Ž 𝑐 1 π‘Ž 𝑏 1 1 𝑧 {\displaystyle{\displaystyle f_{1}(z)=z^{-a}F\left({a,a-c+1\atop a-b+1};\frac{% 1}{z}\right)}} f[1]*(z)= (z)^(- a)* hypergeom([a, a - c + 1], [a - b + 1], (1)/(z)) Subscript[f, 1]*(z)= (z)^(- a)* Hypergeometric2F1[a, a - c + 1, a - b + 1, Divide[1,z]] Failure Failure Skip Skip
15.10#Ex6 f 2 ⁒ ( z ) = z - b ⁒ F ⁑ ( b , b - c + 1 b - a + 1 ; 1 z ) subscript 𝑓 2 𝑧 superscript 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑏 𝑐 1 𝑏 π‘Ž 1 1 𝑧 {\displaystyle{\displaystyle f_{2}(z)=z^{-b}F\left({b,b-c+1\atop b-a+1};\frac{% 1}{z}\right)}} f[2]*(z)= (z)^(- b)* hypergeom([b, b - c + 1], [b - a + 1], (1)/(z)) Subscript[f, 2]*(z)= (z)^(- b)* Hypergeometric2F1[b, b - c + 1, b - a + 1, Divide[1,z]] Failure Failure Skip Skip
15.10.E11 w 1 ⁒ ( z ) = F ⁑ ( a , b c ; z ) subscript 𝑀 1 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle w_{1}(z)=F\left({a,b\atop c};z\right)}} w[1]*(z)= hypergeom([a, b], [c], z) Subscript[w, 1]*(z)= Hypergeometric2F1[a, b, c, z] Failure Failure Skip Skip
15.10.E11 F ⁑ ( a , b c ; z ) = ( 1 - z ) c - a - b ⁒ F ⁑ ( c - a , c - b c ; z ) Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle F\left({a,b\atop c};z\right)=(1-z)^{c-a-b}F\left(% {c-a,c-b\atop c};z\right)}} hypergeom([a, b], [c], z)=(1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c], z) Hypergeometric2F1[a, b, c, z]=(1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c, z] Failure Successful Successful -
15.10.E11 ( 1 - z ) c - a - b ⁒ F ⁑ ( c - a , c - b c ; z ) = ( 1 - z ) - a ⁒ F ⁑ ( a , c - b c ; z z - 1 ) superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 𝑧 superscript 1 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž 𝑐 𝑏 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle(1-z)^{c-a-b}F\left({c-a,c-b\atop c};z\right)=(1-z% )^{-a}F\left({a,c-b\atop c};\frac{z}{z-1}\right)}} (1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c], z)=(1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1)) (1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c, z]=(1 - z)^(- a)* Hypergeometric2F1[a, c - b, c, Divide[z,z - 1]] Failure Failure Skip Skip
15.10.E11 ( 1 - z ) - a ⁒ F ⁑ ( a , c - b c ; z z - 1 ) = ( 1 - z ) - b ⁒ F ⁑ ( c - a , b c ; z z - 1 ) superscript 1 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž 𝑐 𝑏 𝑐 𝑧 𝑧 1 superscript 1 𝑧 𝑏 Gauss-hypergeometric-F 𝑐 π‘Ž 𝑏 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle(1-z)^{-a}F\left({a,c-b\atop c};\frac{z}{z-1}% \right)=(1-z)^{-b}F\left({c-a,b\atop c};\frac{z}{z-1}\right)}} (1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1))=(1 - z)^(- b)* hypergeom([c - a, b], [c], (z)/(z - 1)) (1 - z)^(- a)* Hypergeometric2F1[a, c - b, c, Divide[z,z - 1]]=(1 - z)^(- b)* Hypergeometric2F1[c - a, b, c, Divide[z,z - 1]] Failure Failure Skip Error
15.10.E12 w 2 ⁒ ( z ) = z 1 - c ⁒ F ⁑ ( a - c + 1 , b - c + 1 2 - c ; z ) subscript 𝑀 2 𝑧 superscript 𝑧 1 𝑐 Gauss-hypergeometric-F π‘Ž 𝑐 1 𝑏 𝑐 1 2 𝑐 𝑧 {\displaystyle{\displaystyle w_{2}(z)={z^{1-c}}F\left({a-c+1,b-c+1\atop 2-c};z% \right)}} w[2]*(z)=(z)^(1 - c)*hypergeom([a - c + 1, b - c + 1], [2 - c], z) Subscript[w, 2]*(z)=(z)^(1 - c)*Hypergeometric2F1[a - c + 1, b - c + 1, 2 - c, z] Failure Failure Skip Error
15.10.E12 z 1 - c ⁒ F ⁑ ( a - c + 1 , b - c + 1 2 - c ; z ) = z 1 - c ⁒ ( 1 - z ) c - a - b ⁒ F ⁑ ( 1 - a , 1 - b 2 - c ; z ) superscript 𝑧 1 𝑐 Gauss-hypergeometric-F π‘Ž 𝑐 1 𝑏 𝑐 1 2 𝑐 𝑧 superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 1 π‘Ž 1 𝑏 2 𝑐 𝑧 {\displaystyle{\displaystyle{z^{1-c}}F\left({a-c+1,b-c+1\atop 2-c};z\right)={z% ^{1-c}(1-z)^{c-a-b}}\*F\left({1-a,1-b\atop 2-c};z\right)}} (z)^(1 - c)*hypergeom([a - c + 1, b - c + 1], [2 - c], z)=(z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [2 - c], z) (z)^(1 - c)*Hypergeometric2F1[a - c + 1, b - c + 1, 2 - c, z]=(z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, 2 - c, z] Failure Successful Successful -
15.10.E12 z 1 - c ⁒ ( 1 - z ) c - a - b ⁒ F ⁑ ( 1 - a , 1 - b 2 - c ; z ) = z 1 - c ⁒ ( 1 - z ) c - a - 1 ⁒ F ⁑ ( a - c + 1 , 1 - b 2 - c ; z z - 1 ) superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 1 π‘Ž 1 𝑏 2 𝑐 𝑧 superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 π‘Ž 1 Gauss-hypergeometric-F π‘Ž 𝑐 1 1 𝑏 2 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle{z^{1-c}(1-z)^{c-a-b}}\*F\left({1-a,1-b\atop 2-c};% z\right)={z^{1-c}(1-z)^{c-a-1}}\*F\left({a-c+1,1-b\atop 2-c};\frac{z}{z-1}% \right)}} (z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [2 - c], z)=(z)^(1 - c)*(1 - z)^(c - a - 1)* hypergeom([a - c + 1, 1 - b], [2 - c], (z)/(z - 1)) (z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, 2 - c, z]=(z)^(1 - c)*(1 - z)^(c - a - 1)* Hypergeometric2F1[a - c + 1, 1 - b, 2 - c, Divide[z,z - 1]] Failure Failure Skip Skip
15.10.E12 z 1 - c ⁒ ( 1 - z ) c - a - 1 ⁒ F ⁑ ( a - c + 1 , 1 - b 2 - c ; z z - 1 ) = z 1 - c ⁒ ( 1 - z ) c - b - 1 ⁒ F ⁑ ( 1 - a , b - c + 1 2 - c ; z z - 1 ) superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 π‘Ž 1 Gauss-hypergeometric-F π‘Ž 𝑐 1 1 𝑏 2 𝑐 𝑧 𝑧 1 superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 𝑏 1 Gauss-hypergeometric-F 1 π‘Ž 𝑏 𝑐 1 2 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle{z^{1-c}(1-z)^{c-a-1}}\*F\left({a-c+1,1-b\atop 2-c% };\frac{z}{z-1}\right)={z^{1-c}(1-z)^{c-b-1}}\*F\left({1-a,b-c+1\atop 2-c};% \frac{z}{z-1}\right)}} (z)^(1 - c)*(1 - z)^(c - a - 1)* hypergeom([a - c + 1, 1 - b], [2 - c], (z)/(z - 1))=(z)^(1 - c)*(1 - z)^(c - b - 1)* hypergeom([1 - a, b - c + 1], [2 - c], (z)/(z - 1)) (z)^(1 - c)*(1 - z)^(c - a - 1)* Hypergeometric2F1[a - c + 1, 1 - b, 2 - c, Divide[z,z - 1]]=(z)^(1 - c)*(1 - z)^(c - b - 1)* Hypergeometric2F1[1 - a, b - c + 1, 2 - c, Divide[z,z - 1]] Failure Failure Skip -
15.10.E13 w 3 ⁒ ( z ) = F ⁑ ( a , b a + b - c + 1 ; 1 - z ) subscript 𝑀 3 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 𝑐 1 1 𝑧 {\displaystyle{\displaystyle w_{3}(z)=F\left({a,b\atop a+b-c+1};1-z\right)}} w[3]*(z)= hypergeom([a, b], [a + b - c + 1], 1 - z) Subscript[w, 3]*(z)= Hypergeometric2F1[a, b, a + b - c + 1, 1 - z] Failure Failure Skip Error
15.10.E13 F ⁑ ( a , b a + b - c + 1 ; 1 - z ) = z 1 - c ⁒ F ⁑ ( a - c + 1 , b - c + 1 a + b - c + 1 ; 1 - z ) Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 𝑐 1 1 𝑧 superscript 𝑧 1 𝑐 Gauss-hypergeometric-F π‘Ž 𝑐 1 𝑏 𝑐 1 π‘Ž 𝑏 𝑐 1 1 𝑧 {\displaystyle{\displaystyle F\left({a,b\atop a+b-c+1};1-z\right)=z^{1-c}F% \left({a-c+1,b-c+1\atop a+b-c+1};1-z\right)}} hypergeom([a, b], [a + b - c + 1], 1 - z)= (z)^(1 - c)* hypergeom([a - c + 1, b - c + 1], [a + b - c + 1], 1 - z) Hypergeometric2F1[a, b, a + b - c + 1, 1 - z]= (z)^(1 - c)* Hypergeometric2F1[a - c + 1, b - c + 1, a + b - c + 1, 1 - z] Failure Successful Successful -
15.10.E13 z 1 - c ⁒ F ⁑ ( a - c + 1 , b - c + 1 a + b - c + 1 ; 1 - z ) = z - a ⁒ F ⁑ ( a , a - c + 1 a + b - c + 1 ; 1 - 1 z ) superscript 𝑧 1 𝑐 Gauss-hypergeometric-F π‘Ž 𝑐 1 𝑏 𝑐 1 π‘Ž 𝑏 𝑐 1 1 𝑧 superscript 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž π‘Ž 𝑐 1 π‘Ž 𝑏 𝑐 1 1 1 𝑧 {\displaystyle{\displaystyle z^{1-c}F\left({a-c+1,b-c+1\atop a+b-c+1};1-z% \right)=z^{-a}F\left({a,a-c+1\atop a+b-c+1};1-\frac{1}{z}\right)}} (z)^(1 - c)* hypergeom([a - c + 1, b - c + 1], [a + b - c + 1], 1 - z)= (z)^(- a)* hypergeom([a, a - c + 1], [a + b - c + 1], 1 -(1)/(z)) (z)^(1 - c)* Hypergeometric2F1[a - c + 1, b - c + 1, a + b - c + 1, 1 - z]= (z)^(- a)* Hypergeometric2F1[a, a - c + 1, a + b - c + 1, 1 -Divide[1,z]] Failure Failure Skip Skip
