Results of Incomplete Gamma and Related Functions

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
8.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{z} = \int_{0}^{z}t^{a-1}e^{-t}\diff{t}} GAMMA(a)-GAMMA(a, z)= int((t)^(a - 1)* exp(- t), t = 0..z) Gamma[a, 0, z]= Integrate[(t)^(a - 1)* Exp[- t], {t, 0, z}] Failure Successful Skip -
8.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = \int_{z}^{\infty}t^{a-1}e^{-t}\diff{t}} GAMMA(a, z)= int((t)^(a - 1)* exp(- t), t = z..infinity) Gamma[a, z]= Integrate[(t)^(a - 1)* Exp[- t], {t, z, Infinity}] Failure Failure Skip Successful
8.2.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{z}+\incGamma@{a}{z} = \EulerGamma@{a}} GAMMA(a)-GAMMA(a, z)+ GAMMA(a, z)= GAMMA(a) Gamma[a, 0, z]+ Gamma[a, z]= Gamma[a] Successful Successful - -
8.2#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaP@{a}{z} = \frac{\incgamma@{a}{z}}{\EulerGamma@{a}}} (GAMMA(a)-GAMMA(a, z))/GAMMA(a)=(GAMMA(a)-GAMMA(a, z))/(GAMMA(a)) GammaRegularized[a, 0, z]=Divide[Gamma[a, 0, z],Gamma[a]] Successful Successful - -
8.2#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaQ@{a}{z} = \frac{\incGamma@{a}{z}}{\EulerGamma@{a}}} GAMMA(a, z)/GAMMA(a)=(GAMMA(a, z))/(GAMMA(a)) GammaRegularized[a, z]=Divide[Gamma[a, z],Gamma[a]] Successful Successful - -
8.2.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaP@{a}{z}+\normincGammaQ@{a}{z} = 1} (GAMMA(a)-GAMMA(a, z))/GAMMA(a)+ GAMMA(a, z)/GAMMA(a)= 1 GammaRegularized[a, 0, z]+ GammaRegularized[a, z]= 1 Successful Successful - -
8.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \scincgamma@{a}{z} = z^{-a}\normincGammaP@{a}{z}} (z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a)= (z)^(- a)* (GAMMA(a)-GAMMA(a, z))/GAMMA(a) Error Successful Error - -
8.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{-a}\normincGammaP@{a}{z} = \frac{z^{-a}}{\EulerGamma@{a}}\incgamma@{a}{z}} (z)^(- a)* (GAMMA(a)-GAMMA(a, z))/GAMMA(a)=((z)^(- a))/(GAMMA(a))*GAMMA(a)-GAMMA(a, z) (z)^(- a)* GammaRegularized[a, 0, z]=Divide[(z)^(- a),Gamma[a]]*Gamma[a, 0, z] Failure Successful
Fail
.3504429851+.4826856014*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.4474572306+.2704599710*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
23.62700226+82.69161801*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
3.420707652-13.57627439*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
-
8.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \scincgamma@{a}{z} = \frac{1}{\EulerGamma@{a}}\int_{0}^{1}t^{a-1}e^{-zt}\diff{t}} (z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a)=(1)/(GAMMA(a))*int((t)^(a - 1)* exp(- z*t), t = 0..1) Error Failure Error Skip -
8.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{ze^{2\pi mi}} = e^{2\pi mia}\incgamma@{a}{z}} GAMMA(a)-GAMMA(a, z*exp(2*Pi*m*I))= exp(2*Pi*m*I*a)*GAMMA(a)-GAMMA(a, z) Gamma[a, 0, z*Exp[2*Pi*m*I]]= Exp[2*Pi*m*I*a]*Gamma[a, 0, z] Failure Failure Successful Successful
8.2.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{ze^{2\pi mi}} = e^{2\pi mia}\incGamma@{a}{z}+(1-e^{2\pi mia})\EulerGamma@{a}} GAMMA(a, z*exp(2*Pi*m*I))= exp(2*Pi*m*I*a)*GAMMA(a, z)+(1 - exp(2*Pi*m*I*a))* GAMMA(a) Gamma[a, z*Exp[2*Pi*m*I]]= Exp[2*Pi*m*I*a]*Gamma[a, z]+(1 - Exp[2*Pi*m*I*a])* Gamma[a] Failure Failure
Fail
-.2249049111-.4410511843e-1*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 1}
-.2248750758-.4411585330e-1*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 2}
-.2248750795-.4411584875e-1*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2), m = 3}
-1.005323136+.3326243216*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2), m = 1}
... skip entries to safe data
Fail
Complex[-0.22490491118791595, -0.04410511845656586] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[m, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.2248750764783257, -0.044115852492705915] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[m, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.22487507925834865, -0.04411584909968558] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[m, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.0053231382729926, 0.33262432134470665] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[m, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.2.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-\pi ia}\incGamma@{a}{ze^{\pi i}}-e^{\pi ia}\incGamma@{a}{ze^{-\pi i}} = -\frac{2\pi i}{\EulerGamma@{1-a}}} exp(- Pi*I*a)*GAMMA(a, z*exp(Pi*I))- exp(Pi*I*a)*GAMMA(a, z*exp(- Pi*I))= -(2*Pi*I)/(GAMMA(1 - a)) Exp[- Pi*I*a]*Gamma[a, z*Exp[Pi*I]]- Exp[Pi*I*a]*Gamma[a, z*Exp[- Pi*I]]= -Divide[2*Pi*I,Gamma[1 - a]] Failure Failure
Fail
-7167.292469-174.9289096*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
2.16987973+12.77160007*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
8.705606105-17.43270949*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-4.50134822-89.91653387*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-7167.2924809060105, -174.9289096706231] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.169879706441371, 12.771600034859095] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[8.70560609871773, -17.43270953363519] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.501348191090425, -89.91653394957189] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.2.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{ze^{+\pi i}} = \EulerGamma@{a}(1-z^{a}e^{+\pi ia}\scincgamma@{a}{-z})} GAMMA(a, z*exp(+ Pi*I))= GAMMA(a)*(1 - (z)^(a)* exp(+ Pi*I*a)*(- z)^(-(a))*(GAMMA(a)-GAMMA(a, - z))/GAMMA(a)) Error Failure Error
Fail
20.46249972+81.80630504*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.005323138+.3326243220*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
1095.761010-111.2868863*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1231.554386+1108.053849*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
-
8.2.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{ze^{-\pi i}} = \EulerGamma@{a}(1-z^{a}e^{-\pi ia}\scincgamma@{a}{-z})} GAMMA(a, z*exp(- Pi*I))= GAMMA(a)*(1 - (z)^(a)* exp(- Pi*I*a)*(- z)^(-(a))*(GAMMA(a)-GAMMA(a, - z))/GAMMA(a)) Error Failure Error
Fail
1095.761010+111.2868863*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1231.554386-1108.053849*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
20.46249972-81.80630504*I <- {a = 2^(1/2)-I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.005323138-.3326243220*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
... skip entries to safe data
-
8.2.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{z}+\left(1+\frac{1-a}{z}\right)\deriv{w}{z} = 0} diff(w, [z$(2)])+(1 +(1 - a)/(z))* diff(w, z)= 0 D[w, {z, 2}]+(1 +Divide[1 - a,z])* D[w, z]= 0 Successful Successful - -
8.2.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{z}-\left(1+\frac{1-a}{z}\right)\deriv{w}{z}+\frac{1-a}{z^{2}}w = 0} diff(w, [z$(2)])-(1 +(1 - a)/(z))* diff(w, z)+(1 - a)/((z)^(2))*w = 0 D[w, {z, 2}]-(1 +Divide[1 - a,z])* D[w, z]+Divide[1 - a,(z)^(2)]*w = 0 Failure Failure
Fail
-.6464466093-.3535533907*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.6464466093+.3535533907*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-.6464466093-.3535533907*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.6464466093+.3535533907*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.6464466094067263, -0.35355339059327373] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.6464466094067263, 0.35355339059327373] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.6464466094067263, -0.35355339059327373] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.6464466094067263, 0.35355339059327373] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.2.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z\deriv[2]{\scincgamma}{z}+(a+1+z)\deriv{\scincgamma}{z}+a\scincgamma = 0} z*diff((+)^(-(z))*(GAMMA(z)-GAMMA(z, +))/GAMMA(z), [(a + 1 + z)*$(2)])*diff((+)^(-(z))*(GAMMA(z)-GAMMA(z, +))/GAMMA(z), a)*(0)^(-(=))*(GAMMA(=)-GAMMA(=, 0))/GAMMA(=) Error Error Error - -