15.10.E13 z - a ⁒ F ⁑ ( a , a - c + 1 a + b - c + 1 ; 1 - 1 z ) = z - b ⁒ F ⁑ ( b , b - c + 1 a + b - c + 1 ; 1 - 1 z ) superscript 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž π‘Ž 𝑐 1 π‘Ž 𝑏 𝑐 1 1 1 𝑧 superscript 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑏 𝑐 1 π‘Ž 𝑏 𝑐 1 1 1 𝑧 {\displaystyle{\displaystyle z^{-a}F\left({a,a-c+1\atop a+b-c+1};1-\frac{1}{z}% \right)=z^{-b}F\left({b,b-c+1\atop a+b-c+1};1-\frac{1}{z}\right)}} (z)^(- a)* hypergeom([a, a - c + 1], [a + b - c + 1], 1 -(1)/(z))= (z)^(- b)* hypergeom([b, b - c + 1], [a + b - c + 1], 1 -(1)/(z)) (z)^(- a)* Hypergeometric2F1[a, a - c + 1, a + b - c + 1, 1 -Divide[1,z]]= (z)^(- b)* Hypergeometric2F1[b, b - c + 1, a + b - c + 1, 1 -Divide[1,z]] Failure Failure Skip Error
15.10.E14 w 4 ⁒ ( z ) = ( 1 - z ) c - a - b ⁒ F ⁑ ( c - a , c - b c - a - b + 1 ; 1 - z ) subscript 𝑀 4 𝑧 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 π‘Ž 𝑏 1 1 𝑧 {\displaystyle{\displaystyle w_{4}(z)=(1-z)^{c-a-b}F\left({c-a,c-b\atop c-a-b+% 1};1-z\right)}} w[4]*(z)=(1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c - a - b + 1], 1 - z) Subscript[w, 4]*(z)=(1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c - a - b + 1, 1 - z] Failure Failure Skip Error
15.10.E14 ( 1 - z ) c - a - b ⁒ F ⁑ ( c - a , c - b c - a - b + 1 ; 1 - z ) = z 1 - c ⁒ ( 1 - z ) c - a - b ⁒ F ⁑ ( 1 - a , 1 - b c - a - b + 1 ; 1 - z ) superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 π‘Ž 𝑏 1 1 𝑧 superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 1 π‘Ž 1 𝑏 𝑐 π‘Ž 𝑏 1 1 𝑧 {\displaystyle{\displaystyle(1-z)^{c-a-b}F\left({c-a,c-b\atop c-a-b+1};1-z% \right)=z^{1-c}(1-z)^{c-a-b}F\left({1-a,1-b\atop c-a-b+1};1-z\right)}} (1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c - a - b + 1], 1 - z)= (z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [c - a - b + 1], 1 - z) (1 - z)^(c - a - b)* Hypergeometric2F1[c - a, c - b, c - a - b + 1, 1 - z]= (z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, c - a - b + 1, 1 - z] Failure Successful Successful -
15.10.E14 z 1 - c ⁒ ( 1 - z ) c - a - b ⁒ F ⁑ ( 1 - a , 1 - b c - a - b + 1 ; 1 - z ) = z a - c ⁒ ( 1 - z ) c - a - b ⁒ F ⁑ ( 1 - a , c - a c - a - b + 1 ; 1 - 1 z ) superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 1 π‘Ž 1 𝑏 𝑐 π‘Ž 𝑏 1 1 𝑧 superscript 𝑧 π‘Ž 𝑐 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 1 π‘Ž 𝑐 π‘Ž 𝑐 π‘Ž 𝑏 1 1 1 𝑧 {\displaystyle{\displaystyle z^{1-c}(1-z)^{c-a-b}F\left({1-a,1-b\atop c-a-b+1}% ;1-z\right)=z^{a-c}(1-z)^{c-a-b}F\left({1-a,c-a\atop c-a-b+1};1-\frac{1}{z}% \right)}} (z)^(1 - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, 1 - b], [c - a - b + 1], 1 - z)= (z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [c - a - b + 1], 1 -(1)/(z)) (z)^(1 - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, 1 - b, c - a - b + 1, 1 - z]= (z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, c - a - b + 1, 1 -Divide[1,z]] Failure Failure Skip Error
15.10.E14 z a - c ⁒ ( 1 - z ) c - a - b ⁒ F ⁑ ( 1 - a , c - a c - a - b + 1 ; 1 - 1 z ) = z b - c ⁒ ( 1 - z ) c - a - b ⁒ F ⁑ ( 1 - b , c - b c - a - b + 1 ; 1 - 1 z ) superscript 𝑧 π‘Ž 𝑐 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 1 π‘Ž 𝑐 π‘Ž 𝑐 π‘Ž 𝑏 1 1 1 𝑧 superscript 𝑧 𝑏 𝑐 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 1 𝑏 𝑐 𝑏 𝑐 π‘Ž 𝑏 1 1 1 𝑧 {\displaystyle{\displaystyle z^{a-c}(1-z)^{c-a-b}F\left({1-a,c-a\atop c-a-b+1}% ;1-\frac{1}{z}\right)=z^{b-c}(1-z)^{c-a-b}F\left({1-b,c-b\atop c-a-b+1};1-% \frac{1}{z}\right)}} (z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [c - a - b + 1], 1 -(1)/(z))= (z)^(b - c)*(1 - z)^(c - a - b)* hypergeom([1 - b, c - b], [c - a - b + 1], 1 -(1)/(z)) (z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, c - a - b + 1, 1 -Divide[1,z]]= (z)^(b - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - b, c - b, c - a - b + 1, 1 -Divide[1,z]] Failure Failure Skip Error
15.10.E15 w 5 ⁒ ( z ) = e a ⁒ Ο€ ⁒ i ⁒ z - a ⁒ F ⁑ ( a , a - c + 1 a - b + 1 ; 1 z ) subscript 𝑀 5 𝑧 superscript 𝑒 π‘Ž πœ‹ imaginary-unit superscript 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž π‘Ž 𝑐 1 π‘Ž 𝑏 1 1 𝑧 {\displaystyle{\displaystyle w_{5}(z)=e^{a\pi\mathrm{i}}z^{-a}\*F\left({a,a-c+% 1\atop a-b+1};\frac{1}{z}\right)}} w[5]*(z)= exp(a*Pi*I)*(z)^(- a)* hypergeom([a, a - c + 1], [a - b + 1], (1)/(z)) Subscript[w, 5]*(z)= Exp[a*Pi*I]*(z)^(- a)* Hypergeometric2F1[a, a - c + 1, a - b + 1, Divide[1,z]] Failure Failure Skip Error
15.10.E15 e a ⁒ Ο€ ⁒ i ⁒ z - a ⁒ F ⁑ ( a , a - c + 1 a - b + 1 ; 1 z ) = e ( c - b ) ⁒ Ο€ ⁒ i ⁒ z b - c ⁒ ( 1 - z ) c - a - b ⁒ F ⁑ ( 1 - b , c - b a - b + 1 ; 1 z ) superscript 𝑒 π‘Ž πœ‹ imaginary-unit superscript 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž π‘Ž 𝑐 1 π‘Ž 𝑏 1 1 𝑧 superscript 𝑒 𝑐 𝑏 πœ‹ imaginary-unit superscript 𝑧 𝑏 𝑐 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 1 𝑏 𝑐 𝑏 π‘Ž 𝑏 1 1 𝑧 {\displaystyle{\displaystyle e^{a\pi\mathrm{i}}z^{-a}\*F\left({a,a-c+1\atop a-% b+1};\frac{1}{z}\right)=e^{(c-b)\pi\mathrm{i}}z^{b-c}(1-z)^{c-a-b}\*F\left({1-% b,c-b\atop a-b+1};\frac{1}{z}\right)}} exp(a*Pi*I)*(z)^(- a)* hypergeom([a, a - c + 1], [a - b + 1], (1)/(z))= exp((c - b)* Pi*I)*(z)^(b - c)*(1 - z)^(c - a - b)* hypergeom([1 - b, c - b], [a - b + 1], (1)/(z)) Exp[a*Pi*I]*(z)^(- a)* Hypergeometric2F1[a, a - c + 1, a - b + 1, Divide[1,z]]= Exp[(c - b)* Pi*I]*(z)^(b - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - b, c - b, a - b + 1, Divide[1,z]] Failure Failure
Fail
7.970044489-.2486707840*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
.2924289380+.3979493992*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-111204179.9-19704571.71*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
37840345.04-37561456.11*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), c = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
Error
15.10.E15 e ( c - b ) ⁒ Ο€ ⁒ i ⁒ z b - c ⁒ ( 1 - z ) c - a - b ⁒ F ⁑ ( 1 - b , c - b a - b + 1 ; 1 z ) = ( 1 - z ) - a ⁒ F ⁑ ( a , c - b a - b + 1 ; 1 1 - z ) superscript 𝑒 𝑐 𝑏 πœ‹ imaginary-unit superscript 𝑧 𝑏 𝑐 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 1 𝑏 𝑐 𝑏 π‘Ž 𝑏 1 1 𝑧 superscript 1 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž 𝑐 𝑏 π‘Ž 𝑏 1 1 1 𝑧 {\displaystyle{\displaystyle e^{(c-b)\pi\mathrm{i}}z^{b-c}(1-z)^{c-a-b}\*F% \left({1-b,c-b\atop a-b+1};\frac{1}{z}\right)=(1-z)^{-a}F\left({a,c-b\atop a-b% +1};\frac{1}{1-z}\right)}} exp((c - b)* Pi*I)*(z)^(b - c)*(1 - z)^(c - a - b)* hypergeom([1 - b, c - b], [a - b + 1], (1)/(z))=(1 - z)^(- a)* hypergeom([a, c - b], [a - b + 1], (1)/(1 - z)) Exp[(c - b)* Pi*I]*(z)^(b - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - b, c - b, a - b + 1, Divide[1,z]]=(1 - z)^(- a)* Hypergeometric2F1[a, c - b, a - b + 1, Divide[1,1 - z]] Failure Failure Skip Error