8.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{\tfrac{1}{2}}{z^{2}} = 2\int_{0}^{z}e^{-t^{2}}\diff{t}} GAMMA((1)/(2))-GAMMA((1)/(2), (z)^(2))= 2*int(exp(- (t)^(2)), t = 0..z) Gamma[Divide[1,2], 0, (z)^(2)]= 2*Integrate[Exp[- (t)^(2)], {t, 0, z}] Failure Failure Skip
Fail
Complex[3.581461769189045, -0.9710415344467407] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.581461769189045, 0.9710415344467407] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
8.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\int_{0}^{z}e^{-t^{2}}\diff{t} = \sqrt{\pi}\erf@{z}} 2*int(exp(- (t)^(2)), t = 0..z)=sqrt(Pi)*erf(z) 2*Integrate[Exp[- (t)^(2)], {t, 0, z}]=Sqrt[Pi]*Erf[z] Successful Successful - -
8.4.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \scincgamma@{a}{0} = \frac{1}{\EulerGamma@{a+1}}} (0)^(-(a))*(GAMMA(a)-GAMMA(a, 0))/GAMMA(a)=(1)/(GAMMA(a + 1)) Error Failure Error
Fail
-.6493698774+1.106937485*I <- {a = 2^(1/2)+I*2^(1/2)}
-.6493698774-1.106937485*I <- {a = 2^(1/2)-I*2^(1/2)}
4.564263782+2.639434666*I <- {a = -2^(1/2)-I*2^(1/2)}
4.564263782-2.639434666*I <- {a = -2^(1/2)+I*2^(1/2)}
-
8.4.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \scincgamma@{\tfrac{1}{2}}{-z^{2}} = \frac{2e^{z^{2}}}{z\sqrt{\pi}}\DawsonsintF@{z}} (- (z)^(2))^(-((1)/(2)))*(GAMMA((1)/(2))-GAMMA((1)/(2), - (z)^(2)))/GAMMA((1)/(2))=(2*exp((z)^(2)))/(z*sqrt(Pi))*dawson(z) Error Successful Error - -
8.4.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{0}{z} = \int_{z}^{\infty}t^{-1}e^{-t}\diff{t}} GAMMA(0, z)= int((t)^(- 1)* exp(- t), t = z..infinity) Gamma[0, z]= Integrate[(t)^(- 1)* Exp[- t], {t, z, Infinity}] Successful Failure - Successful
8.4.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{z}^{\infty}t^{-1}e^{-t}\diff{t} = \expintE@{z}} int((t)^(- 1)* exp(- t), t = z..infinity)= Ei(z) Integrate[(t)^(- 1)* Exp[- t], {t, z, Infinity}]= -ExpIntegralEi[-(z)] Failure Failure Skip Successful
8.4.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{1}{z} = e^{-z}} GAMMA(1, z)= exp(- z) Gamma[1, z]= Exp[- z] Successful Successful - -
8.4.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{\tfrac{1}{2}}{z^{2}} = 2\int_{z}^{\infty}e^{-t^{2}}\diff{t}} GAMMA((1)/(2), (z)^(2))= 2*int(exp(- (t)^(2)), t = z..infinity) Gamma[Divide[1,2], (z)^(2)]= 2*Integrate[Exp[- (t)^(2)], {t, z, Infinity}] Failure Failure Skip
Fail
Complex[-3.581461769189044, 0.9710415344467407] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.581461769189044, -0.9710415344467407] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
8.4.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\int_{z}^{\infty}e^{-t^{2}}\diff{t} = \sqrt{\pi}\erfc@{z}} 2*int(exp(- (t)^(2)), t = z..infinity)=sqrt(Pi)*erfc(z) 2*Integrate[Exp[- (t)^(2)], {t, z, Infinity}]=Sqrt[Pi]*Erfc[z] Successful Successful - -
8.4.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{n+1}{z} = n!(1-e^{-z}e_{n}(z))} GAMMA(n + 1)-GAMMA(n + 1, z)= factorial(n)*(1 - exp(- z)*exp(1)[n]*(z)) Gamma[n + 1, 0, z]= (n)!*(1 - Exp[- z]*Subscript[E, n]*(z)) Failure Failure Error Successful
8.4.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{n+1}{z} = n!e^{-z}e_{n}(z)} GAMMA(n + 1, z)= factorial(n)*exp(- z)*exp(1)[n]*(z) Gamma[n + 1, z]= (n)!*Exp[- z]*Subscript[E, n]*(z) Failure Failure Error Successful
8.4.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaP@{n+1}{z} = 1-e^{-z}e_{n}(z)} (GAMMA(n + 1)-GAMMA(n + 1, z))/GAMMA(n + 1)= 1 - exp(- z)*exp(1)[n]*(z) GammaRegularized[n + 1, 0, z]= 1 - Exp[- z]*Subscript[E, n]*(z) Failure Failure Error Successful
8.4.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaQ@{n+1}{z} = e^{-z}e_{n}(z)} GAMMA(n + 1, z)/GAMMA(n + 1)= exp(- z)*exp(1)[n]*(z) GammaRegularized[n + 1, z]= Exp[- z]*Subscript[E, n]*(z) Failure Failure Error Successful
8.4.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \scincgamma@{-n}{z} = z^{n}} (z)^(-(- n))*(GAMMA(- n)-GAMMA(- n, z))/GAMMA(- n)= (z)^(n) Error Failure Error
Fail
Float(undefined)+Float(undefined)*I <- {z = 2^(1/2)+I*2^(1/2), n = 1}
Float(undefined)+Float(undefined)*I <- {z = 2^(1/2)+I*2^(1/2), n = 2}
Float(undefined)+Float(undefined)*I <- {z = 2^(1/2)+I*2^(1/2), n = 3}
Float(undefined)+Float(undefined)*I <- {z = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
-
8.4.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{1-n}{z} = z^{1-n}\genexpintE{n}@{z}} GAMMA(1 - n, z)= (z)^(1 - n)* Ei(n, z) Gamma[1 - n, z]= (z)^(1 - n)* ExpIntegralE[n, z] Successful Successful - -
8.4.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaQ@{n+\tfrac{1}{2}}{z^{2}} = \erfc@{z}+\frac{e^{-z^{2}}}{\sqrt{\pi}}\sum_{k=1}^{n}\frac{z^{2k-1}}{\Pochhammersym{\tfrac{1}{2}}{k}}} GAMMA(n +(1)/(2), (z)^(2))/GAMMA(n +(1)/(2))= erfc(z)+(exp(- (z)^(2)))/(sqrt(Pi))*sum(((z)^(2*k - 1))/(pochhammer((1)/(2), k)), k = 1..n) GammaRegularized[n +Divide[1,2], (z)^(2)]= Erfc[z]+Divide[Exp[- (z)^(2)],Sqrt[Pi]]*Sum[Divide[(z)^(2*k - 1),Pochhammer[Divide[1,2], k]], {k, 1, n}] Failure Failure Skip
Fail
Complex[-6.522116143801526, 0.8770870118427658] <- {Rule[n, 1], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-7.400077458243353, -11.126893574158686] <- {Rule[n, 2], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[11.80629147935897, -12.531631677265604] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-6.522116143801526, -0.8770870118427658] <- {Rule[n, 1], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.4.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{-n}{z} = \frac{(-1)^{n}}{n!}\left(\expintE@{z}-e^{-z}\sum_{k=0}^{n-1}\frac{(-1)^{k}k!}{z^{k+1}}\right)} GAMMA(- n, z)=((- 1)^(n))/(factorial(n))*(Ei(z)- exp(- z)*sum(((- 1)^(k)* factorial(k))/((z)^(k + 1)), k = 0..n - 1)) Gamma[- n, z]=Divide[(- 1)^(n),(n)!]*(-ExpIntegralEi[-(z)]- Exp[- z]*Sum[Divide[(- 1)^(k)* (k)!,(z)^(k + 1)], {k, 0, n - 1}]) Failure Failure Skip
Fail
Complex[1.3877787807814457*^-17, 3.141592653589793] <- {Rule[n, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.734723475976807*^-18, -1.5707963267948966] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.3368086899420177*^-19, 0.5235987755982987] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.3877787807814457*^-17, -3.141592653589793] <- {Rule[n, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{z} = a^{-1}z^{a}e^{-z}\KummerconfhyperM@{1}{1+a}{z}} GAMMA(a)-GAMMA(a, z)= (a)^(- 1)* (z)^(a)* exp(- z)*KummerM(1, 1 + a, z) Gamma[a, 0, z]= (a)^(- 1)* (z)^(a)* Exp[- z]*Hypergeometric1F1[1, 1 + a, z] Successful Successful - -
8.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a^{-1}z^{a}e^{-z}\KummerconfhyperM@{1}{1+a}{z} = a^{-1}z^{a}\KummerconfhyperM@{a}{1+a}{-z}} (a)^(- 1)* (z)^(a)* exp(- z)*KummerM(1, 1 + a, z)= (a)^(- 1)* (z)^(a)* KummerM(a, 1 + a, - z) (a)^(- 1)* (z)^(a)* Exp[- z]*Hypergeometric1F1[1, 1 + a, z]= (a)^(- 1)* (z)^(a)* Hypergeometric1F1[a, 1 + a, - z] Successful Successful - -
8.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \scincgamma@{a}{z} = e^{-z}\OlverconfhyperM@{1}{1+a}{z}} (z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a)= exp(- z)*KummerM(1, 1 + a, z)/GAMMA(1 + a) Error Successful Error - -
8.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-z}\OlverconfhyperM@{1}{1+a}{z} = \OlverconfhyperM@{a}{1+a}{-z}} exp(- z)*KummerM(1, 1 + a, z)/GAMMA(1 + a)= KummerM(a, 1 + a, - z)/GAMMA(1 + a) Exp[- z]*Hypergeometric1F1Regularized[1, 1 + a, z]= Hypergeometric1F1Regularized[a, 1 + a, - z] Successful Successful - -
8.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = e^{-z}\KummerconfhyperU@{1-a}{1-a}{z}} GAMMA(a, z)= exp(- z)*KummerU(1 - a, 1 - a, z) Gamma[a, z]= Exp[- z]*HypergeometricU[1 - a, 1 - a, z] Successful Successful - -
8.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-z}\KummerconfhyperU@{1-a}{1-a}{z} = z^{a}e^{-z}\KummerconfhyperU@{1}{1+a}{z}} exp(- z)*KummerU(1 - a, 1 - a, z)= (z)^(a)* exp(- z)*KummerU(1, 1 + a, z) Exp[- z]*HypergeometricU[1 - a, 1 - a, z]= (z)^(a)* Exp[- z]*HypergeometricU[1, 1 + a, z] Successful Successful - -
8.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{z} = a^{-1}z^{\frac{1}{2}a-\frac{1}{2}}e^{-\frac{1}{2}z}\WhittakerconfhyperM{\frac{1}{2}a-\frac{1}{2}}{\frac{1}{2}a}@{z}} GAMMA(a)-GAMMA(a, z)= (a)^(- 1)* (z)^((1)/(2)*a -(1)/(2))* exp(-(1)/(2)*z)*WhittakerM((1)/(2)*a -(1)/(2), (1)/(2)*a, z) Gamma[a, 0, z]= (a)^(- 1)* (z)^(Divide[1,2]*a -Divide[1,2])* Exp[-Divide[1,2]*z]*WhittakerM[Divide[1,2]*a -Divide[1,2], Divide[1,2]*a, z] Successful Successful - -
8.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = e^{-\frac{1}{2}z}z^{\frac{1}{2}a-\frac{1}{2}}\WhittakerconfhyperW{\frac{1}{2}a-\frac{1}{2}}{\frac{1}{2}a}@{z}} GAMMA(a, z)= exp(-(1)/(2)*z)*(z)^((1)/(2)*a -(1)/(2))* WhittakerW((1)/(2)*a -(1)/(2), (1)/(2)*a, z) Gamma[a, z]= Exp[-Divide[1,2]*z]*(z)^(Divide[1,2]*a -Divide[1,2])* WhittakerW[Divide[1,2]*a -Divide[1,2], Divide[1,2]*a, z] Successful Successful - -
8.6.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{z} = \frac{z^{a}}{\sin@{\pi a}}\int_{0}^{\pi}e^{z\cos@@{t}}\cos@{at+z\sin@@{t}}\diff{t}} GAMMA(a)-GAMMA(a, z)=((z)^(a))/(sin(Pi*a))*int(exp(z*cos(t))*cos(a*t + z*sin(t)), t = 0..Pi) Gamma[a, 0, z]=Divide[(z)^(a),Sin[Pi*a]]*Integrate[Exp[z*Cos[t]]*Cos[a*t + z*Sin[t]], {t, 0, Pi}] Failure Failure Skip Error
8.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{z} = z^{\frac{1}{2}a}\int_{0}^{\infty}e^{-t}t^{\frac{1}{2}a-1}\BesselJ{a}@{2\sqrt{zt}}\diff{t}} GAMMA(a)-GAMMA(a, z)= (z)^((1)/(2)*a)* int(exp(- t)*(t)^((1)/(2)*a - 1)* BesselJ(a, 2*sqrt(z*t)), t = 0..infinity) Gamma[a, 0, z]= (z)^(Divide[1,2]*a)* Integrate[Exp[- t]*(t)^(Divide[1,2]*a - 1)* BesselJ[a, 2*Sqrt[z*t]], {t, 0, Infinity}] Failure Failure Skip Error
8.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{z} = z^{a}\int_{0}^{\infty}\exp@{-at-ze^{-t}}\diff{t}} GAMMA(a)-GAMMA(a, z)= (z)^(a)* int(exp(- a*t - z*exp(- t)), t = 0..infinity) Gamma[a, 0, z]= (z)^(a)* Integrate[Exp[- a*t - z*Exp[- t]], {t, 0, Infinity}] Failure Failure Skip Successful
8.6.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = \frac{z^{a}e^{-z}}{\EulerGamma@{1-a}}\int_{0}^{\infty}\frac{t^{-a}e^{-t}}{z+t}\diff{t}} GAMMA(a, z)=((z)^(a)* exp(- z))/(GAMMA(1 - a))*int(((t)^(- a)* exp(- t))/(z + t), t = 0..infinity) Gamma[a, z]=Divide[(z)^(a)* Exp[- z],Gamma[1 - a]]*Integrate[Divide[(t)^(- a)* Exp[- t],z + t], {t, 0, Infinity}] Failure Failure Skip Successful
8.6.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = z^{a}e^{-z}\int_{0}^{\infty}\frac{e^{-zt}}{(1+t)^{1-a}}\diff{t}} GAMMA(a, z)= (z)^(a)* exp(- z)*int((exp(- z*t))/((1 + t)^(1 - a)), t = 0..infinity) Gamma[a, z]= (z)^(a)* Exp[- z]*Integrate[Divide[Exp[- z*t],(1 + t)^(1 - a)], {t, 0, Infinity}] Successful Failure - Error
8.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = \frac{2z^{\frac{1}{2}a}e^{-z}}{\EulerGamma@{1-a}}\int_{0}^{\infty}e^{-t}t^{-\frac{1}{2}a}\modBesselK{a}@{2\sqrt{zt}}\diff{t}} GAMMA(a, z)=(2*(z)^((1)/(2)*a)* exp(- z))/(GAMMA(1 - a))*int(exp(- t)*(t)^(-(1)/(2)*a)* BesselK(a, 2*sqrt(z*t)), t = 0..infinity) Gamma[a, z]=Divide[2*(z)^(Divide[1,2]*a)* Exp[- z],Gamma[1 - a]]*Integrate[Exp[- t]*(t)^(-Divide[1,2]*a)* BesselK[a, 2*Sqrt[z*t]], {t, 0, Infinity}] Successful Failure - Error
8.6.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = z^{a}\int_{0}^{\infty}\exp@{at-ze^{t}}\diff{t}} GAMMA(a, z)= (z)^(a)* int(exp(a*t - z*exp(t)), t = 0..infinity) Gamma[a, z]= (z)^(a)* Integrate[Exp[a*t - z*Exp[t]], {t, 0, Infinity}] Failure Failure Skip Error
8.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{z} = \frac{-\iunit z^{a}}{2\sin@{\pi a}}\int_{-1}^{(0+)}t^{a-1}e^{zt}\diff{t}} GAMMA(a)-GAMMA(a, z)=(- I*(z)^(a))/(2*sin(Pi*a))*int((t)^(a - 1)* exp(z*t), t = - 1..(0 +)) Gamma[a, 0, z]=Divide[- I*(z)^(a),2*Sin[Pi*a]]*Integrate[(t)^(a - 1)* Exp[z*t], {t, - 1, (0 +)}] Error Failure - Error
8.6.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{-a}{ze^{+\pi i}} = \frac{e^{z}e^{-\pi\iunit a}}{\EulerGamma@{1+a}}\int_{0}^{\infty}\frac{t^{a}e^{-zt}}{t-1}\diff{t}} GAMMA(- a, z*exp(+ Pi*I))=(exp(z)*exp(- Pi*I*a))/(GAMMA(1 + a))*int(((t)^(a)* exp(- z*t))/(t - 1), t = 0..infinity) Gamma[- a, z*Exp[+ Pi*I]]=Divide[Exp[z]*Exp[- Pi*I*a],Gamma[1 + a]]*Integrate[Divide[(t)^(a)* Exp[- z*t],t - 1], {t, 0, Infinity}] Failure Failure Skip Error
8.6.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{-a}{ze^{-\pi i}} = \frac{e^{z}e^{+\pi\iunit a}}{\EulerGamma@{1+a}}\int_{0}^{\infty}\frac{t^{a}e^{-zt}}{t-1}\diff{t}} GAMMA(- a, z*exp(- Pi*I))=(exp(z)*exp(+ Pi*I*a))/(GAMMA(1 + a))*int(((t)^(a)* exp(- z*t))/(t - 1), t = 0..infinity) Gamma[- a, z*Exp[- Pi*I]]=Divide[Exp[z]*Exp[+ Pi*I*a],Gamma[1 + a]]*Integrate[Divide[(t)^(a)* Exp[- z*t],t - 1], {t, 0, Infinity}] Failure Failure Skip Error
8.6.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{z} = \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\frac{\EulerGamma@{s}}{a-s}z^{a-s}\diff{s}} GAMMA(a)-GAMMA(a, z)=(1)/(2*Pi*I)*int((GAMMA(s))/(a - s)*(z)^(a - s), s = c - I*infinity..c + I*infinity) Gamma[a, 0, z]=Divide[1,2*Pi*I]*Integrate[Divide[Gamma[s],a - s]*(z)^(a - s), {s, c - I*Infinity, c + I*Infinity}] Failure Failure Skip Error
8.6.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{s+a}\frac{z^{-s}}{s}\diff{s}} GAMMA(a, z)=(1)/(2*Pi*I)*int(GAMMA(s + a)*((z)^(- s))/(s), s = c - I*infinity..c + I*infinity) Gamma[a, z]=Divide[1,2*Pi*I]*Integrate[Gamma[s + a]*Divide[(z)^(- s),s], {s, c - I*Infinity, c + I*Infinity}] Failure Failure Skip Error
8.6.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = -\frac{z^{a-1}e^{-z}}{\EulerGamma@{1-a}}\*\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\EulerGamma@{s+1-a}\frac{\pi z^{-s}}{\sin@{\pi s}}\diff{s}} GAMMA(a, z)= -((z)^(a - 1)* exp(- z))/(GAMMA(1 - a))*(1)/(2*Pi*I)*int(GAMMA(s + 1 - a)*(Pi*(z)^(- s))/(sin(Pi*s)), s = c - I*infinity..c + I*infinity) Gamma[a, z]= -Divide[(z)^(a - 1)* Exp[- z],Gamma[1 - a]]*Divide[1,2*Pi*I]*Integrate[Gamma[s + 1 - a]*Divide[Pi*(z)^(- s),Sin[Pi*s]], {s, c - I*Infinity, c + I*Infinity}] Failure Failure Skip Error
8.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \scincgamma@{a}{z} = e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}} (z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a)= exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity) Error Successful Error - -
8.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}} = \frac{1}{\EulerGamma@{a}}\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(a+k)}} exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity)=(1)/(GAMMA(a))*sum(((- z)^(k))/(factorial(k)*(a + k)), k = 0..infinity) Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, Infinity}]=Divide[1,Gamma[a]]*Sum[Divide[(- z)^(k),(k)!*(a + k)], {k, 0, Infinity}] Successful Successful - -
8.7.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = \EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)}} GAMMA(a, z)= GAMMA(a)- sum(((- 1)^(k)* (z)^(a + k))/(factorial(k)*(a + k)), k = 0..infinity) Gamma[a, z]= Gamma[a]- Sum[Divide[(- 1)^(k)* (z)^(a + k),(k)!*(a + k)], {k, 0, Infinity}] Successful Successful - -
8.7.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerGamma@{a}-\sum_{k=0}^{\infty}\frac{(-1)^{k}z^{a+k}}{k!(a+k)} = \EulerGamma@{a}\left(1-z^{a}e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{a+k+1}}\right)} GAMMA(a)- sum(((- 1)^(k)* (z)^(a + k))/(factorial(k)*(a + k)), k = 0..infinity)= GAMMA(a)*(1 - (z)^(a)* exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..infinity)) Gamma[a]- Sum[Divide[(- 1)^(k)* (z)^(a + k),(k)!*(a + k)], {k, 0, Infinity}]= Gamma[a]*(1 - (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, Infinity}]) Successful Successful - -
8.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a+1}{z} = a\incgamma@{a}{z}-z^{a}e^{-z}} GAMMA(a + 1)-GAMMA(a + 1, z)= a*GAMMA(a)-GAMMA(a, z)- (z)^(a)* exp(- z) Gamma[a + 1, 0, z]= a*Gamma[a, 0, z]- (z)^(a)* Exp[- z] Failure Successful
Fail
.135004907e-1-.2375774782*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.8693672828+.710002389*I <- {a = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
107.1902160-63.3824277*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.1657436948-.7422690683*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