15.10.E15 ( 1 - z ) - a ⁒ F ⁑ ( a , c - b a - b + 1 ; 1 1 - z ) = e ( c - 1 ) ⁒ Ο€ ⁒ i ⁒ z 1 - c ⁒ ( 1 - z ) c - a - 1 ⁒ F ⁑ ( 1 - b , a - c + 1 a - b + 1 ; 1 1 - z ) superscript 1 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž 𝑐 𝑏 π‘Ž 𝑏 1 1 1 𝑧 superscript 𝑒 𝑐 1 πœ‹ imaginary-unit superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 π‘Ž 1 Gauss-hypergeometric-F 1 𝑏 π‘Ž 𝑐 1 π‘Ž 𝑏 1 1 1 𝑧 {\displaystyle{\displaystyle(1-z)^{-a}F\left({a,c-b\atop a-b+1};\frac{1}{1-z}% \right)=e^{(c-1)\pi\mathrm{i}}z^{1-c}(1-z)^{c-a-1}\*F\left({1-b,a-c+1\atop a-b% +1};\frac{1}{1-z}\right)}} (1 - z)^(- a)* hypergeom([a, c - b], [a - b + 1], (1)/(1 - z))= exp((c - 1)* Pi*I)*(z)^(1 - c)*(1 - z)^(c - a - 1)* hypergeom([1 - b, a - c + 1], [a - b + 1], (1)/(1 - z)) (1 - z)^(- a)* Hypergeometric2F1[a, c - b, a - b + 1, Divide[1,1 - z]]= Exp[(c - 1)* Pi*I]*(z)^(1 - c)*(1 - z)^(c - a - 1)* Hypergeometric2F1[1 - b, a - c + 1, a - b + 1, Divide[1,1 - z]] Failure Failure Skip Error
15.10.E16 w 6 ⁒ ( z ) = e b ⁒ Ο€ ⁒ i ⁒ z - b ⁒ F ⁑ ( b , b - c + 1 b - a + 1 ; 1 z ) subscript 𝑀 6 𝑧 superscript 𝑒 𝑏 πœ‹ imaginary-unit superscript 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑏 𝑐 1 𝑏 π‘Ž 1 1 𝑧 {\displaystyle{\displaystyle w_{6}(z)=e^{b\pi\mathrm{i}}z^{-b}F\left({b,b-c+1% \atop b-a+1};\frac{1}{z}\right)}} w[6]*(z)= exp(b*Pi*I)*(z)^(- b)* hypergeom([b, b - c + 1], [b - a + 1], (1)/(z)) Subscript[w, 6]*(z)= Exp[b*Pi*I]*(z)^(- b)* Hypergeometric2F1[b, b - c + 1, b - a + 1, Divide[1,z]] Failure Failure - -
15.10.E16 e b ⁒ Ο€ ⁒ i ⁒ z - b ⁒ F ⁑ ( b , b - c + 1 b - a + 1 ; 1 z ) = e ( c - a ) ⁒ Ο€ ⁒ i ⁒ z a - c ⁒ ( 1 - z ) c - a - b ⁒ F ⁑ ( 1 - a , c - a b - a + 1 ; 1 z ) superscript 𝑒 𝑏 πœ‹ imaginary-unit superscript 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑏 𝑐 1 𝑏 π‘Ž 1 1 𝑧 superscript 𝑒 𝑐 π‘Ž πœ‹ imaginary-unit superscript 𝑧 π‘Ž 𝑐 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 1 π‘Ž 𝑐 π‘Ž 𝑏 π‘Ž 1 1 𝑧 {\displaystyle{\displaystyle e^{b\pi\mathrm{i}}z^{-b}F\left({b,b-c+1\atop b-a+% 1};\frac{1}{z}\right)=e^{(c-a)\pi\mathrm{i}}z^{a-c}(1-z)^{c-a-b}\*F\left({1-a,% c-a\atop b-a+1};\frac{1}{z}\right)}} exp(b*Pi*I)*(z)^(- b)* hypergeom([b, b - c + 1], [b - a + 1], (1)/(z))= exp((c - a)* Pi*I)*(z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [b - a + 1], (1)/(z)) Exp[b*Pi*I]*(z)^(- b)* Hypergeometric2F1[b, b - c + 1, b - a + 1, Divide[1,z]]= Exp[(c - a)* Pi*I]*(z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, b - a + 1, Divide[1,z]] Failure Failure - -
15.10.E16 e ( c - a ) ⁒ Ο€ ⁒ i ⁒ z a - c ⁒ ( 1 - z ) c - a - b ⁒ F ⁑ ( 1 - a , c - a b - a + 1 ; 1 z ) = ( 1 - z ) - b ⁒ F ⁑ ( b , c - a b - a + 1 ; 1 1 - z ) superscript 𝑒 𝑐 π‘Ž πœ‹ imaginary-unit superscript 𝑧 π‘Ž 𝑐 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F 1 π‘Ž 𝑐 π‘Ž 𝑏 π‘Ž 1 1 𝑧 superscript 1 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 1 1 1 𝑧 {\displaystyle{\displaystyle e^{(c-a)\pi\mathrm{i}}z^{a-c}(1-z)^{c-a-b}\*F% \left({1-a,c-a\atop b-a+1};\frac{1}{z}\right)=(1-z)^{-b}F\left({b,c-a\atop b-a% +1};\frac{1}{1-z}\right)}} exp((c - a)* Pi*I)*(z)^(a - c)*(1 - z)^(c - a - b)* hypergeom([1 - a, c - a], [b - a + 1], (1)/(z))=(1 - z)^(- b)* hypergeom([b, c - a], [b - a + 1], (1)/(1 - z)) Exp[(c - a)* Pi*I]*(z)^(a - c)*(1 - z)^(c - a - b)* Hypergeometric2F1[1 - a, c - a, b - a + 1, Divide[1,z]]=(1 - z)^(- b)* Hypergeometric2F1[b, c - a, b - a + 1, Divide[1,1 - z]] Failure Failure - -
15.10.E16 ( 1 - z ) - b ⁒ F ⁑ ( b , c - a b - a + 1 ; 1 1 - z ) = e ( c - 1 ) ⁒ Ο€ ⁒ i ⁒ z 1 - c ⁒ ( 1 - z ) c - b - 1 ⁒ F ⁑ ( 1 - a , b - c + 1 b - a + 1 ; 1 1 - z ) superscript 1 𝑧 𝑏 Gauss-hypergeometric-F 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 1 1 1 𝑧 superscript 𝑒 𝑐 1 πœ‹ imaginary-unit superscript 𝑧 1 𝑐 superscript 1 𝑧 𝑐 𝑏 1 Gauss-hypergeometric-F 1 π‘Ž 𝑏 𝑐 1 𝑏 π‘Ž 1 1 1 𝑧 {\displaystyle{\displaystyle(1-z)^{-b}F\left({b,c-a\atop b-a+1};\frac{1}{1-z}% \right)=e^{(c-1)\pi\mathrm{i}}z^{1-c}(1-z)^{c-b-1}\*F\left({1-a,b-c+1\atop b-a% +1};\frac{1}{1-z}\right)}} (1 - z)^(- b)* hypergeom([b, c - a], [b - a + 1], (1)/(1 - z))= exp((c - 1)* Pi*I)*(z)^(1 - c)*(1 - z)^(c - b - 1)* hypergeom([1 - a, b - c + 1], [b - a + 1], (1)/(1 - z)) (1 - z)^(- b)* Hypergeometric2F1[b, c - a, b - a + 1, Divide[1,1 - z]]= Exp[(c - 1)* Pi*I]*(z)^(1 - c)*(1 - z)^(c - b - 1)* Hypergeometric2F1[1 - a, b - c + 1, b - a + 1, Divide[1,1 - z]] Failure Failure - -
15.10.E17 w 3 ⁒ ( z ) = Ξ“ ⁑ ( 1 - c ) ⁒ Ξ“ ⁑ ( a + b - c + 1 ) Ξ“ ⁑ ( a - c + 1 ) ⁒ Ξ“ ⁑ ( b - c + 1 ) ⁒ w 1 ⁒ ( z ) + Ξ“ ⁑ ( c - 1 ) ⁒ Ξ“ ⁑ ( a + b - c + 1 ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ w 2 ⁒ ( z ) subscript 𝑀 3 𝑧 Euler-Gamma 1 𝑐 Euler-Gamma π‘Ž 𝑏 𝑐 1 Euler-Gamma π‘Ž 𝑐 1 Euler-Gamma 𝑏 𝑐 1 subscript 𝑀 1 𝑧 Euler-Gamma 𝑐 1 Euler-Gamma π‘Ž 𝑏 𝑐 1 Euler-Gamma π‘Ž Euler-Gamma 𝑏 subscript 𝑀 2 𝑧 {\displaystyle{\displaystyle w_{3}(z)=\frac{\Gamma\left(1-c\right)\Gamma\left(% a+b-c+1\right)}{\Gamma\left(a-c+1\right)\Gamma\left(b-c+1\right)}w_{1}(z)+% \frac{\Gamma\left(c-1\right)\Gamma\left(a+b-c+1\right)}{\Gamma\left(a\right)% \Gamma\left(b\right)}w_{2}(z)}} w[3]*(z)=(GAMMA(1 - c)*GAMMA(a + b - c + 1))/(GAMMA(a - c + 1)*GAMMA(b - c + 1))*w[1]*(z)+(GAMMA(c - 1)*GAMMA(a + b - c + 1))/(GAMMA(a)*GAMMA(b))*w[2]*(z) Subscript[w, 3]*(z)=Divide[Gamma[1 - c]*Gamma[a + b - c + 1],Gamma[a - c + 1]*Gamma[b - c + 1]]*Subscript[w, 1]*(z)+Divide[Gamma[c - 1]*Gamma[a + b - c + 1],Gamma[a]*Gamma[b]]*Subscript[w, 2]*(z) Failure Failure Skip Error
15.10.E18 w 4 ⁒ ( z ) = Ξ“ ⁑ ( 1 - c ) ⁒ Ξ“ ⁑ ( c - a - b + 1 ) Ξ“ ⁑ ( 1 - a ) ⁒ Ξ“ ⁑ ( 1 - b ) ⁒ w 1 ⁒ ( z ) + Ξ“ ⁑ ( c - 1 ) ⁒ Ξ“ ⁑ ( c - a - b + 1 ) Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ w 2 ⁒ ( z ) subscript 𝑀 4 𝑧 Euler-Gamma 1 𝑐 Euler-Gamma 𝑐 π‘Ž 𝑏 1 Euler-Gamma 1 π‘Ž Euler-Gamma 1 𝑏 subscript 𝑀 1 𝑧 Euler-Gamma 𝑐 1 Euler-Gamma 𝑐 π‘Ž 𝑏 1 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 subscript 𝑀 2 𝑧 {\displaystyle{\displaystyle w_{4}(z)=\frac{\Gamma\left(1-c\right)\Gamma\left(% c-a-b+1\right)}{\Gamma\left(1-a\right)\Gamma\left(1-b\right)}w_{1}(z)+\frac{% \Gamma\left(c-1\right)\Gamma\left(c-a-b+1\right)}{\Gamma\left(c-a\right)\Gamma% \left(c-b\right)}w_{2}(z)}} w[4]*(z)=(GAMMA(1 - c)*GAMMA(c - a - b + 1))/(GAMMA(1 - a)*GAMMA(1 - b))*w[1]*(z)+(GAMMA(c - 1)*GAMMA(c - a - b + 1))/(GAMMA(c - a)*GAMMA(c - b))*w[2]*(z) Subscript[w, 4]*(z)=Divide[Gamma[1 - c]*Gamma[c - a - b + 1],Gamma[1 - a]*Gamma[1 - b]]*Subscript[w, 1]*(z)+Divide[Gamma[c - 1]*Gamma[c - a - b + 1],Gamma[c - a]*Gamma[c - b]]*Subscript[w, 2]*(z) Failure Failure Skip Error