-
8.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a+1}{z} = a\incGamma@{a}{z}+z^{a}e^{-z}} GAMMA(a + 1, z)= a*GAMMA(a, z)+ (z)^(a)* exp(- z) Gamma[a + 1, z]= a*Gamma[a, z]+ (z)^(a)* Exp[- z] Failure Successful Successful -
8.8.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z\scincgamma@{a+1}{z} = \scincgamma@{a}{z}-\frac{e^{-z}}{\EulerGamma@{a+1}}} z*(z)^(-(a + 1))*(GAMMA(a + 1)-GAMMA(a + 1, z))/GAMMA(a + 1)= (z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a)-(exp(- z))/(GAMMA(a + 1)) Error Failure Error Successful -
8.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaP@{a+1}{z} = \normincGammaP@{a}{z}-\frac{z^{a}e^{-z}}{\EulerGamma@{a+1}}} (GAMMA(a + 1)-GAMMA(a + 1, z))/GAMMA(a + 1)= (GAMMA(a)-GAMMA(a, z))/GAMMA(a)-((z)^(a)* exp(- z))/(GAMMA(a + 1)) GammaRegularized[a + 1, 0, z]= GammaRegularized[a, 0, z]-Divide[(z)^(a)* Exp[- z],Gamma[a + 1]] Failure Successful Successful -
8.8.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaQ@{a+1}{z} = \normincGammaQ@{a}{z}+\frac{z^{a}e^{-z}}{\EulerGamma@{a+1}}} GAMMA(a + 1, z)/GAMMA(a + 1)= GAMMA(a, z)/GAMMA(a)+((z)^(a)* exp(- z))/(GAMMA(a + 1)) GammaRegularized[a + 1, z]= GammaRegularized[a, z]+Divide[(z)^(a)* Exp[- z],Gamma[a + 1]] Failure Successful Successful -
8.8.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a+n}{z} = \Pochhammersym{a}{n}\incgamma@{a}{z}-z^{a}e^{-z}\sum_{k=0}^{n-1}\frac{\EulerGamma@{a+n}}{\EulerGamma@{a+k+1}}z^{k}} GAMMA(a + n)-GAMMA(a + n, z)= pochhammer(a, n)*GAMMA(a)-GAMMA(a, z)- (z)^(a)* exp(- z)*sum((GAMMA(a + n))/(GAMMA(a + k + 1))*(z)^(k), k = 0..n - 1) Gamma[a + n, 0, z]= Pochhammer[a, n]*Gamma[a, 0, z]- (z)^(a)* Exp[- z]*Sum[Divide[Gamma[a + n],Gamma[a + k + 1]]*(z)^(k), {k, 0, n - 1}] Failure Successful Skip -
8.8.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{z} = \frac{\EulerGamma@{a}}{\EulerGamma@{a-n}}\incgamma@{a-n}{z}-z^{a-1}e^{-z}\sum_{k=0}^{n-1}\frac{\EulerGamma@{a}}{\EulerGamma@{a-k}}z^{-k}} GAMMA(a)-GAMMA(a, z)=(GAMMA(a))/(GAMMA(a - n))*GAMMA(a - n)-GAMMA(a - n, z)- (z)^(a - 1)* exp(- z)*sum((GAMMA(a))/(GAMMA(a - k))*(z)^(- k), k = 0..n - 1) Gamma[a, 0, z]=Divide[Gamma[a],Gamma[a - n]]*Gamma[a - n, 0, z]- (z)^(a - 1)* Exp[- z]*Sum[Divide[Gamma[a],Gamma[a - k]]*(z)^(- k), {k, 0, n - 1}] Failure Successful Skip -
8.8.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a+n}{z} = \Pochhammersym{a}{n}\incGamma@{a}{z}+z^{a}e^{-z}\sum_{k=0}^{n-1}\frac{\EulerGamma@{a+n}}{\EulerGamma@{a+k+1}}z^{k}} GAMMA(a + n, z)= pochhammer(a, n)*GAMMA(a, z)+ (z)^(a)* exp(- z)*sum((GAMMA(a + n))/(GAMMA(a + k + 1))*(z)^(k), k = 0..n - 1) Gamma[a + n, z]= Pochhammer[a, n]*Gamma[a, z]+ (z)^(a)* Exp[- z]*Sum[Divide[Gamma[a + n],Gamma[a + k + 1]]*(z)^(k), {k, 0, n - 1}] Successful Successful - -
8.8.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = \frac{\EulerGamma@{a}}{\EulerGamma@{a-n}}\incGamma@{a-n}{z}+z^{a-1}e^{-z}\sum_{k=0}^{n-1}\frac{\EulerGamma@{a}}{\EulerGamma@{a-k}}z^{-k}} GAMMA(a, z)=(GAMMA(a))/(GAMMA(a - n))*GAMMA(a - n, z)+ (z)^(a - 1)* exp(- z)*sum((GAMMA(a))/(GAMMA(a - k))*(z)^(- k), k = 0..n - 1) Gamma[a, z]=Divide[Gamma[a],Gamma[a - n]]*Gamma[a - n, z]+ (z)^(a - 1)* Exp[- z]*Sum[Divide[Gamma[a],Gamma[a - k]]*(z)^(- k), {k, 0, n - 1}] Failure Successful Skip -
8.8.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaP@{a+n}{z} = \normincGammaP@{a}{z}-z^{a}e^{-z}\sum_{k=0}^{n-1}\frac{z^{k}}{\EulerGamma@{a+k+1}}} (GAMMA(a + n)-GAMMA(a + n, z))/GAMMA(a + n)= (GAMMA(a)-GAMMA(a, z))/GAMMA(a)- (z)^(a)* exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..n - 1) GammaRegularized[a + n, 0, z]= GammaRegularized[a, 0, z]- (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, n - 1}] Successful Successful - -
8.8.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaQ@{a+n}{z} = \normincGammaQ@{a}{z}+z^{a}e^{-z}\sum_{k=0}^{n-1}\frac{z^{k}}{\EulerGamma@{a+k+1}}} GAMMA(a + n, z)/GAMMA(a + n)= GAMMA(a, z)/GAMMA(a)+ (z)^(a)* exp(- z)*sum(((z)^(k))/(GAMMA(a + k + 1)), k = 0..n - 1) GammaRegularized[a + n, z]= GammaRegularized[a, z]+ (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Gamma[a + k + 1]], {k, 0, n - 1}] Successful Successful - -
8.8.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{z}\incgamma@{a}{z} = -\deriv{}{z}\incGamma@{a}{z}} diff(GAMMA(a)-GAMMA(a, z), z)= - diff(GAMMA(a, z), z) D[Gamma[a, 0, z], z]= - D[Gamma[a, z], z] Successful Successful - -
8.8.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\deriv{}{z}\incGamma@{a}{z} = z^{a-1}e^{-z}} - diff(GAMMA(a, z), z)= (z)^(a - 1)* exp(- z) - D[Gamma[a, z], z]= (z)^(a - 1)* Exp[- z] Successful Successful - -
8.8.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}(z^{-a}\incgamma@{a}{z}) = (-1)^{n}z^{-a-n}\incgamma@{a+n}{z}} diff((z)^(- a)* GAMMA(a)-GAMMA(a, z), [z$(n)])=(- 1)^(n)* (z)^(- a - n)* GAMMA(a + n)-GAMMA(a + n, z) D[(z)^(- a)* Gamma[a, 0, z], {z, n}]=(- 1)^(n)* (z)^(- a - n)* Gamma[a + n, 0, z] Failure Failure Skip Skip
8.8.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}(z^{-a}\incGamma@{a}{z}) = (-1)^{n}z^{-a-n}\incGamma@{a+n}{z}} diff((z)^(- a)* GAMMA(a, z), [z$(n)])=(- 1)^(n)* (z)^(- a - n)* GAMMA(a + n, z) D[(z)^(- a)* Gamma[a, z], {z, n}]=(- 1)^(n)* (z)^(- a - n)* Gamma[a + n, z] Failure Failure Skip Skip
8.8.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}(e^{z}\incgamma@{a}{z}) = (-1)^{n}\Pochhammersym{1-a}{n}e^{z}\incgamma@{a-n}{z}} diff(exp(z)*GAMMA(a)-GAMMA(a, z), [z$(n)])=(- 1)^(n)* pochhammer(1 - a, n)*exp(z)*GAMMA(a - n)-GAMMA(a - n, z) D[Exp[z]*Gamma[a, 0, z], {z, n}]=(- 1)^(n)* Pochhammer[1 - a, n]*Exp[z]*Gamma[a - n, 0, z] Failure Failure Skip Successful
8.8.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}(z^{a}e^{z}\scincgamma@{a}{z}) = z^{a-n}e^{z}\scincgamma@{a-n}{z}} diff((z)^(a)* exp(z)*(z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a), [z$(n)])= (z)^(a - n)* exp(z)*(z)^(-(a - n))*(GAMMA(a - n)-GAMMA(a - n, z))/GAMMA(a - n) Error Failure Error Skip -
8.8.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}(e^{z}\incGamma@{a}{z}) = (-1)^{n}\Pochhammersym{1-a}{n}e^{z}\incGamma@{a-n}{z}} diff(exp(z)*GAMMA(a, z), [z$(n)])=(- 1)^(n)* pochhammer(1 - a, n)*exp(z)*GAMMA(a - n, z) D[Exp[z]*Gamma[a, z], {z, n}]=(- 1)^(n)* Pochhammer[1 - a, n]*Exp[z]*Gamma[a - n, z] Failure Failure Skip Skip
8.10.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{1-a}e^{x}\incGamma@{a}{x} <= 1} (x)^(1 - a)* exp(x)*GAMMA(a, x)< = 1 (x)^(1 - a)* Exp[x]*Gamma[a, x]< = 1 Failure Failure Skip Successful
8.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{x} >= \frac{x^{a-1}}{a}(1-e^{-x})} GAMMA(a)-GAMMA(a, x)> =((x)^(a - 1))/(a)*(1 - exp(- x)) Gamma[a, 0, x]> =Divide[(x)^(a - 1),a]*(1 - Exp[- x]) Failure Failure Skip Successful
8.10.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{1-a}e^{x}\incGamma@{a}{x} = 1+\frac{a-1}{x}\vartheta} (x)^(1 - a)* exp(x)*GAMMA(a, x)= 1 +(a - 1)/(x)*vartheta (x)^(1 - a)* Exp[x]*Gamma[a, x]= 1 +Divide[a - 1,x]*\[CurlyTheta] Failure Failure
Fail
1.052938223-1.733408016*I <- {a = 2^(1/2)+I*2^(1/2), vartheta = 2^(1/2)+I*2^(1/2), x = 1}
.6195824495-.7346525318*I <- {a = 2^(1/2)+I*2^(1/2), vartheta = 2^(1/2)+I*2^(1/2), x = 2}
.4531580595-.4544327802*I <- {a = 2^(1/2)+I*2^(1/2), vartheta = 2^(1/2)+I*2^(1/2), x = 3}
-2.947061775-.5618351419*I <- {a = 2^(1/2)+I*2^(1/2), vartheta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[1.0529382235611282, -1.733408017034722] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[ϑ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.6195824493248067, -0.7346525326366091] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2], Rule[ϑ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.4531580595377106, -0.4544327806624232] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3], Rule[ϑ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.947061776438873, -0.5618351417809119] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[ϑ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.10.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A_{n} < x^{1-a}e^{x}\incGamma@{a}{x}} A[n]< (x)^(1 - a)* exp(x)*GAMMA(a, x) Subscript[A, n]< (x)^(1 - a)* Exp[x]*Gamma[a, x] Failure Failure Successful Successful
8.10.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{1-a}e^{x}\incGamma@{a}{x} < B_{n}} (x)^(1 - a)* exp(x)*GAMMA(a, x)< B[n] (x)^(1 - a)* Exp[x]*Gamma[a, x]< Subscript[B, n] Failure Failure Successful Successful
8.10.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle I = \int_{0}^{x}t^{a-1}e^{t}\diff{t}} I = int((t)^(a - 1)* exp(t), t = 0..x) I = Integrate[(t)^(a - 1)* Exp[t], {t, 0, x}] Failure Failure Skip
Fail
Complex[-2.925303491814363, 1.0] <- {Rule[a, Rational[1, 2]], Rule[x, 1]}
Complex[-6.687685525621974, 1.0000000000000002] <- {Rule[a, Rational[1, 2]], Rule[x, 2]}
Complex[-14.626171384019093, 1.0000000000000007] <- {Rule[a, Rational[1, 2]], Rule[x, 3]}
8.10.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}t^{a-1}e^{t}\diff{t} = \EulerGamma@{a}x^{a}\scincgamma@{a}{-x}} int((t)^(a - 1)* exp(t), t = 0..x)= GAMMA(a)*(x)^(a)* (- x)^(-(a))*(GAMMA(a)-GAMMA(a, - x))/GAMMA(a) Error Failure Error Skip -
8.10#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle c_{a} = (\EulerGamma@{1+a})^{1/(a-1)}} c[a]=(GAMMA(1 + a))^(1/(a - 1)) Subscript[c, a]=(Gamma[1 + a])^(1/(a - 1)) Failure Failure
Fail
-.342222950+.7512982152*I <- {a = 2^(1/2)+I*2^(1/2), c[a] = 2^(1/2)+I*2^(1/2)}
-.342222950-2.077128909*I <- {a = 2^(1/2)+I*2^(1/2), c[a] = 2^(1/2)-I*2^(1/2)}
-3.170650074-2.077128909*I <- {a = 2^(1/2)+I*2^(1/2), c[a] = -2^(1/2)-I*2^(1/2)}
-3.170650074+.7512982152*I <- {a = 2^(1/2)+I*2^(1/2), c[a] = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Successful
8.10#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle d_{a} = (\EulerGamma@{1+a})^{-1/a}} d[a]=(GAMMA(1 + a))^(- 1/ a) Subscript[d, a]=(Gamma[1 + a])^(- 1/ a) Failure Failure
Fail
.7353701374+1.747162536*I <- {a = 2^(1/2)+I*2^(1/2), d[a] = 2^(1/2)+I*2^(1/2)}
.7353701374-1.081264588*I <- {a = 2^(1/2)+I*2^(1/2), d[a] = 2^(1/2)-I*2^(1/2)}
-2.093056987-1.081264588*I <- {a = 2^(1/2)+I*2^(1/2), d[a] = -2^(1/2)-I*2^(1/2)}
-2.093056987+1.747162536*I <- {a = 2^(1/2)+I*2^(1/2), d[a] = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Successful
8.10.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{x}{2a}\left(\left(1+\frac{2}{x}\right)^{a}-1\right) < x^{1-a}e^{x}\incGamma@{a}{x}} (x)/(2*a)*((1 +(2)/(x))^(a)- 1)< (x)^(1 - a)* exp(x)*GAMMA(a, x) Divide[x,2*a]*((1 +Divide[2,x])^(a)- 1)< (x)^(1 - a)* Exp[x]*Gamma[a, x] Failure Failure Successful Successful
8.10.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x^{1-a}e^{x}\incGamma@{a}{x} <= \frac{x}{ac_{a}}\left(\left(1+\frac{c_{a}}{x}\right)^{a}-1\right)} (x)^(1 - a)* exp(x)*GAMMA(a, x)< =(x)/(a*c[a])*((1 +(c[a])/(x))^(a)- 1) (x)^(1 - a)* Exp[x]*Gamma[a, x]< =Divide[x,a*Subscript[c, a]]*((1 +Divide[Subscript[c, a],x])^(a)- 1) Failure Failure Successful Successful
8.10.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (1-e^{-\alpha_{a}x})^{a} <= \normincGammaP@{a}{x}} (1 - exp(- alpha[a]*x))^(a)< = (GAMMA(a)-GAMMA(a, x))/GAMMA(a) (1 - Exp[- Subscript[\[Alpha], a]*x])^(a)< = GammaRegularized[a, 0, x] Failure Failure Successful Successful
8.10.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaP@{a}{x} <= (1-e^{-\beta_{a}x})^{a}} (GAMMA(a)-GAMMA(a, x))/GAMMA(a)< =(1 - exp(- beta[a]*x))^(a) GammaRegularized[a, 0, x]< =(1 - Exp[- Subscript[\[Beta], a]*x])^(a) Failure Failure Successful Successful
8.10.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\incGamma@{n}{n}}{\EulerGamma@{n}} < \frac{1}{2}} (GAMMA(n, n))/(GAMMA(n))<(1)/(2) Divide[Gamma[n, n],Gamma[n]]<Divide[1,2] Failure Failure Successful Successful
8.10.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2} < \frac{\incGamma@{n}{n-1}}{\EulerGamma@{n}}} (1)/(2)<(GAMMA(n, n - 1))/(GAMMA(n)) Divide[1,2]<Divide[Gamma[n, n - 1],Gamma[n]] Failure Failure Successful Successful
8.11.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incGamma@{a}{z} = z^{a-1}e^{-z}\left(\sum_{k=0}^{n-1}\frac{u_{k}}{z^{k}}+R_{n}(a,z)\right)} GAMMA(a, z)= (z)^(a - 1)* exp(- z)*(sum((u[k])/((z)^(k)), k = 0..n - 1)+ R[n]*(a , z)) Gamma[a, z]= (z)^(a - 1)* Exp[- z]*(Sum[Divide[Subscript[u, k],(z)^(k)], {k, 0, n - 1}]+ Subscript[R, n]*(a , z)) Failure Failure Skip Error
8.11.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{z} = z^{a}e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\Pochhammersym{a}{k+1}}} GAMMA(a)-GAMMA(a, z)= (z)^(a)* exp(- z)*sum(((z)^(k))/(pochhammer(a, k + 1)), k = 0..infinity) Gamma[a, 0, z]= (z)^(a)* Exp[- z]*Sum[Divide[(z)^(k),Pochhammer[a, k + 1]], {k, 0, Infinity}] Successful Successful - -
8.11.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle S_{n}(x) = \frac{\incgamma@{n+1}{nx}}{(nx)^{n}e^{-nx}}} S[n]*(x)=(GAMMA(n + 1)-GAMMA(n + 1, n*x))/((n*x)^(n)* exp(- n*x)) Subscript[S, n]*(x)=Divide[Gamma[n + 1, 0, n*x],(n*x)^(n)* Exp[- n*x]] Failure Failure
Fail
.6959317335+1.414213562*I <- {S[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
.633899074+2.828427124*I <- {S[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 2}
-1.119204955+4.242640686*I <- {S[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 3}
.219685512+1.414213562*I <- {S[n] = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
... skip entries to safe data
Successful
8.12.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaP@{a}{z} = \tfrac{1}{2}\erfc@{-\eta\sqrt{a/2}}-S(a,\eta)} (GAMMA(a)-GAMMA(a, z))/GAMMA(a)=(1)/(2)*erfc(- eta*sqrt(a/ 2))- S*(a , eta) GammaRegularized[a, 0, z]=Divide[1,2]*Erfc[- \[Eta]*Sqrt[a/ 2]]- S*(a , \[Eta]) Failure Failure Error Error
8.12.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaQ@{a}{z} = \tfrac{1}{2}\erfc@{\eta\sqrt{a/2}}+S(a,\eta)} GAMMA(a, z)/GAMMA(a)=(1)/(2)*erfc(eta*sqrt(a/ 2))+ S*(a , eta) GammaRegularized[a, z]=Divide[1,2]*Erfc[\[Eta]*Sqrt[a/ 2]]+ S*(a , \[Eta]) Failure Failure Error Error
8.12.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{e^{+\pi ia}}{2i\sin@{\pi a}}\normincGammaQ@{-a}{ze^{+\pi i}} = +\tfrac{1}{2}\erfc@{+ i\eta\sqrt{a/2}}-iT(a,\eta)} (exp(+ Pi*I*a))/(2*I*sin(Pi*a))*GAMMA(- a, z*exp(+ Pi*I))/GAMMA(- a)= +(1)/(2)*erfc(+ I*eta*sqrt(a/ 2))- I*T*(a , eta) Divide[Exp[+ Pi*I*a],2*I*Sin[Pi*a]]*GammaRegularized[- a, z*Exp[+ Pi*I]]= +Divide[1,2]*Erfc[+ I*\[Eta]*Sqrt[a/ 2]]- I*T*(a , \[Eta]) Failure Failure Error Error
8.12.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{e^{-\pi ia}}{2i\sin@{\pi a}}\normincGammaQ@{-a}{ze^{-\pi i}} = -\tfrac{1}{2}\erfc@{- i\eta\sqrt{a/2}}-iT(a,\eta)} (exp(- Pi*I*a))/(2*I*sin(Pi*a))*GAMMA(- a, z*exp(- Pi*I))/GAMMA(- a)= -(1)/(2)*erfc(- I*eta*sqrt(a/ 2))- I*T*(a , eta) Divide[Exp[- Pi*I*a],2*I*Sin[Pi*a]]*GammaRegularized[- a, z*Exp[- Pi*I]]= -Divide[1,2]*Erfc[- I*\[Eta]*Sqrt[a/ 2]]- I*T*(a , \[Eta]) Failure Failure Error Error
8.12#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerGamma@{a+1}\frac{e^{+\pi ia}}{2\pi i}\incGamma@{-a}{ze^{+\pi i}} = -\tfrac{1}{2}\erfc@{+ i\eta\sqrt{a/2}}+iT(a,\eta)} GAMMA(a + 1)*(exp(+ Pi*I*a))/(2*Pi*I)*GAMMA(- a, z*exp(+ Pi*I))= -(1)/(2)*erfc(+ I*eta*sqrt(a/ 2))+ I*T*(a , eta) Gamma[a + 1]*Divide[Exp[+ Pi*I*a],2*Pi*I]*Gamma[- a, z*Exp[+ Pi*I]]= -Divide[1,2]*Erfc[+ I*\[Eta]*Sqrt[a/ 2]]+ I*T*(a , \[Eta]) Failure Failure Error Error
8.12#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerGamma@{a+1}\frac{e^{-\pi ia}}{2\pi i}\incGamma@{-a}{ze^{-\pi i}} = +\tfrac{1}{2}\erfc@{- i\eta\sqrt{a/2}}+iT(a,\eta)} GAMMA(a + 1)*(exp(- Pi*I*a))/(2*Pi*I)*GAMMA(- a, z*exp(- Pi*I))= +(1)/(2)*erfc(- I*eta*sqrt(a/ 2))+ I*T*(a , eta) Gamma[a + 1]*Divide[Exp[- Pi*I*a],2*Pi*I]*Gamma[- a, z*Exp[- Pi*I]]= +Divide[1,2]*Erfc[- I*\[Eta]*Sqrt[a/ 2]]+ I*T*(a , \[Eta]) Failure Failure Error Error
8.12.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{-a}\scincgamma@{-a}{-z} = \cos@{\pi a}-2\sin@{\pi a}\left(\frac{e^{\frac{1}{2}a\eta^{2}}}{\sqrt{\pi}}\DawsonsintF@{\eta\sqrt{a/2}}+T(a,\eta)\right)} (z)^(- a)* (- z)^(-(- a))*(GAMMA(- a)-GAMMA(- a, - z))/GAMMA(- a)= cos(Pi*a)- 2*sin(Pi*a)*((exp((1)/(2)*a*(eta)^(2)))/(sqrt(Pi))*dawson(eta*sqrt(a/ 2))+ T*(a , eta)) Error Failure Error Error -