15.10.E19 w 5 ⁒ ( z ) = Ξ“ ⁑ ( 1 - c ) ⁒ Ξ“ ⁑ ( a - b + 1 ) Ξ“ ⁑ ( a - c + 1 ) ⁒ Ξ“ ⁑ ( 1 - b ) ⁒ w 1 ⁒ ( z ) + e ( c - 1 ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c - 1 ) ⁒ Ξ“ ⁑ ( a - b + 1 ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ w 2 ⁒ ( z ) subscript 𝑀 5 𝑧 Euler-Gamma 1 𝑐 Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma π‘Ž 𝑐 1 Euler-Gamma 1 𝑏 subscript 𝑀 1 𝑧 superscript 𝑒 𝑐 1 πœ‹ imaginary-unit Euler-Gamma 𝑐 1 Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma π‘Ž Euler-Gamma 𝑐 𝑏 subscript 𝑀 2 𝑧 {\displaystyle{\displaystyle w_{5}(z)=\frac{\Gamma\left(1-c\right)\Gamma\left(% a-b+1\right)}{\Gamma\left(a-c+1\right)\Gamma\left(1-b\right)}w_{1}(z)+e^{(c-1)% \pi\mathrm{i}}\frac{\Gamma\left(c-1\right)\Gamma\left(a-b+1\right)}{\Gamma% \left(a\right)\Gamma\left(c-b\right)}w_{2}(z)}} w[5]*(z)=(GAMMA(1 - c)*GAMMA(a - b + 1))/(GAMMA(a - c + 1)*GAMMA(1 - b))*w[1]*(z)+ exp((c - 1)* Pi*I)*(GAMMA(c - 1)*GAMMA(a - b + 1))/(GAMMA(a)*GAMMA(c - b))*w[2]*(z) Subscript[w, 5]*(z)=Divide[Gamma[1 - c]*Gamma[a - b + 1],Gamma[a - c + 1]*Gamma[1 - b]]*Subscript[w, 1]*(z)+ Exp[(c - 1)* Pi*I]*Divide[Gamma[c - 1]*Gamma[a - b + 1],Gamma[a]*Gamma[c - b]]*Subscript[w, 2]*(z) Failure Failure Skip Error
15.10.E20 w 6 ⁒ ( z ) = Ξ“ ⁑ ( 1 - c ) ⁒ Ξ“ ⁑ ( b - a + 1 ) Ξ“ ⁑ ( b - c + 1 ) ⁒ Ξ“ ⁑ ( 1 - a ) ⁒ w 1 ⁒ ( z ) + e ( c - 1 ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c - 1 ) ⁒ Ξ“ ⁑ ( b - a + 1 ) Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ w 2 ⁒ ( z ) subscript 𝑀 6 𝑧 Euler-Gamma 1 𝑐 Euler-Gamma 𝑏 π‘Ž 1 Euler-Gamma 𝑏 𝑐 1 Euler-Gamma 1 π‘Ž subscript 𝑀 1 𝑧 superscript 𝑒 𝑐 1 πœ‹ imaginary-unit Euler-Gamma 𝑐 1 Euler-Gamma 𝑏 π‘Ž 1 Euler-Gamma 𝑏 Euler-Gamma 𝑐 π‘Ž subscript 𝑀 2 𝑧 {\displaystyle{\displaystyle w_{6}(z)=\frac{\Gamma\left(1-c\right)\Gamma\left(% b-a+1\right)}{\Gamma\left(b-c+1\right)\Gamma\left(1-a\right)}w_{1}(z)+e^{(c-1)% \pi\mathrm{i}}\frac{\Gamma\left(c-1\right)\Gamma\left(b-a+1\right)}{\Gamma% \left(b\right)\Gamma\left(c-a\right)}w_{2}(z)}} w[6]*(z)=(GAMMA(1 - c)*GAMMA(b - a + 1))/(GAMMA(b - c + 1)*GAMMA(1 - a))*w[1]*(z)+ exp((c - 1)* Pi*I)*(GAMMA(c - 1)*GAMMA(b - a + 1))/(GAMMA(b)*GAMMA(c - a))*w[2]*(z) Subscript[w, 6]*(z)=Divide[Gamma[1 - c]*Gamma[b - a + 1],Gamma[b - c + 1]*Gamma[1 - a]]*Subscript[w, 1]*(z)+ Exp[(c - 1)* Pi*I]*Divide[Gamma[c - 1]*Gamma[b - a + 1],Gamma[b]*Gamma[c - a]]*Subscript[w, 2]*(z) Failure Failure Skip Error
15.10.E21 w 1 ⁒ ( z ) = Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( c - a - b ) Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ w 3 ⁒ ( z ) + Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( a + b - c ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ w 4 ⁒ ( z ) subscript 𝑀 1 𝑧 Euler-Gamma 𝑐 Euler-Gamma 𝑐 π‘Ž 𝑏 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 subscript 𝑀 3 𝑧 Euler-Gamma 𝑐 Euler-Gamma π‘Ž 𝑏 𝑐 Euler-Gamma π‘Ž Euler-Gamma 𝑏 subscript 𝑀 4 𝑧 {\displaystyle{\displaystyle w_{1}(z)=\frac{\Gamma\left(c\right)\Gamma\left(c-% a-b\right)}{\Gamma\left(c-a\right)\Gamma\left(c-b\right)}w_{3}(z)+\frac{\Gamma% \left(c\right)\Gamma\left(a+b-c\right)}{\Gamma\left(a\right)\Gamma\left(b% \right)}w_{4}(z)}} w[1]*(z)=(GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))*w[3]*(z)+(GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))*w[4]*(z) Subscript[w, 1]*(z)=Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]*Subscript[w, 3]*(z)+Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]*Subscript[w, 4]*(z) Failure Failure Skip Error
15.10.E22 w 2 ⁒ ( z ) = Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( c - a - b ) Ξ“ ⁑ ( 1 - a ) ⁒ Ξ“ ⁑ ( 1 - b ) ⁒ w 3 ⁒ ( z ) + Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( a + b - c ) Ξ“ ⁑ ( a - c + 1 ) ⁒ Ξ“ ⁑ ( b - c + 1 ) ⁒ w 4 ⁒ ( z ) subscript 𝑀 2 𝑧 Euler-Gamma 2 𝑐 Euler-Gamma 𝑐 π‘Ž 𝑏 Euler-Gamma 1 π‘Ž Euler-Gamma 1 𝑏 subscript 𝑀 3 𝑧 Euler-Gamma 2 𝑐 Euler-Gamma π‘Ž 𝑏 𝑐 Euler-Gamma π‘Ž 𝑐 1 Euler-Gamma 𝑏 𝑐 1 subscript 𝑀 4 𝑧 {\displaystyle{\displaystyle w_{2}(z)=\frac{\Gamma\left(2-c\right)\Gamma\left(% c-a-b\right)}{\Gamma\left(1-a\right)\Gamma\left(1-b\right)}w_{3}(z)+\frac{% \Gamma\left(2-c\right)\Gamma\left(a+b-c\right)}{\Gamma\left(a-c+1\right)\Gamma% \left(b-c+1\right)}w_{4}(z)}} w[2]*(z)=(GAMMA(2 - c)*GAMMA(c - a - b))/(GAMMA(1 - a)*GAMMA(1 - b))*w[3]*(z)+(GAMMA(2 - c)*GAMMA(a + b - c))/(GAMMA(a - c + 1)*GAMMA(b - c + 1))*w[4]*(z) Subscript[w, 2]*(z)=Divide[Gamma[2 - c]*Gamma[c - a - b],Gamma[1 - a]*Gamma[1 - b]]*Subscript[w, 3]*(z)+Divide[Gamma[2 - c]*Gamma[a + b - c],Gamma[a - c + 1]*Gamma[b - c + 1]]*Subscript[w, 4]*(z) Failure Failure Skip Error
15.10.E23 w 5 ⁒ ( z ) = e a ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a - b + 1 ) ⁒ Ξ“ ⁑ ( c - a - b ) Ξ“ ⁑ ( 1 - b ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ w 3 ⁒ ( z ) + e ( c - b ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a - b + 1 ) ⁒ Ξ“ ⁑ ( a + b - c ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( a - c + 1 ) ⁒ w 4 ⁒ ( z ) subscript 𝑀 5 𝑧 superscript 𝑒 π‘Ž πœ‹ imaginary-unit Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma 𝑐 π‘Ž 𝑏 Euler-Gamma 1 𝑏 Euler-Gamma 𝑐 𝑏 subscript 𝑀 3 𝑧 superscript 𝑒 𝑐 𝑏 πœ‹ imaginary-unit Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma π‘Ž 𝑏 𝑐 Euler-Gamma π‘Ž Euler-Gamma π‘Ž 𝑐 1 subscript 𝑀 4 𝑧 {\displaystyle{\displaystyle w_{5}(z)=e^{a\pi\mathrm{i}}\frac{\Gamma\left(a-b+% 1\right)\Gamma\left(c-a-b\right)}{\Gamma\left(1-b\right)\Gamma\left(c-b\right)% }w_{3}(z)+e^{(c-b)\pi\mathrm{i}}\frac{\Gamma\left(a-b+1\right)\Gamma\left(a+b-% c\right)}{\Gamma\left(a\right)\Gamma\left(a-c+1\right)}w_{4}(z)}} w[5]*(z)= exp(a*Pi*I)*(GAMMA(a - b + 1)*GAMMA(c - a - b))/(GAMMA(1 - b)*GAMMA(c - b))*w[3]*(z)+ exp((c - b)* Pi*I)*(GAMMA(a - b + 1)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(a - c + 1))*w[4]*(z) Subscript[w, 5]*(z)= Exp[a*Pi*I]*Divide[Gamma[a - b + 1]*Gamma[c - a - b],Gamma[1 - b]*Gamma[c - b]]*Subscript[w, 3]*(z)+ Exp[(c - b)* Pi*I]*Divide[Gamma[a - b + 1]*Gamma[a + b - c],Gamma[a]*Gamma[a - c + 1]]*Subscript[w, 4]*(z) Failure Failure Skip Error
15.10.E24 w 6 ⁒ ( z ) = e b ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( b - a + 1 ) ⁒ Ξ“ ⁑ ( c - a - b ) Ξ“ ⁑ ( 1 - a ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ w 3 ⁒ ( z ) + e ( c - a ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( b - a + 1 ) ⁒ Ξ“ ⁑ ( a + b - c ) Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( b - c + 1 ) ⁒ w 4 ⁒ ( z ) subscript 𝑀 6 𝑧 superscript 𝑒 𝑏 πœ‹ imaginary-unit Euler-Gamma 𝑏 π‘Ž 1 Euler-Gamma 𝑐 π‘Ž 𝑏 Euler-Gamma 1 π‘Ž Euler-Gamma 𝑐 π‘Ž subscript 𝑀 3 𝑧 superscript 𝑒 𝑐 π‘Ž πœ‹ imaginary-unit Euler-Gamma 𝑏 π‘Ž 1 Euler-Gamma π‘Ž 𝑏 𝑐 Euler-Gamma 𝑏 Euler-Gamma 𝑏 𝑐 1 subscript 𝑀 4 𝑧 {\displaystyle{\displaystyle w_{6}(z)=e^{b\pi\mathrm{i}}\frac{\Gamma\left(b-a+% 1\right)\Gamma\left(c-a-b\right)}{\Gamma\left(1-a\right)\Gamma\left(c-a\right)% }w_{3}(z)+e^{(c-a)\pi\mathrm{i}}\frac{\Gamma\left(b-a+1\right)\Gamma\left(a+b-% c\right)}{\Gamma\left(b\right)\Gamma\left(b-c+1\right)}w_{4}(z)}} w[6]*(z)= exp(b*Pi*I)*(GAMMA(b - a + 1)*GAMMA(c - a - b))/(GAMMA(1 - a)*GAMMA(c - a))*w[3]*(z)+ exp((c - a)* Pi*I)*(GAMMA(b - a + 1)*GAMMA(a + b - c))/(GAMMA(b)*GAMMA(b - c + 1))*w[4]*(z) Subscript[w, 6]*(z)= Exp[b*Pi*I]*Divide[Gamma[b - a + 1]*Gamma[c - a - b],Gamma[1 - a]*Gamma[c - a]]*Subscript[w, 3]*(z)+ Exp[(c - a)* Pi*I]*Divide[Gamma[b - a + 1]*Gamma[a + b - c],Gamma[b]*Gamma[b - c + 1]]*Subscript[w, 4]*(z) Failure Failure Skip Error