8.12.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle c_{k}(\eta) = \frac{1}{\eta}\deriv{}{\eta}c_{k-1}(\eta)+(-1)^{k}\frac{g_{k}}{\mu}} c[k]*(eta)=(1)/(eta)*diff(c[k - 1]*(eta), eta)+(- 1)^(k)*(g[k])/(mu) Subscript[c, k]*(\[Eta])=Divide[1,\[Eta]]*D[Subscript[c, k - 1]*(\[Eta]), \[Eta]]+(- 1)^(k)*Divide[Subscript[g, k],\[Mu]] Failure Failure Skip Skip
8.12#Ex23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle d(+\chi) = \sqrt{\tfrac{1}{2}\pi}e^{\chi^{2}/2}\erfc@{+\chi/\sqrt{2}}} d*(+ chi)=sqrt((1)/(2)*Pi)*exp((chi)^(2)/ 2)*erfc(+ chi/sqrt(2)) d*(+ \[Chi])=Sqrt[Divide[1,2]*Pi]*Exp[(\[Chi])^(2)/ 2]*Erfc[+ \[Chi]/Sqrt[2]] Failure Failure
Fail
-.3819402210+4.260963736*I <- {chi = 2^(1/2)+I*2^(1/2), d = 2^(1/2)+I*2^(1/2)}
3.618059777+.2609637385*I <- {chi = 2^(1/2)+I*2^(1/2), d = 2^(1/2)-I*2^(1/2)}
-.3819402210-3.739036260*I <- {chi = 2^(1/2)+I*2^(1/2), d = -2^(1/2)-I*2^(1/2)}
-4.381940219+.2609637385*I <- {chi = 2^(1/2)+I*2^(1/2), d = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.3819402207134648, 4.260963738906431] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.6180597792865354, -0.26096373890643143] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.425065647600777, -6.540234379036898] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.574934352399223, 2.5402343790368977] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.12#Ex23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle d(-\chi) = \sqrt{\tfrac{1}{2}\pi}e^{\chi^{2}/2}\erfc@{-\chi/\sqrt{2}}} d*(- chi)=sqrt((1)/(2)*Pi)*exp((chi)^(2)/ 2)*erfc(- chi/sqrt(2)) d*(- \[Chi])=Sqrt[Divide[1,2]*Pi]*Exp[(\[Chi])^(2)/ 2]*Erfc[- \[Chi]/Sqrt[2]] Failure Failure
Fail
1.425065646-6.540234377*I <- {chi = 2^(1/2)+I*2^(1/2), d = 2^(1/2)+I*2^(1/2)}
-2.574934352-2.540234379*I <- {chi = 2^(1/2)+I*2^(1/2), d = 2^(1/2)-I*2^(1/2)}
1.425065646+1.459765619*I <- {chi = 2^(1/2)+I*2^(1/2), d = -2^(1/2)-I*2^(1/2)}
5.425065644-2.540234379*I <- {chi = 2^(1/2)+I*2^(1/2), d = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[1.425065647600777, -6.540234379036898] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.574934352399223, 2.5402343790368977] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.3819402207134648, 4.260963738906431] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.6180597792865354, -0.26096373890643143] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.12.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincGammaQ@{a}{x} = q} GAMMA(a, x)/GAMMA(a)= q GammaRegularized[a, x]= q Failure Failure
Fail
-.6276752047-.7874152397*I <- {a = 2^(1/2)+I*2^(1/2), q = 2^(1/2)+I*2^(1/2), x = 1}
-1.269609688-.9406490460*I <- {a = 2^(1/2)+I*2^(1/2), q = 2^(1/2)+I*2^(1/2), x = 2}
-1.440152063-1.201678512*I <- {a = 2^(1/2)+I*2^(1/2), q = 2^(1/2)+I*2^(1/2), x = 3}
-.6276752047+2.041011884*I <- {a = 2^(1/2)+I*2^(1/2), q = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[-0.6276752046971461, -0.7874152400294763] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-1.2696096879275383, -0.9406490461902074] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-1.4401520638257446, -1.2016785120794473] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-0.6276752046971461, 2.0410118847167142] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
... skip entries to safe data
8.13.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1+a^{-1} < x_{-}(a)} 1 + (a)^(- 1)< x[-]*(a) 1 + (a)^(- 1)< Subscript[x, -]*(a) Error Failure - Error
8.13.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x_{-}(a) < \ln@@{|a|}} x[-]*(a)< ln(abs(a)) Subscript[x, -]*(a)< Log[Abs[a]] Error Failure - Error
8.14.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-ax}\frac{\incgamma@{b}{x}}{\EulerGamma@{b}}\diff{x} = \frac{(1+a)^{-b}}{a}} int(exp(- a*x)*(GAMMA(b)-GAMMA(b, x))/(GAMMA(b)), x = 0..infinity)=((1 + a)^(- b))/(a) Integrate[Exp[- a*x]*Divide[Gamma[b, 0, x],Gamma[b]], {x, 0, Infinity}]=Divide[(1 + a)^(- b),a] Successful Failure - Error
8.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-ax}\incGamma@{b}{x}\diff{x} = \EulerGamma@{b}\frac{1-(1+a)^{-b}}{a}} int(exp(- a*x)*GAMMA(b, x), x = 0..infinity)= GAMMA(b)*(1 -(1 + a)^(- b))/(a) Integrate[Exp[- a*x]*Gamma[b, x], {x, 0, Infinity}]= Gamma[b]*Divide[1 -(1 + a)^(- b),a] Failure Failure Skip Error
8.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}x^{a-1}\incgamma@{b}{x}\diff{x} = -\frac{\EulerGamma@{a+b}}{a}} int((x)^(a - 1)* GAMMA(b)-GAMMA(b, x), x = 0..infinity)= -(GAMMA(a + b))/(a) Integrate[(x)^(a - 1)* Gamma[b, 0, x], {x, 0, Infinity}]= -Divide[Gamma[a + b],a] Failure Failure Skip Error
8.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}x^{a-1}\incGamma@{b}{x}\diff{x} = \frac{\EulerGamma@{a+b}}{a}} int((x)^(a - 1)* GAMMA(b, x), x = 0..infinity)=(GAMMA(a + b))/(a) Integrate[(x)^(a - 1)* Gamma[b, x], {x, 0, Infinity}]=Divide[Gamma[a + b],a] Successful Failure - Skip
8.14.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}x^{a-1}e^{-sx}\incgamma@{b}{x}\diff{x} = \frac{\EulerGamma@{a+b}}{b(1+s)^{a+b}}\*\hyperF@{1}{a+b}{1+b}{1/(1+s)}} int((x)^(a - 1)* exp(- s*x)*GAMMA(b)-GAMMA(b, x), x = 0..infinity)=(GAMMA(a + b))/(b*(1 + s)^(a + b))* hypergeom([1, a + b], [1 + b], 1/(1 + s)) Integrate[(x)^(a - 1)* Exp[- s*x]*Gamma[b, 0, x], {x, 0, Infinity}]=Divide[Gamma[a + b],b*(1 + s)^(a + b)]* Hypergeometric2F1[1, a + b, 1 + b, 1/(1 + s)] Failure Failure Skip Error
8.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}x^{a-1}e^{-sx}\incGamma@{b}{x}\diff{x} = \frac{\EulerGamma@{a+b}}{a(1+s)^{a+b}}\*\hyperF@{1}{a+b}{1+a}{s/(1+s)}} int((x)^(a - 1)* exp(- s*x)*GAMMA(b, x), x = 0..infinity)=(GAMMA(a + b))/(a*(1 + s)^(a + b))* hypergeom([1, a + b], [1 + a], s/(1 + s)) Integrate[(x)^(a - 1)* Exp[- s*x]*Gamma[b, x], {x, 0, Infinity}]=Divide[Gamma[a + b],a*(1 + s)^(a + b)]* Hypergeometric2F1[1, a + b, 1 + a, s/(1 + s)] Failure Failure Skip Error
8.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incgamma@{a}{\lambda x} = \lambda^{a}\sum_{k=0}^{\infty}\incgamma@{a+k}{x}\frac{(1-\lambda)^{k}}{k!}} GAMMA(a)-GAMMA(a, lambda*x)= (lambda)^(a)* sum(GAMMA(a + k)-GAMMA(a + k, x)*((1 - lambda)^(k))/(factorial(k)), k = 0..infinity) Gamma[a, 0, \[Lambda]*x]= (\[Lambda])^(a)* Sum[Gamma[a + k, 0, x]*Divide[(1 - \[Lambda])^(k),(k)!], {k, 0, Infinity}] Failure Failure Skip Skip
8.17.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incBeta{x}@{a}{b} = \int_{0}^{x}t^{a-1}(1-t)^{b-1}\diff{t}} int(t^(a-1)*(1-t)^(b-1), t = 0 .. x)= int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..x) Beta[x, a, b]= Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, x}] Successful Failure - Skip
8.17.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincBetaI{x}@{a}{b} = \incBeta{x}@{a}{b}/\EulerBeta@{a}{b}} Error BetaRegularized[x, a, b]= Beta[x, a, b]/ Beta[a, b] Error Successful - -
8.17.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerBeta@{a}{b} = \frac{\EulerGamma@{a}\EulerGamma@{b}}{\EulerGamma@{a+b}}} Beta(a, b)=(GAMMA(a)*GAMMA(b))/(GAMMA(a + b)) Beta[a, b]=Divide[Gamma[a]*Gamma[b],Gamma[a + b]] Failure Successful Error -
8.17.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincBetaI{x}@{a}{b} = 1-\normincBetaI{1-x}@{b}{a}} Error BetaRegularized[x, a, b]= 1 - BetaRegularized[1 - x, b, a] Error Failure -
Fail
DirectedInfinity[] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
DirectedInfinity[] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
DirectedInfinity[] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
DirectedInfinity[] <- {Rule[a, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
... skip entries to safe data
8.17.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincBetaI{x}@{m}{n-m+1} = \sum_{j=m}^{n}\binom{n}{j}x^{j}(1-x)^{n-j}} Error BetaRegularized[x, m, n - m + 1]= Sum[Binomial[n,j]*(x)^(j)*(1 - x)^(n - j), {j, m, n}] Error Failure - Successful
8.17.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincBetaI{x}@{a}{a} = \tfrac{1}{2}\normincBetaI{4x(1-x)}@{a}{\tfrac{1}{2}}} Error BetaRegularized[x, a, a]=Divide[1,2]*BetaRegularized[4*x*(1 - x), a, Divide[1,2]] Error Failure - Successful