15.10.E25 w 1 ⁒ ( z ) = Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( b - a ) Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ w 5 ⁒ ( z ) + Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( a - b ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ w 6 ⁒ ( z ) subscript 𝑀 1 𝑧 Euler-Gamma 𝑐 Euler-Gamma 𝑏 π‘Ž Euler-Gamma 𝑏 Euler-Gamma 𝑐 π‘Ž subscript 𝑀 5 𝑧 Euler-Gamma 𝑐 Euler-Gamma π‘Ž 𝑏 Euler-Gamma π‘Ž Euler-Gamma 𝑐 𝑏 subscript 𝑀 6 𝑧 {\displaystyle{\displaystyle w_{1}(z)=\frac{\Gamma\left(c\right)\Gamma\left(b-% a\right)}{\Gamma\left(b\right)\Gamma\left(c-a\right)}w_{5}(z)+\frac{\Gamma% \left(c\right)\Gamma\left(a-b\right)}{\Gamma\left(a\right)\Gamma\left(c-b% \right)}w_{6}(z)}} w[1]*(z)=(GAMMA(c)*GAMMA(b - a))/(GAMMA(b)*GAMMA(c - a))*w[5]*(z)+(GAMMA(c)*GAMMA(a - b))/(GAMMA(a)*GAMMA(c - b))*w[6]*(z) Subscript[w, 1]*(z)=Divide[Gamma[c]*Gamma[b - a],Gamma[b]*Gamma[c - a]]*Subscript[w, 5]*(z)+Divide[Gamma[c]*Gamma[a - b],Gamma[a]*Gamma[c - b]]*Subscript[w, 6]*(z) Failure Failure Skip Error
15.10.E26 w 2 ⁒ ( z ) = e ( 1 - c ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( b - a ) Ξ“ ⁑ ( 1 - a ) ⁒ Ξ“ ⁑ ( b - c + 1 ) ⁒ w 5 ⁒ ( z ) + e ( 1 - c ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( a - b ) Ξ“ ⁑ ( 1 - b ) ⁒ Ξ“ ⁑ ( a - c + 1 ) ⁒ w 6 ⁒ ( z ) subscript 𝑀 2 𝑧 superscript 𝑒 1 𝑐 πœ‹ imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑏 π‘Ž Euler-Gamma 1 π‘Ž Euler-Gamma 𝑏 𝑐 1 subscript 𝑀 5 𝑧 superscript 𝑒 1 𝑐 πœ‹ imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma π‘Ž 𝑏 Euler-Gamma 1 𝑏 Euler-Gamma π‘Ž 𝑐 1 subscript 𝑀 6 𝑧 {\displaystyle{\displaystyle w_{2}(z)=e^{(1-c)\pi\mathrm{i}}\frac{\Gamma\left(% 2-c\right)\Gamma\left(b-a\right)}{\Gamma\left(1-a\right)\Gamma\left(b-c+1% \right)}w_{5}(z)+e^{(1-c)\pi\mathrm{i}}\frac{\Gamma\left(2-c\right)\Gamma\left% (a-b\right)}{\Gamma\left(1-b\right)\Gamma\left(a-c+1\right)}w_{6}(z)}} w[2]*(z)= exp((1 - c)* Pi*I)*(GAMMA(2 - c)*GAMMA(b - a))/(GAMMA(1 - a)*GAMMA(b - c + 1))*w[5]*(z)+ exp((1 - c)* Pi*I)*(GAMMA(2 - c)*GAMMA(a - b))/(GAMMA(1 - b)*GAMMA(a - c + 1))*w[6]*(z) Subscript[w, 2]*(z)= Exp[(1 - c)* Pi*I]*Divide[Gamma[2 - c]*Gamma[b - a],Gamma[1 - a]*Gamma[b - c + 1]]*Subscript[w, 5]*(z)+ Exp[(1 - c)* Pi*I]*Divide[Gamma[2 - c]*Gamma[a - b],Gamma[1 - b]*Gamma[a - c + 1]]*Subscript[w, 6]*(z) Failure Failure Skip Error
15.10.E27 w 3 ⁒ ( z ) = e - a ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a + b - c + 1 ) ⁒ Ξ“ ⁑ ( b - a ) Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( b - c + 1 ) ⁒ w 5 ⁒ ( z ) + e - b ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a + b - c + 1 ) ⁒ Ξ“ ⁑ ( a - b ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( a - c + 1 ) ⁒ w 6 ⁒ ( z ) subscript 𝑀 3 𝑧 superscript 𝑒 π‘Ž πœ‹ imaginary-unit Euler-Gamma π‘Ž 𝑏 𝑐 1 Euler-Gamma 𝑏 π‘Ž Euler-Gamma 𝑏 Euler-Gamma 𝑏 𝑐 1 subscript 𝑀 5 𝑧 superscript 𝑒 𝑏 πœ‹ imaginary-unit Euler-Gamma π‘Ž 𝑏 𝑐 1 Euler-Gamma π‘Ž 𝑏 Euler-Gamma π‘Ž Euler-Gamma π‘Ž 𝑐 1 subscript 𝑀 6 𝑧 {\displaystyle{\displaystyle w_{3}(z)=e^{-a\pi\mathrm{i}}\frac{\Gamma\left(a+b% -c+1\right)\Gamma\left(b-a\right)}{\Gamma\left(b\right)\Gamma\left(b-c+1\right% )}w_{5}(z)+e^{-b\pi\mathrm{i}}\frac{\Gamma\left(a+b-c+1\right)\Gamma\left(a-b% \right)}{\Gamma\left(a\right)\Gamma\left(a-c+1\right)}w_{6}(z)}} w[3]*(z)= exp(- a*Pi*I)*(GAMMA(a + b - c + 1)*GAMMA(b - a))/(GAMMA(b)*GAMMA(b - c + 1))*w[5]*(z)+ exp(- b*Pi*I)*(GAMMA(a + b - c + 1)*GAMMA(a - b))/(GAMMA(a)*GAMMA(a - c + 1))*w[6]*(z) Subscript[w, 3]*(z)= Exp[- a*Pi*I]*Divide[Gamma[a + b - c + 1]*Gamma[b - a],Gamma[b]*Gamma[b - c + 1]]*Subscript[w, 5]*(z)+ Exp[- b*Pi*I]*Divide[Gamma[a + b - c + 1]*Gamma[a - b],Gamma[a]*Gamma[a - c + 1]]*Subscript[w, 6]*(z) Failure Failure Skip Error
15.10.E28 w 4 ⁒ ( z ) = e ( b - c ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c - a - b + 1 ) ⁒ Ξ“ ⁑ ( b - a ) Ξ“ ⁑ ( 1 - a ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ w 5 ⁒ ( z ) + e ( a - c ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c - a - b + 1 ) ⁒ Ξ“ ⁑ ( a - b ) Ξ“ ⁑ ( 1 - b ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ w 6 ⁒ ( z ) subscript 𝑀 4 𝑧 superscript 𝑒 𝑏 𝑐 πœ‹ imaginary-unit Euler-Gamma 𝑐 π‘Ž 𝑏 1 Euler-Gamma 𝑏 π‘Ž Euler-Gamma 1 π‘Ž Euler-Gamma 𝑐 π‘Ž subscript 𝑀 5 𝑧 superscript 𝑒 π‘Ž 𝑐 πœ‹ imaginary-unit Euler-Gamma 𝑐 π‘Ž 𝑏 1 Euler-Gamma π‘Ž 𝑏 Euler-Gamma 1 𝑏 Euler-Gamma 𝑐 𝑏 subscript 𝑀 6 𝑧 {\displaystyle{\displaystyle w_{4}(z)=e^{(b-c)\pi\mathrm{i}}\frac{\Gamma\left(% c-a-b+1\right)\Gamma\left(b-a\right)}{\Gamma\left(1-a\right)\Gamma\left(c-a% \right)}w_{5}(z)+e^{(a-c)\pi\mathrm{i}}\frac{\Gamma\left(c-a-b+1\right)\Gamma% \left(a-b\right)}{\Gamma\left(1-b\right)\Gamma\left(c-b\right)}w_{6}(z)}} w[4]*(z)= exp((b - c)* Pi*I)*(GAMMA(c - a - b + 1)*GAMMA(b - a))/(GAMMA(1 - a)*GAMMA(c - a))*w[5]*(z)+ exp((a - c)* Pi*I)*(GAMMA(c - a - b + 1)*GAMMA(a - b))/(GAMMA(1 - b)*GAMMA(c - b))*w[6]*(z) Subscript[w, 4]*(z)= Exp[(b - c)* Pi*I]*Divide[Gamma[c - a - b + 1]*Gamma[b - a],Gamma[1 - a]*Gamma[c - a]]*Subscript[w, 5]*(z)+ Exp[(a - c)* Pi*I]*Divide[Gamma[c - a - b + 1]*Gamma[a - b],Gamma[1 - b]*Gamma[c - b]]*Subscript[w, 6]*(z) Failure Failure Skip Error
15.10.E29 w 1 ⁒ ( z ) = e b ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( a - c + 1 ) Ξ“ ⁑ ( a + b - c + 1 ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ w 3 ⁒ ( z ) + e ( b - c ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( a - c + 1 ) Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( a - b + 1 ) ⁒ w 5 ⁒ ( z ) subscript 𝑀 1 𝑧 superscript 𝑒 𝑏 πœ‹ imaginary-unit Euler-Gamma 𝑐 Euler-Gamma π‘Ž 𝑐 1 Euler-Gamma π‘Ž 𝑏 𝑐 1 Euler-Gamma 𝑐 𝑏 subscript 𝑀 3 𝑧 superscript 𝑒 𝑏 𝑐 πœ‹ imaginary-unit Euler-Gamma 𝑐 Euler-Gamma π‘Ž 𝑐 1 Euler-Gamma 𝑏 Euler-Gamma π‘Ž 𝑏 1 subscript 𝑀 5 𝑧 {\displaystyle{\displaystyle w_{1}(z)=e^{b\pi\mathrm{i}}\frac{\Gamma\left(c% \right)\Gamma\left(a-c+1\right)}{\Gamma\left(a+b-c+1\right)\Gamma\left(c-b% \right)}w_{3}(z)+e^{(b-c)\pi\mathrm{i}}\frac{\Gamma\left(c\right)\Gamma\left(a% -c+1\right)}{\Gamma\left(b\right)\Gamma\left(a-b+1\right)}w_{5}(z)}} w[1]*(z)= exp(b*Pi*I)*(GAMMA(c)*GAMMA(a - c + 1))/(GAMMA(a + b - c + 1)*GAMMA(c - b))*w[3]*(z)+ exp((b - c)* Pi*I)*(GAMMA(c)*GAMMA(a - c + 1))/(GAMMA(b)*GAMMA(a - b + 1))*w[5]*(z) Subscript[w, 1]*(z)= Exp[b*Pi*I]*Divide[Gamma[c]*Gamma[a - c + 1],Gamma[a + b - c + 1]*Gamma[c - b]]*Subscript[w, 3]*(z)+ Exp[(b - c)* Pi*I]*Divide[Gamma[c]*Gamma[a - c + 1],Gamma[b]*Gamma[a - b + 1]]*Subscript[w, 5]*(z) Failure Failure Skip Error
15.10.E30 w 1 ⁒ ( z ) = e a ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( b - c + 1 ) Ξ“ ⁑ ( a + b - c + 1 ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ w 3 ⁒ ( z ) + e ( a - c ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( b - c + 1 ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b - a + 1 ) ⁒ w 6 ⁒ ( z ) subscript 𝑀 1 𝑧 superscript 𝑒 π‘Ž πœ‹ imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 𝑏 𝑐 1 Euler-Gamma π‘Ž 𝑏 𝑐 1 Euler-Gamma 𝑐 π‘Ž subscript 𝑀 3 𝑧 superscript 𝑒 π‘Ž 𝑐 πœ‹ imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 𝑏 𝑐 1 Euler-Gamma π‘Ž Euler-Gamma 𝑏 π‘Ž 1 subscript 𝑀 6 𝑧 {\displaystyle{\displaystyle w_{1}(z)=e^{a\pi\mathrm{i}}\frac{\Gamma\left(c% \right)\Gamma\left(b-c+1\right)}{\Gamma\left(a+b-c+1\right)\Gamma\left(c-a% \right)}w_{3}(z)+e^{(a-c)\pi\mathrm{i}}\frac{\Gamma\left(c\right)\Gamma\left(b% -c+1\right)}{\Gamma\left(a\right)\Gamma\left(b-a+1\right)}w_{6}(z)}} w[1]*(z)= exp(a*Pi*I)*(GAMMA(c)*GAMMA(b - c + 1))/(GAMMA(a + b - c + 1)*GAMMA(c - a))*w[3]*(z)+ exp((a - c)* Pi*I)*(GAMMA(c)*GAMMA(b - c + 1))/(GAMMA(a)*GAMMA(b - a + 1))*w[6]*(z) Subscript[w, 1]*(z)= Exp[a*Pi*I]*Divide[Gamma[c]*Gamma[b - c + 1],Gamma[a + b - c + 1]*Gamma[c - a]]*Subscript[w, 3]*(z)+ Exp[(a - c)* Pi*I]*Divide[Gamma[c]*Gamma[b - c + 1],Gamma[a]*Gamma[b - a + 1]]*Subscript[w, 6]*(z) Failure Failure Skip Error
15.10.E31 w 2 ⁒ ( z ) = e ( b - c + 1 ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( a ) Ξ“ ⁑ ( a + b - c + 1 ) ⁒ Ξ“ ⁑ ( 1 - b ) ⁒ w 3 ⁒ ( z ) + e ( b - c ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( a ) Ξ“ ⁑ ( a - b + 1 ) ⁒ Ξ“ ⁑ ( b - c + 1 ) ⁒ w 5 ⁒ ( z ) subscript 𝑀 2 𝑧 superscript 𝑒 𝑏 𝑐 1 πœ‹ imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma π‘Ž Euler-Gamma π‘Ž 𝑏 𝑐 1 Euler-Gamma 1 𝑏 subscript 𝑀 3 𝑧 superscript 𝑒 𝑏 𝑐 πœ‹ imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma π‘Ž Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma 𝑏 𝑐 1 subscript 𝑀 5 𝑧 {\displaystyle{\displaystyle w_{2}(z)=e^{(b-c+1)\pi\mathrm{i}}\frac{\Gamma% \left(2-c\right)\Gamma\left(a\right)}{\Gamma\left(a+b-c+1\right)\Gamma\left(1-% b\right)}w_{3}(z)+e^{(b-c)\pi\mathrm{i}}\frac{\Gamma\left(2-c\right)\Gamma% \left(a\right)}{\Gamma\left(a-b+1\right)\Gamma\left(b-c+1\right)}w_{5}(z)}} w[2]*(z)= exp((b - c + 1)* Pi*I)*(GAMMA(2 - c)*GAMMA(a))/(GAMMA(a + b - c + 1)*GAMMA(1 - b))*w[3]*(z)+ exp((b - c)* Pi*I)*(GAMMA(2 - c)*GAMMA(a))/(GAMMA(a - b + 1)*GAMMA(b - c + 1))*w[5]*(z) Subscript[w, 2]*(z)= Exp[(b - c + 1)* Pi*I]*Divide[Gamma[2 - c]*Gamma[a],Gamma[a + b - c + 1]*Gamma[1 - b]]*Subscript[w, 3]*(z)+ Exp[(b - c)* Pi*I]*Divide[Gamma[2 - c]*Gamma[a],Gamma[a - b + 1]*Gamma[b - c + 1]]*Subscript[w, 5]*(z) Failure Failure Skip Error
15.10.E32 w 2 ⁒ ( z ) = e ( a - c + 1 ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( b ) Ξ“ ⁑ ( a + b - c + 1 ) ⁒ Ξ“ ⁑ ( 1 - a ) ⁒ w 3 ⁒ ( z ) + e ( a - c ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( b ) Ξ“ ⁑ ( b - a + 1 ) ⁒ Ξ“ ⁑ ( a - c + 1 ) ⁒ w 6 ⁒ ( z ) subscript 𝑀 2 𝑧 superscript 𝑒 π‘Ž 𝑐 1 πœ‹ imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑏 Euler-Gamma π‘Ž 𝑏 𝑐 1 Euler-Gamma 1 π‘Ž subscript 𝑀 3 𝑧 superscript 𝑒 π‘Ž 𝑐 πœ‹ imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑏 Euler-Gamma 𝑏 π‘Ž 1 Euler-Gamma π‘Ž 𝑐 1 subscript 𝑀 6 𝑧 {\displaystyle{\displaystyle w_{2}(z)=e^{(a-c+1)\pi\mathrm{i}}\frac{\Gamma% \left(2-c\right)\Gamma\left(b\right)}{\Gamma\left(a+b-c+1\right)\Gamma\left(1-% a\right)}w_{3}(z)+e^{(a-c)\pi\mathrm{i}}\frac{\Gamma\left(2-c\right)\Gamma% \left(b\right)}{\Gamma\left(b-a+1\right)\Gamma\left(a-c+1\right)}w_{6}(z)}} w[2]*(z)= exp((a - c + 1)* Pi*I)*(GAMMA(2 - c)*GAMMA(b))/(GAMMA(a + b - c + 1)*GAMMA(1 - a))*w[3]*(z)+ exp((a - c)* Pi*I)*(GAMMA(2 - c)*GAMMA(b))/(GAMMA(b - a + 1)*GAMMA(a - c + 1))*w[6]*(z) Subscript[w, 2]*(z)= Exp[(a - c + 1)* Pi*I]*Divide[Gamma[2 - c]*Gamma[b],Gamma[a + b - c + 1]*Gamma[1 - a]]*Subscript[w, 3]*(z)+ Exp[(a - c)* Pi*I]*Divide[Gamma[2 - c]*Gamma[b],Gamma[b - a + 1]*Gamma[a - c + 1]]*Subscript[w, 6]*(z) Failure Failure Skip Error
15.10.E33 w 1 ⁒ ( z ) = e ( c - a ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( 1 - b ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c - a - b + 1 ) ⁒ w 4 ⁒ ( z ) + e - a ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( 1 - b ) Ξ“ ⁑ ( a - b + 1 ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ w 5 ⁒ ( z ) subscript 𝑀 1 𝑧 superscript 𝑒 𝑐 π‘Ž πœ‹ imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 1 𝑏 Euler-Gamma π‘Ž Euler-Gamma 𝑐 π‘Ž 𝑏 1 subscript 𝑀 4 𝑧 superscript 𝑒 π‘Ž πœ‹ imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 1 𝑏 Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma 𝑐 π‘Ž subscript 𝑀 5 𝑧 {\displaystyle{\displaystyle w_{1}(z)=e^{(c-a)\pi\mathrm{i}}\frac{\Gamma\left(% c\right)\Gamma\left(1-b\right)}{\Gamma\left(a\right)\Gamma\left(c-a-b+1\right)% }w_{4}(z)+e^{-a\pi\mathrm{i}}\frac{\Gamma\left(c\right)\Gamma\left(1-b\right)}% {\Gamma\left(a-b+1\right)\Gamma\left(c-a\right)}w_{5}(z)}} w[1]*(z)= exp((c - a)* Pi*I)*(GAMMA(c)*GAMMA(1 - b))/(GAMMA(a)*GAMMA(c - a - b + 1))*w[4]*(z)+ exp(- a*Pi*I)*(GAMMA(c)*GAMMA(1 - b))/(GAMMA(a - b + 1)*GAMMA(c - a))*w[5]*(z) Subscript[w, 1]*(z)= Exp[(c - a)* Pi*I]*Divide[Gamma[c]*Gamma[1 - b],Gamma[a]*Gamma[c - a - b + 1]]*Subscript[w, 4]*(z)+ Exp[- a*Pi*I]*Divide[Gamma[c]*Gamma[1 - b],Gamma[a - b + 1]*Gamma[c - a]]*Subscript[w, 5]*(z) Failure Failure Skip Error
15.10.E34 w 1 ⁒ ( z ) = e ( c - b ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( 1 - a ) Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - a - b + 1 ) ⁒ w 4 ⁒ ( z ) + e - b ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( 1 - a ) Ξ“ ⁑ ( b - a + 1 ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ w 6 ⁒ ( z ) subscript 𝑀 1 𝑧 superscript 𝑒 𝑐 𝑏 πœ‹ imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 1 π‘Ž Euler-Gamma 𝑏 Euler-Gamma 𝑐 π‘Ž 𝑏 1 subscript 𝑀 4 𝑧 superscript 𝑒 𝑏 πœ‹ imaginary-unit Euler-Gamma 𝑐 Euler-Gamma 1 π‘Ž Euler-Gamma 𝑏 π‘Ž 1 Euler-Gamma 𝑐 𝑏 subscript 𝑀 6 𝑧 {\displaystyle{\displaystyle w_{1}(z)=e^{(c-b)\pi\mathrm{i}}\frac{\Gamma\left(% c\right)\Gamma\left(1-a\right)}{\Gamma\left(b\right)\Gamma\left(c-a-b+1\right)% }w_{4}(z)+e^{-b\pi\mathrm{i}}\frac{\Gamma\left(c\right)\Gamma\left(1-a\right)}% {\Gamma\left(b-a+1\right)\Gamma\left(c-b\right)}w_{6}(z)}} w[1]*(z)= exp((c - b)* Pi*I)*(GAMMA(c)*GAMMA(1 - a))/(GAMMA(b)*GAMMA(c - a - b + 1))*w[4]*(z)+ exp(- b*Pi*I)*(GAMMA(c)*GAMMA(1 - a))/(GAMMA(b - a + 1)*GAMMA(c - b))*w[6]*(z) Subscript[w, 1]*(z)= Exp[(c - b)* Pi*I]*Divide[Gamma[c]*Gamma[1 - a],Gamma[b]*Gamma[c - a - b + 1]]*Subscript[w, 4]*(z)+ Exp[- b*Pi*I]*Divide[Gamma[c]*Gamma[1 - a],Gamma[b - a + 1]*Gamma[c - b]]*Subscript[w, 6]*(z) Failure Failure Skip Error
15.10.E35 w 2 ⁒ ( z ) = e ( 1 - a ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( c - b ) Ξ“ ⁑ ( a - c + 1 ) ⁒ Ξ“ ⁑ ( c - a - b + 1 ) ⁒ w 4 ⁒ ( z ) + e - a ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( c - b ) Ξ“ ⁑ ( a - b + 1 ) ⁒ Ξ“ ⁑ ( 1 - a ) ⁒ w 5 ⁒ ( z ) subscript 𝑀 2 𝑧 superscript 𝑒 1 π‘Ž πœ‹ imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑐 𝑏 Euler-Gamma π‘Ž 𝑐 1 Euler-Gamma 𝑐 π‘Ž 𝑏 1 subscript 𝑀 4 𝑧 superscript 𝑒 π‘Ž πœ‹ imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑐 𝑏 Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma 1 π‘Ž subscript 𝑀 5 𝑧 {\displaystyle{\displaystyle w_{2}(z)=e^{(1-a)\pi\mathrm{i}}\frac{\Gamma\left(% 2-c\right)\Gamma\left(c-b\right)}{\Gamma\left(a-c+1\right)\Gamma\left(c-a-b+1% \right)}w_{4}(z)+e^{-a\pi\mathrm{i}}\frac{\Gamma\left(2-c\right)\Gamma\left(c-% b\right)}{\Gamma\left(a-b+1\right)\Gamma\left(1-a\right)}w_{5}(z)}} w[2]*(z)= exp((1 - a)* Pi*I)*(GAMMA(2 - c)*GAMMA(c - b))/(GAMMA(a - c + 1)*GAMMA(c - a - b + 1))*w[4]*(z)+ exp(- a*Pi*I)*(GAMMA(2 - c)*GAMMA(c - b))/(GAMMA(a - b + 1)*GAMMA(1 - a))*w[5]*(z) Subscript[w, 2]*(z)= Exp[(1 - a)* Pi*I]*Divide[Gamma[2 - c]*Gamma[c - b],Gamma[a - c + 1]*Gamma[c - a - b + 1]]*Subscript[w, 4]*(z)+ Exp[- a*Pi*I]*Divide[Gamma[2 - c]*Gamma[c - b],Gamma[a - b + 1]*Gamma[1 - a]]*Subscript[w, 5]*(z) Failure Failure Skip Error