8.17.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incBeta{x}@{a}{b} = \frac{x^{a}}{a}\hyperF@{a}{1-b}{a+1}{x}} int(t^(a-1)*(1-t)^(b-1), t = 0 .. x)=((x)^(a))/(a)*hypergeom([a, 1 - b], [a + 1], x) Beta[x, a, b]=Divide[(x)^(a),a]*Hypergeometric2F1[a, 1 - b, a + 1, x] Failure Successful Skip -
8.17.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incBeta{x}@{a}{b} = \frac{x^{a}(1-x)^{b}}{a}\hyperF@{a+b}{1}{a+1}{x}} int(t^(a-1)*(1-t)^(b-1), t = 0 .. x)=((x)^(a)*(1 - x)^(b))/(a)*hypergeom([a + b, 1], [a + 1], x) Beta[x, a, b]=Divide[(x)^(a)*(1 - x)^(b),a]*Hypergeometric2F1[a + b, 1, a + 1, x] Failure Successful Skip -
8.17.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \incBeta{x}@{a}{b} = \frac{x^{a}(1-x)^{b-1}}{a}\hyperF@@{1}{1-b}{a+1}{\frac{x}{x-1}}} int(t^(a-1)*(1-t)^(b-1), t = 0 .. x)=((x)^(a)*(1 - x)^(b - 1))/(a)*hypergeom([1, 1 - b], [a + 1], (x)/(x - 1)) Beta[x, a, b]=Divide[(x)^(a)*(1 - x)^(b - 1),a]*Hypergeometric2F1[1, 1 - b, a + 1, Divide[x,x - 1]] Failure Failure Skip
Fail
Complex[-0.27132901967319506, -0.2500814455005845] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-0.27137899275582306, -0.250091870275464] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-0.27137899275582306, -0.250091870275464] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[0.08838841600311584, 0.0] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
... skip entries to safe data
8.17.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincBetaI{x}@{a}{b} = \frac{x^{a}(1-x)^{b}}{2\pi i}\int_{c-i\infty}^{c+i\infty}s^{-a}(1-s)^{-b}\frac{\diff{s}}{s-x}} Error BetaRegularized[x, a, b]=Divide[(x)^(a)*(1 - x)^(b),2*Pi*I]*Integrate[(s)^(- a)*(1 - s)^(- b)*Divide[1,s - x], {s, c - I*Infinity, c + I*Infinity}] Error Failure - Error
8.17.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (a+b)\normincBetaI{x}@{a}{b} = a\normincBetaI{x}@{a+1}{b}+b\normincBetaI{x}@{a}{b+1}} Error (a + b)* BetaRegularized[x, a, b]= a*BetaRegularized[x, a + 1, b]+ b*BetaRegularized[x, a, b + 1] Error Successful - -
8.17.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (a+bx)\normincBetaI{x}@{a}{b} = xb\normincBetaI{x}@{a-1}{b+1}+a\normincBetaI{x}@{a+1}{b}} Error (a + b*x)* BetaRegularized[x, a, b]= x*b*BetaRegularized[x, a - 1, b + 1]+ a*BetaRegularized[x, a + 1, b] Error Successful - -
8.17.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a\normincBetaI{x}@{a+1}{b} = (a+cx)\normincBetaI{x}@{a}{b}-cx\normincBetaI{x}@{a-1}{b}} Error a*BetaRegularized[x, a + 1, b]=(a + c*x)* BetaRegularized[x, a, b]- c*x*BetaRegularized[x, a - 1, b] Error Failure - Skip
8.17.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincBetaI{x}@{m}{n} = (1-x)^{n}\sum_{j=m}^{\infty}\binom{n+j-1}{j}x^{j}} Error BetaRegularized[x, m, n]=(1 - x)^(n)* Sum[Binomial[n + j - 1,j]*(x)^(j), {j, m, Infinity}] Error Failure - Successful
8.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \xi = -\ln@@{x}} xi = - ln(x) \[Xi]= - Log[x] Failure Failure
Fail
1.414213562+1.414213562*I <- {xi = 2^(1/2)+I*2^(1/2), x = 1}
2.107360743+1.414213562*I <- {xi = 2^(1/2)+I*2^(1/2), x = 2}
2.512825851+1.414213562*I <- {xi = 2^(1/2)+I*2^(1/2), x = 3}
1.414213562-1.414213562*I <- {xi = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.1073607429330403, 1.4142135623730951] <- {Rule[x, 2], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.512825851041205, 1.4142135623730951] <- {Rule[x, 3], Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[x, 1], Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.18#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle F_{0} = a^{-b}\normincGammaQ@{b}{a\xi}} F[0]= (a)^(- b)* GAMMA(b, a*xi)/GAMMA(b) Subscript[F, 0]= (a)^(- b)* GammaRegularized[b, a*\[Xi]] Failure Failure
Fail
2.106630597+.9392389431*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)+I*2^(1/2), F[0] = 2^(1/2)+I*2^(1/2)}
2.106630597-1.889188181*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)+I*2^(1/2), F[0] = 2^(1/2)-I*2^(1/2)}
-.7217965272-1.889188181*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)+I*2^(1/2), F[0] = -2^(1/2)-I*2^(1/2)}
-.7217965272+.9392389431*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)+I*2^(1/2), F[0] = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
8.18#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle F_{1} = \frac{b-a\xi}{a}F_{0}+\frac{\xi^{b}e^{-a\xi}}{a\EulerGamma@{b}}} F[1]=(b - a*xi)/(a)*F[0]+((xi)^(b)* exp(- a*xi))/(a*GAMMA(b)) Subscript[F, 1]=Divide[b - a*\[Xi],a]*Subscript[F, 0]+Divide[(\[Xi])^(b)* Exp[- a*\[Xi]],a*Gamma[b]] Failure Failure Skip Skip
8.18.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\tfrac{1}{2}\eta^{2} = x_{0}\ln@{\frac{x}{x_{0}}}+(1-x_{0})\ln@{\frac{1-x}{1-x_{0}}}} -(1)/(2)*(eta)^(2)= x[0]*ln((x)/(x[0]))+(1 - x[0])* ln((1 - x)/(1 - x[0])) -Divide[1,2]*(\[Eta])^(2)= Subscript[x, 0]*Log[Divide[x,Subscript[x, 0]]]+(1 - Subscript[x, 0])* Log[Divide[1 - x,1 - Subscript[x, 0]]] Failure Failure
Fail
Float(undefined)-Float(infinity)*I <- {eta = 2^(1/2)+I*2^(1/2), x[0] = 2^(1/2)+I*2^(1/2), x = 1}
.547175857-1.970232147*I <- {eta = 2^(1/2)+I*2^(1/2), x[0] = 2^(1/2)+I*2^(1/2), x = 2}
.260872566-1.563388258*I <- {eta = 2^(1/2)+I*2^(1/2), x[0] = 2^(1/2)+I*2^(1/2), x = 3}
Float(undefined)+Float(infinity)*I <- {eta = 2^(1/2)+I*2^(1/2), x[0] = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Successful
8.18.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mu\ln@@{\zeta}-\zeta = \ln@@{x}+\mu\ln@{1-x}+(1+\mu)\ln@{1+\mu}-\mu} mu*ln(zeta)- zeta = ln(x)+ mu*ln(1 - x)+(1 + mu)* ln(1 + mu)- mu \[Mu]*Log[\[zeta]]- \[zeta]= Log[x]+ \[Mu]*Log[1 - x]+(1 + \[Mu])* Log[1 + \[Mu]]- \[Mu] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 1}
1.884730882-5.086259752*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 2}
.499007630-6.066517895*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), zeta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Error
8.18.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \normincBetaI{x}@{a}{b} = p} Error BetaRegularized[x, a, b]= p Error Failure - Successful
8.19.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{p}@{z} = z^{p-1}\incGamma@{1-p}{z}} Ei(p, z)= (z)^(p - 1)* GAMMA(1 - p, z) ExpIntegralE[p, z]= (z)^(p - 1)* Gamma[1 - p, z] Successful Successful - -
8.19.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{p}@{z} = z^{p-1}\int_{z}^{\infty}\frac{e^{-t}}{t^{p}}\diff{t}} Ei(p, z)= (z)^(p - 1)* int((exp(- t))/((t)^(p)), t = z..infinity) ExpIntegralE[p, z]= (z)^(p - 1)* Integrate[Divide[Exp[- t],(t)^(p)], {t, z, Infinity}] Successful Failure - Skip
8.19.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{p}@{z} = \int_{1}^{\infty}\frac{e^{-zt}}{t^{p}}\diff{t}} Ei(p, z)= int((exp(- z*t))/((t)^(p)), t = 1..infinity) ExpIntegralE[p, z]= Integrate[Divide[Exp[- z*t],(t)^(p)], {t, 1, Infinity}] Successful Failure - Error
8.19.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{p}@{z} = \frac{z^{p-1}e^{-z}}{\EulerGamma@{p}}\int_{0}^{\infty}\frac{t^{p-1}e^{-zt}}{1+t}\diff{t}} Ei(p, z)=((z)^(p - 1)* exp(- z))/(GAMMA(p))*int(((t)^(p - 1)* exp(- z*t))/(1 + t), t = 0..infinity) ExpIntegralE[p, z]=Divide[(z)^(p - 1)* Exp[- z],Gamma[p]]*Integrate[Divide[(t)^(p - 1)* Exp[- z*t],1 + t], {t, 0, Infinity}] Successful Failure - Error
8.19.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{0}@{z} = z^{-1}e^{-z}} Ei(0, z)= (z)^(- 1)* exp(- z) ExpIntegralE[0, z]= (z)^(- 1)* Exp[- z] Successful Failure - Successful
8.19.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{p}@{0} = \frac{1}{p-1}} Ei(p, 0)=(1)/(p - 1) ExpIntegralE[p, 0]=Divide[1,p - 1] Successful Successful - -
8.19.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{n}@{z} = \frac{(-z)^{n-1}}{(n-1)!}\expintE@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=0}^{n-2}(n-k-2)!(-z)^{k}} Ei(n, z)=((- z)^(n - 1))/(factorial(n - 1))*Ei(z)+(exp(- z))/(factorial(n - 1))*sum(factorial(n - k - 2)*(- z)^(k), k = 0..n - 2) ExpIntegralE[n, z]=Divide[(- z)^(n - 1),(n - 1)!]*-ExpIntegralEi[-(z)]+Divide[Exp[- z],(n - 1)!]*Sum[(n - k - 2)!*(- z)^(k), {k, 0, n - 2}] Failure Failure Skip