15.10.E36 w 2 ⁒ ( z ) = e ( 1 - b ) ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( c - a ) Ξ“ ⁑ ( b - c + 1 ) ⁒ Ξ“ ⁑ ( c - a - b + 1 ) ⁒ w 4 ⁒ ( z ) + e - b ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 2 - c ) ⁒ Ξ“ ⁑ ( c - a ) Ξ“ ⁑ ( b - a + 1 ) ⁒ Ξ“ ⁑ ( 1 - b ) ⁒ w 6 ⁒ ( z ) subscript 𝑀 2 𝑧 superscript 𝑒 1 𝑏 πœ‹ imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑏 𝑐 1 Euler-Gamma 𝑐 π‘Ž 𝑏 1 subscript 𝑀 4 𝑧 superscript 𝑒 𝑏 πœ‹ imaginary-unit Euler-Gamma 2 𝑐 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑏 π‘Ž 1 Euler-Gamma 1 𝑏 subscript 𝑀 6 𝑧 {\displaystyle{\displaystyle w_{2}(z)=e^{(1-b)\pi\mathrm{i}}\frac{\Gamma\left(% 2-c\right)\Gamma\left(c-a\right)}{\Gamma\left(b-c+1\right)\Gamma\left(c-a-b+1% \right)}w_{4}(z)+e^{-b\pi\mathrm{i}}\frac{\Gamma\left(2-c\right)\Gamma\left(c-% a\right)}{\Gamma\left(b-a+1\right)\Gamma\left(1-b\right)}w_{6}(z)}} w[2]*(z)= exp((1 - b)* Pi*I)*(GAMMA(2 - c)*GAMMA(c - a))/(GAMMA(b - c + 1)*GAMMA(c - a - b + 1))*w[4]*(z)+ exp(- b*Pi*I)*(GAMMA(2 - c)*GAMMA(c - a))/(GAMMA(b - a + 1)*GAMMA(1 - b))*w[6]*(z) Subscript[w, 2]*(z)= Exp[(1 - b)* Pi*I]*Divide[Gamma[2 - c]*Gamma[c - a],Gamma[b - c + 1]*Gamma[c - a - b + 1]]*Subscript[w, 4]*(z)+ Exp[- b*Pi*I]*Divide[Gamma[2 - c]*Gamma[c - a],Gamma[b - a + 1]*Gamma[1 - b]]*Subscript[w, 6]*(z) Failure Failure Skip Error
15.12.E1 Ξ± + = arctan ⁑ ( ph ⁑ z - ph ⁑ ( 1 - z ) - Ο€ ln ⁑ | 1 - z - 1 | ) subscript 𝛼 phase 𝑧 phase 1 𝑧 πœ‹ 1 superscript 𝑧 1 {\displaystyle{\displaystyle\alpha_{+}=\operatorname{arctan}\left(\frac{% \operatorname{ph}z-\operatorname{ph}\left(1-z\right)-\pi}{\ln|1-z^{-1}|}\right% )}} alpha[+]= arctan((argument(z)- argument(1 - z)- Pi)/(ln(abs(1 - (z)^(- 1))))) Subscript[\[Alpha], +]= ArcTan[Divide[Arg[z]- Arg[1 - z]- Pi,Log[Abs[1 - (z)^(- 1)]]]] Error Failure - Error
15.12.E1 Ξ± - = arctan ⁑ ( ph ⁑ z - ph ⁑ ( 1 - z ) + Ο€ ln ⁑ | 1 - z - 1 | ) subscript 𝛼 phase 𝑧 phase 1 𝑧 πœ‹ 1 superscript 𝑧 1 {\displaystyle{\displaystyle\alpha_{-}=\operatorname{arctan}\left(\frac{% \operatorname{ph}z-\operatorname{ph}\left(1-z\right)+\pi}{\ln|1-z^{-1}|}\right% )}} alpha[-]= arctan((argument(z)- argument(1 - z)+ Pi)/(ln(abs(1 - (z)^(- 1))))) Subscript[\[Alpha], -]= ArcTan[Divide[Arg[z]- Arg[1 - z]+ Pi,Log[Abs[1 - (z)^(- 1)]]]] Error Failure - Error
15.12.E6 ΞΆ = arccosh ⁑ z 𝜁 hyperbolic-inverse-cosine 𝑧 {\displaystyle{\displaystyle\zeta=\operatorname{arccosh}z}} zeta = arccosh(z) \[zeta]= ArcCosh[z] Failure Failure
Fail
.22188930e-1+.5671060437*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2)}
.22188930e-1-2.261321080*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2)}
-2.806238194-2.261321080*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)-I*2^(1/2)}
-2.806238194+.5671060437*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Error
15.12.E8 Ξ± = ( - 2 ⁒ ln ⁑ ( 1 - ( z - 1 z + 1 ) 2 ) ) 1 / 2 𝛼 superscript 2 1 superscript 𝑧 1 𝑧 1 2 1 2 {\displaystyle{\displaystyle\alpha=\left(-2\ln\left(1-\left(\frac{z-1}{z+1}% \right)^{2}\right)\right)^{1/2}}} alpha =(- 2*ln(1 -((z - 1)/(z + 1))^(2)))^(1/ 2) \[Alpha]=(- 2*Log[1 -(Divide[z - 1,z + 1])^(2)])^(1/ 2) Failure Failure
Fail
.9106437259+.8692893105*I <- {alpha = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.9106437259+1.959137814*I <- {alpha = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
.6547904750+3.198787193*I <- {alpha = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.6547904750-.370360069*I <- {alpha = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Error
15.12.E10 ΞΆ = arccosh ⁑ ( 1 4 ⁒ z - 1 ) 𝜁 hyperbolic-inverse-cosine 1 4 𝑧 1 {\displaystyle{\displaystyle\zeta=\operatorname{arccosh}\left(\tfrac{1}{4}z-1% \right)}} zeta = arccosh((1)/(4)*z - 1) \[zeta]= ArcCosh[Divide[1,4]*z - 1] Failure Failure
Fail
.9885072570-.790108118*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2)}
.9885072570-3.618535242*I <- {z = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2)}
-1.839919867-3.618535242*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)-I*2^(1/2)}
-1.839919867-.790108118*I <- {z = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Error
15.12.E11 Ξ² = ( - 3 2 ⁒ ΞΆ + 9 4 ⁒ ln ⁑ ( 2 + e ΞΆ 2 + e - ΞΆ ) ) 1 / 3 𝛽 superscript 3 2 𝜁 9 4 2 superscript 𝑒 𝜁 2 superscript 𝑒 𝜁 1 3 {\displaystyle{\displaystyle\beta=\left(-\frac{3}{2}\zeta+\frac{9}{4}\ln\left(% \frac{2+e^{\zeta}}{2+e^{-\zeta}}\right)\right)^{1/3}}} beta =(-(3)/(2)*zeta +(9)/(4)*ln((2 + exp(zeta))/(2 + exp(- zeta))))^(1/ 3) \[Beta]=(-Divide[3,2]*\[zeta]+Divide[9,4]*Log[Divide[2 + Exp[\[zeta]],2 + Exp[- \[zeta]]]])^(1/ 3) Failure Failure
Fail
.8286036743+.9438951834*I <- {beta = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2)}
.8286036743+1.884531941*I <- {beta = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2)}
.7141009552+1.686207411*I <- {beta = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)-I*2^(1/2)}
.7141009552+1.142219713*I <- {beta = 2^(1/2)+I*2^(1/2), zeta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Error
15.13.E1 N ⁒ ( a , b , c ) = { 𝑁 π‘Ž 𝑏 𝑐 cases {\displaystyle{\displaystyle N(a,b,c)=\begin{cases}0,&a}}\)% \@add@PDF@RDFa@triples\end{document}\end{cases} N*(a , b , c)= N*(a , b , c)= Error Failure - Error
15.13.E1 { cases {\displaystyle{\displaystyle\begin{cases}0,&a>0,\\ \left\lfloor-a\right\rfloor+\tfrac{1}{2}(1+S),&a}}\)\@add@PDF@RDFa@triples% \end{document}\end{cases} Error Failure - Error
15.13.E1 0 , ⌊ - a βŒ‹ + 1 2 ⁒ ( 1 + S ) , & ⁒ a < 0 , c - a formulae-sequence 0 π‘Ž 1 2 1 𝑆 & π‘Ž 0 𝑐 π‘Ž {\displaystyle{\displaystyle 0,\\ \left\lfloor-a\right\rfloor+\tfrac{1}{2}(1+S),&a<0,c-a}} 0 , floor(- a)+(1)/(2)*(1 + S), 0 , Floor[- a]+Divide[1,2]*(1 + S), Error Failure - Error
15.14.E1 ∫ 0 ∞ x s - 1 ⁒ 𝐅 ⁑ ( a , b c ; - x ) ⁒ d x = Ξ“ ⁑ ( s ) ⁒ Ξ“ ⁑ ( a - s ) ⁒ Ξ“ ⁑ ( b - s ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - s ) superscript subscript 0 superscript π‘₯ 𝑠 1 scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 π‘₯ π‘₯ Euler-Gamma 𝑠 Euler-Gamma π‘Ž 𝑠 Euler-Gamma 𝑏 𝑠 Euler-Gamma π‘Ž Euler-Gamma 𝑏 Euler-Gamma 𝑐 𝑠 {\displaystyle{\displaystyle\int_{0}^{\infty}x^{s-1}\mathbf{F}\left({a,b\atop c% };-x\right)\mathrm{d}x=\frac{\Gamma\left(s\right)\Gamma\left(a-s\right)\Gamma% \left(b-s\right)}{\Gamma\left(a\right)\Gamma\left(b\right)\Gamma\left(c-s% \right)}}} int((x)^(s - 1)* hypergeom([a, b], [c], - x)/GAMMA(c), x = 0..infinity)=(GAMMA(s)*GAMMA(a - s)*GAMMA(b - s))/(GAMMA(a)*GAMMA(b)*GAMMA(c - s)) Integrate[(x)^(s - 1)* Hypergeometric2F1Regularized[a, b, c, - x], {x, 0, Infinity}]=Divide[Gamma[s]*Gamma[a - s]*Gamma[b - s],Gamma[a]*Gamma[b]*Gamma[c - s]] Successful Failure - Error
15.15.E1 𝐅 ⁑ ( a , b c ; 1 z ) = ( 1 - z 0 z ) - a ⁒ βˆ‘ s = 0 ∞ ( a ) s s ! ⁒ 𝐅 ⁑ ( - s , b c ; 1 z 0 ) ⁒ ( 1 - z z 0 ) - s scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 1 𝑧 superscript 1 subscript 𝑧 0 𝑧 π‘Ž superscript subscript 𝑠 0 subscript π‘Ž 𝑠 𝑠 scaled-hypergeometric-bold-F 𝑠 𝑏 𝑐 1 subscript 𝑧 0 superscript 1 𝑧 subscript 𝑧 0 𝑠 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop c};\frac{1}{z}\right)=% \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*% \mathbf{F}\left({-s,b\atop c};\frac{1}{z_{0}}\right)\left(1-\frac{z}{z_{0}}% \right)^{-s}}} hypergeom([a, b], [c], (1)/(z))/GAMMA(c)=(1 -(z[0])/(z))^(- a)* sum((a[s])/(factorial(s))* hypergeom([- s, b], [c], (1)/(z[0]))/GAMMA(c)*(1 -(z)/(z[0]))^(- s), s = 0..infinity) Hypergeometric2F1Regularized[a, b, c, Divide[1,z]]=(1 -Divide[Subscript[z, 0],z])^(- a)* Sum[Divide[Subscript[a, s],(s)!]* Hypergeometric2F1Regularized[- s, b, c, Divide[1,Subscript[z, 0]]]*(1 -Divide[z,Subscript[z, 0]])^(- s), {s, 0, Infinity}] Failure Failure Skip Error
15.16.E1 F ⁑ ( a , b c - 1 2 ; z ) ⁒ F ⁑ ( c - a , c - b c + 1 2 ; z ) = βˆ‘ s = 0 ∞ ( c ) s ( c + 1 2 ) s ⁒ A s ⁒ z s Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 2 𝑧 Gauss-hypergeometric-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 1 2 𝑧 superscript subscript 𝑠 0 Pochhammer 𝑐 𝑠 Pochhammer 𝑐 1 2 𝑠 subscript 𝐴 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle F\left({a,b\atop c-\frac{1}{2}};z\right)F\left({c% -a,c-b\atop c+\frac{1}{2}};z\right)=\sum_{s=0}^{\infty}\frac{{\left(c\right)_{% s}}}{{\left(c+\frac{1}{2}\right)_{s}}}A_{s}z^{s}}} hypergeom([a, b], [c -(1)/(2)], z)*hypergeom([c - a, c - b], [c +(1)/(2)], z)= sum((pochhammer(c, s))/(pochhammer(c +(1)/(2), s))*A[s]*(z)^(s), s = 0..infinity) Hypergeometric2F1[a, b, c -Divide[1,2], z]*Hypergeometric2F1[c - a, c - b, c +Divide[1,2], z]= Sum[Divide[Pochhammer[c, s],Pochhammer[c +Divide[1,2], s]]*Subscript[A, s]*(z)^(s), {s, 0, Infinity}] Failure Failure Skip Error
15.16.E2 ( 1 - z ) a + b - c ⁒ F ⁑ ( 2 ⁒ a , 2 ⁒ b ; 2 ⁒ c - 1 ; z ) = βˆ‘ s = 0 ∞ A s ⁒ z s superscript 1 𝑧 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F 2 π‘Ž 2 𝑏 2 𝑐 1 𝑧 superscript subscript 𝑠 0 subscript 𝐴 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle(1-z)^{a+b-c}F\left(2a,2b;2c-1;z\right)=\sum_{s=0}% ^{\infty}A_{s}z^{s}}} (1 - z)^(a + b - c)* hypergeom([2*a, 2*b], [2*c - 1], z)= sum(A[s]*(z)^(s), s = 0..infinity) (1 - z)^(a + b - c)* Hypergeometric2F1[2*a, 2*b, 2*c - 1, z]= Sum[Subscript[A, s]*(z)^(s), {s, 0, Infinity}] Failure Failure Skip Error
15.16.E3 F ⁑ ( a , b c ; z ) ⁒ F ⁑ ( a , b c ; ΞΆ ) = βˆ‘ s = 0 ∞ ( a ) s ⁒ ( b ) s ⁒ ( c - a ) s ⁒ ( c - b ) s ( c ) s ⁒ ( c ) 2 ⁒ s ⁒ s ! ⁒ ( z ⁒ ΞΆ ) s ⁒ F ⁑ ( a + s , b + s c + 2 ⁒ s ; z + ΞΆ - z ⁒ ΞΆ ) Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝜁 superscript subscript 𝑠 0 Pochhammer π‘Ž 𝑠 Pochhammer 𝑏 𝑠 Pochhammer 𝑐 π‘Ž 𝑠 Pochhammer 𝑐 𝑏 𝑠 Pochhammer 𝑐 𝑠 Pochhammer 𝑐 2 𝑠 𝑠 superscript 𝑧 𝜁 𝑠 Gauss-hypergeometric-F π‘Ž 𝑠 𝑏 𝑠 𝑐 2 𝑠 𝑧 𝜁 𝑧 𝜁 {\displaystyle{\displaystyle F\left({a,b\atop c};z\right)F\left({a,b\atop c};% \zeta\right)=\sum_{s=0}^{\infty}\frac{{\left(a\right)_{s}}{\left(b\right)_{s}}% {\left(c-a\right)_{s}}{\left(c-b\right)_{s}}}{{\left(c\right)_{s}}{\left(c% \right)_{2s}}s!}\left(z\zeta\right)^{s}F\left({a+s,b+s\atop c+2s};z+\zeta-z% \zeta\right)}} hypergeom([a, b], [c], z)*hypergeom([a, b], [c], zeta)= sum((pochhammer(a, s)*pochhammer(b, s)*pochhammer(c - a, s)*pochhammer(c - b, s))/(pochhammer(c, s)*pochhammer(c, 2*s)*factorial(s))*(z*zeta)^(s)* hypergeom([a + s, b + s], [c + 2*s], z + zeta - z*zeta), s = 0..infinity) Hypergeometric2F1[a, b, c, z]*Hypergeometric2F1[a, b, c, \[zeta]]= Sum[Divide[Pochhammer[a, s]*Pochhammer[b, s]*Pochhammer[c - a, s]*Pochhammer[c - b, s],Pochhammer[c, s]*Pochhammer[c, 2*s]*(s)!]*(z*\[zeta])^(s)* Hypergeometric2F1[a + s, b + s, c + 2*s, z + \[zeta]- z*\[zeta]], {s, 0, Infinity}] Failure Failure Skip Error
15.16.E4 F ⁑ ( a , b c ; z ) ⁒ F ⁑ ( - a , - b - c ; z ) + a ⁒ b ⁒ ( a - c ) ⁒ ( b - c ) c 2 ⁒ ( 1 - c 2 ) ⁒ z 2 ⁒ F ⁑ ( 1 + a , 1 + b 2 + c ; z ) ⁒ F ⁑ ( 1 - a , 1 - b 2 - c ; z ) = 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž 𝑏 π‘Ž 𝑐 𝑏 𝑐 superscript 𝑐 2 1 superscript 𝑐 2 superscript 𝑧 2 Gauss-hypergeometric-F 1 π‘Ž 1 𝑏 2 𝑐 𝑧 Gauss-hypergeometric-F 1 π‘Ž 1 𝑏 2 𝑐 𝑧 1 {\displaystyle{\displaystyle F\left({a,b\atop c};z\right)F\left({-a,-b\atop-c}% ;z\right)+\frac{ab(a-c)(b-c)}{c^{2}(1-c^{2})}z^{2}F\left({1+a,1+b\atop 2+c};z% \right)F\left({1-a,1-b\atop 2-c};z\right)=1}} hypergeom([a, b], [c], z)*hypergeom([- a, - b], [- c], z)+(a*b*(a - c)*(b - c))/((c)^(2)*(1 - (c)^(2)))*(z)^(2)* hypergeom([1 + a, 1 + b], [2 + c], z)*hypergeom([1 - a, 1 - b], [2 - c], z)= 1 Hypergeometric2F1[a, b, c, z]*Hypergeometric2F1[- a, - b, - c, z]+Divide[a*b*(a - c)*(b - c),(c)^(2)*(1 - (c)^(2))]*(z)^(2)* Hypergeometric2F1[1 + a, 1 + b, 2 + c, z]*Hypergeometric2F1[1 - a, 1 - b, 2 - c, z]= 1 Failure Failure Successful Error
15.16.E5 F ⁑ ( 1 2 + Ξ» , - 1 2 - Ξ½ 1 + Ξ» + ΞΌ ; z ) ⁒ F ⁑ ( 1 2 - Ξ» , 1 2 + Ξ½ 1 + Ξ½ + ΞΌ ; 1 - z ) + F ⁑ ( 1 2 + Ξ» , 1 2 - Ξ½ 1 + Ξ» + ΞΌ ; z ) ⁒ F ⁑ ( - 1 2 - Ξ» , 1 2 + Ξ½ 1 + Ξ½ + ΞΌ ; 1 - z ) - F ⁑ ( 1 2 + Ξ» , 1 2 - Ξ½ 1 + Ξ» + ΞΌ ; z ) ⁒ F ⁑ ( 1 2 - Ξ» , 1 2 + Ξ½ 1 + Ξ½ + ΞΌ ; 1 - z ) = Ξ“ ⁑ ( 1 + Ξ» + ΞΌ ) ⁒ Ξ“ ⁑ ( 1 + Ξ½ + ΞΌ ) Ξ“ ⁑ ( Ξ» + ΞΌ + Ξ½ + 3 2 ) ⁒ Ξ“ ⁑ ( 1 2 + Ξ½ ) Gauss-hypergeometric-F 1 2 πœ† 1 2 𝜈 1 πœ† πœ‡ 𝑧 Gauss-hypergeometric-F 1 2 πœ† 1 2 𝜈 1 𝜈 πœ‡ 1 𝑧 Gauss-hypergeometric-F 1 2 πœ† 1 2 𝜈 1 πœ† πœ‡ 𝑧 Gauss-hypergeometric-F 1 2 πœ† 1 2 𝜈 1 𝜈 πœ‡ 1 𝑧 Gauss-hypergeometric-F 1 2 πœ† 1 2 𝜈 1 πœ† πœ‡ 𝑧 Gauss-hypergeometric-F 1 2 πœ† 1 2 𝜈 1 𝜈 πœ‡ 1 𝑧 Euler-Gamma 1 πœ† πœ‡ Euler-Gamma 1 𝜈 πœ‡ Euler-Gamma πœ† πœ‡ 𝜈 3 2 Euler-Gamma 1 2 𝜈 {\displaystyle{\displaystyle F\left({\frac{1}{2}+\lambda,-\frac{1}{2}-\nu\atop 1% +\lambda+\mu};z\right)F\left({\frac{1}{2}-\lambda,\frac{1}{2}+\nu\atop 1+\nu+% \mu};1-z\right)+F\left({\frac{1}{2}+\lambda,\frac{1}{2}-\nu\atop 1+\lambda+\mu% };z\right)F\left({-\frac{1}{2}-\lambda,\frac{1}{2}+\nu\atop 1+\nu+\mu};1-z% \right)-F\left({\frac{1}{2}+\lambda,\frac{1}{2}-\nu\atop 1+\lambda+\mu};z% \right)F\left({\frac{1}{2}-\lambda,\frac{1}{2}+\nu\atop 1+\nu+\mu};1-z\right)=% \frac{\Gamma\left(1+\lambda+\mu\right)\Gamma\left(1+\nu+\mu\right)}{\Gamma% \left(\lambda+\mu+\nu+\frac{3}{2}\right)\Gamma\left(\frac{1}{2}+\nu\right)}}} hypergeom([(1)/(2)+ lambda, -(1)/(2)- nu], [1 + lambda + mu], z)*hypergeom([(1)/(2)- lambda, (1)/(2)+ nu], [1 + nu + mu], 1 - z)+ hypergeom([(1)/(2)+ lambda, (1)/(2)- nu], [1 + lambda + mu], z)*hypergeom([-(1)/(2)- lambda, (1)/(2)+ nu], [1 + nu + mu], 1 - z)- hypergeom([(1)/(2)+ lambda, (1)/(2)- nu], [1 + lambda + mu], z)*hypergeom([(1)/(2)- lambda, (1)/(2)+ nu], [1 + nu + mu], 1 - z)=(GAMMA(1 + lambda + mu)*GAMMA(1 + nu + mu))/(GAMMA(lambda + mu + nu +(3)/(2))*GAMMA((1)/(2)+ nu)) Hypergeometric2F1[Divide[1,2]+ \[Lambda], -Divide[1,2]- \[Nu], 1 + \[Lambda]+ \[Mu], z]*Hypergeometric2F1[Divide[1,2]- \[Lambda], Divide[1,2]+ \[Nu], 1 + \[Nu]+ \[Mu], 1 - z]+ Hypergeometric2F1[Divide[1,2]+ \[Lambda], Divide[1,2]- \[Nu], 1 + \[Lambda]+ \[Mu], z]*Hypergeometric2F1[-Divide[1,2]- \[Lambda], Divide[1,2]+ \[Nu], 1 + \[Nu]+ \[Mu], 1 - z]- Hypergeometric2F1[Divide[1,2]+ \[Lambda], Divide[1,2]- \[Nu], 1 + \[Lambda]+ \[Mu], z]*Hypergeometric2F1[Divide[1,2]- \[Lambda], Divide[1,2]+ \[Nu], 1 + \[Nu]+ \[Mu], 1 - z]=Divide[Gamma[1 + \[Lambda]+ \[Mu]]*Gamma[1 + \[Nu]+ \[Mu]],Gamma[\[Lambda]+ \[Mu]+ \[Nu]+Divide[3,2]]*Gamma[Divide[1,2]+ \[Nu]]] Failure Failure Skip Error