Fail
Complex[0.0, -3.141592653589793] <- {Rule[n, 1], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4.442882938158367, 4.442882938158366] <- {Rule[n, 2], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[6.283185307179586, 0.0] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 3.141592653589793] <- {Rule[n, 1], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.19.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{n}@{z} = \frac{(-1)^{n}z^{n-1}}{(n-1)!}\ln@@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=1}^{n-1}(-z)^{k-1}\EulerGamma@{n-k}+\frac{e^{-z}(-z)^{n-1}}{(n-1)!}\sum_{k=0}^{\infty}\frac{z^{k}}{k!}\digamma@{k+1}} Ei(n, z)=((- 1)^(n)* (z)^(n - 1))/(factorial(n - 1))*ln(z)+(exp(- z))/(factorial(n - 1))*sum((- z)^(k - 1)* GAMMA(n - k), k = 1..n - 1)+(exp(- z)*(- z)^(n - 1))/(factorial(n - 1))*sum(((z)^(k))/(factorial(k))*Psi(k + 1), k = 0..infinity) ExpIntegralE[n, z]=Divide[(- 1)^(n)* (z)^(n - 1),(n - 1)!]*Log[z]+Divide[Exp[- z],(n - 1)!]*Sum[(- z)^(k - 1)* Gamma[n - k], {k, 1, n - 1}]+Divide[Exp[- z]*(- z)^(n - 1),(n - 1)!]*Sum[Divide[(z)^(k),(k)!]*PolyGamma[k + 1], {k, 0, Infinity}] Error Failure - Successful
8.19.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{p}@{z} = z^{p-1}\EulerGamma@{1-p}-\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(1-p+k)}} Ei(p, z)= (z)^(p - 1)* GAMMA(1 - p)- sum(((- z)^(k))/(factorial(k)*(1 - p + k)), k = 0..infinity) ExpIntegralE[p, z]= (z)^(p - 1)* Gamma[1 - p]- Sum[Divide[(- z)^(k),(k)!*(1 - p + k)], {k, 0, Infinity}] Successful Successful - -
8.19.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{p}@{z} = \EulerGamma@{1-p}\left(z^{p-1}-e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{2-p+k}}\right)} Ei(p, z)= GAMMA(1 - p)*((z)^(p - 1)- exp(- z)*sum(((z)^(k))/(GAMMA(2 - p + k)), k = 0..infinity)) ExpIntegralE[p, z]= Gamma[1 - p]*((z)^(p - 1)- Exp[- z]*Sum[Divide[(z)^(k),Gamma[2 - p + k]], {k, 0, Infinity}]) Successful Successful - -
8.19.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p\genexpintE{p+1}@{z}+z\genexpintE{p}@{z} = e^{-z}} p*Ei(p + 1, z)+ z*Ei(p, z)= exp(- z) p*ExpIntegralE[p + 1, z]+ z*ExpIntegralE[p, z]= Exp[- z] Successful Successful - -
8.19.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{z}\genexpintE{p}@{z} = -\genexpintE{p-1}@{z}} diff(Ei(p, z), z)= - Ei(p - 1, z) D[ExpIntegralE[p, z], z]= - ExpIntegralE[p - 1, z] Successful Successful - -
8.19.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{z}(e^{z}\genexpintE{p}@{z}) = e^{z}\genexpintE{p}@{z}\left(1+\frac{p-1}{z}\right)-\frac{1}{z}} diff(exp(z)*Ei(p, z), z)= exp(z)*Ei(p, z)*(1 +(p - 1)/(z))-(1)/(z) D[Exp[z]*ExpIntegralE[p, z], z]= Exp[z]*ExpIntegralE[p, z]*(1 +Divide[p - 1,z])-Divide[1,z] Successful Successful - -
8.19.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv[j]{\genexpintE{p}@{z}}{p} = (-1)^{j}\int_{1}^{\infty}(\ln@@{t})^{j}t^{-p}e^{-zt}\diff{t}} diff(Ei(p, z), [p$(j)])=(- 1)^(j)* int((ln(t))^(j)* (t)^(- p)* exp(- z*t), t = 1..infinity) D[ExpIntegralE[p, z], {p, j}]=(- 1)^(j)* Integrate[(Log[t])^(j)* (t)^(- p)* Exp[- z*t], {t, 1, Infinity}] Failure Failure Skip Error
8.19.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{p}@{z} = z^{p-1}e^{-z}\KummerconfhyperU@{p}{p}{z}} Ei(p, z)= (z)^(p - 1)* exp(- z)*KummerU(p, p, z) ExpIntegralE[p, z]= (z)^(p - 1)* Exp[- z]*HypergeometricU[p, p, z] Successful Successful - -
8.19.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{n-1}{n}\genexpintE{n}@{x} < \genexpintE{n+1}@{x}} (n - 1)/(n)*Ei(n, x)< Ei(n + 1, x) Divide[n - 1,n]*ExpIntegralE[n, x]< ExpIntegralE[n + 1, x] Failure Failure Successful Successful
8.19.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{n+1}@{x} < \genexpintE{n}@{x}} Ei(n + 1, x)< Ei(n, x) ExpIntegralE[n + 1, x]< ExpIntegralE[n, x] Failure Failure Successful Successful
8.19.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\genexpintE{n}@{x}\right)^{2} < \genexpintE{n-1}@{x}\genexpintE{n+1}@{x}} (Ei(n, x))^(2)< Ei(n - 1, x)*Ei(n + 1, x) (ExpIntegralE[n, x])^(2)< ExpIntegralE[n - 1, x]*ExpIntegralE[n + 1, x] Failure Failure Successful Successful
8.19.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{x+n} < e^{x}\genexpintE{n}@{x}} (1)/(x + n)< exp(x)*Ei(n, x) Divide[1,x + n]< Exp[x]*ExpIntegralE[n, x] Failure Failure Successful Successful
8.19.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{x}\genexpintE{n}@{x} <= \frac{1}{x+n-1}} exp(x)*Ei(n, x)< =(1)/(x + n - 1) Exp[x]*ExpIntegralE[n, x]< =Divide[1,x + n - 1] Failure Failure Successful Successful
8.19.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{x}\frac{\genexpintE{n}@{x}}{\genexpintE{n-1}@{x}} > 0} diff((Ei(n, x))/(Ei(n - 1, x)), x)> 0 D[Divide[ExpIntegralE[n, x],ExpIntegralE[n - 1, x]], x]> 0 Failure Failure Successful Successful
8.19.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{z}^{\infty}\genexpintE{p-1}@{t}\diff{t} = \genexpintE{p}@{z}} int(Ei(p - 1, t), t = z..infinity)= Ei(p, z) Integrate[ExpIntegralE[p - 1, t], {t, z, Infinity}]= ExpIntegralE[p, z] Failure Failure Skip Successful
8.19.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\genexpintE{n}@{t}\diff{t} = \frac{(-1)^{n-1}}{a^{n}}\left(\ln@{1+a}+\sum_{k=1}^{n-1}\frac{(-1)^{k}a^{k}}{k}\right)} int(exp(- a*t)*Ei(n, t), t = 0..infinity)=((- 1)^(n - 1))/((a)^(n))*(ln(1 + a)+ sum(((- 1)^(k)* (a)^(k))/(k), k = 1..n - 1)) Integrate[Exp[- a*t]*ExpIntegralE[n, t], {t, 0, Infinity}]=Divide[(- 1)^(n - 1),(a)^(n)]*(Log[1 + a]+ Sum[Divide[(- 1)^(k)* (a)^(k),k], {k, 1, n - 1}]) Failure Failure Skip Successful
8.19.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}t^{b-1}\genexpintE{p}@{t}\diff{t} = \frac{\EulerGamma@{b}(1+a)^{-b}}{p+b-1}\*\hyperF@{1}{b}{p+b}{a/(1+a)}} int(exp(- a*t)*(t)^(b - 1)* Ei(p, t), t = 0..infinity)=(GAMMA(b)*(1 + a)^(- b))/(p + b - 1)* hypergeom([1, b], [p + b], a/(1 + a)) Integrate[Exp[- a*t]*(t)^(b - 1)* ExpIntegralE[p, t], {t, 0, Infinity}]=Divide[Gamma[b]*(1 + a)^(- b),p + b - 1]* Hypergeometric2F1[1, b, p + b, a/(1 + a)] Failure Failure Skip Error
8.19.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\genexpintE{p}@{t}\genexpintE{q}@{t}\diff{t} = \frac{L(p)+L(q)}{p+q-1}} int(Ei(p, t)*Ei(q, t), t = 0..infinity)=(L*(p)+ L*(q))/(p + q - 1) Integrate[ExpIntegralE[p, t]*ExpIntegralE[q, t], {t, 0, Infinity}]=Divide[L*(p)+ L*(q),p + q - 1] Failure Failure Skip
Fail
Complex[-1.9874359859908697, -2.1876726427121085] <- {Rule[L, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[p, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.9874359859908697, -2.1876726427121085] <- {Rule[L, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[p, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.9874359859908697, 2.1876726427121085] <- {Rule[L, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[p, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.9874359859908697, 2.1876726427121085] <- {Rule[L, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[p, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
8.19.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle L(p) = \int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t}} L*(p)= int(exp(- t)*Ei(p, t), t = 0..infinity) L*(p)= Integrate[Exp[- t]*ExpIntegralE[p, t], {t, 0, Infinity}] Failure Failure Skip Skip
8.19.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t} = \frac{1}{2p}\hyperF@{1}{1}{1+p}{\tfrac{1}{2}}} int(exp(- t)*Ei(p, t), t = 0..infinity)=(1)/(2*p)*hypergeom([1, 1], [1 + p], (1)/(2)) Integrate[Exp[- t]*ExpIntegralE[p, t], {t, 0, Infinity}]=Divide[1,2*p]*Hypergeometric2F1[1, 1, 1 + p, Divide[1,2]] Failure Failure Skip Skip
8.20.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genexpintE{p}@{z} = \frac{e^{-z}}{z}\left(\sum_{k=0}^{n-1}(-1)^{k}\frac{\Pochhammersym{p}{k}}{z^{k}}+(-1)^{n}\frac{\Pochhammersym{p}{n}e^{z}}{z^{n-1}}\genexpintE{n+p}@{z}\right)} Ei(p, z)=(exp(- z))/(z)*(sum((- 1)^(k)*(pochhammer(p, k))/((z)^(k)), k = 0..n - 1)+(- 1)^(n)*(pochhammer(p, n)*exp(z))/((z)^(n - 1))*Ei(n + p, z)) ExpIntegralE[p, z]=Divide[Exp[- z],z]*(Sum[(- 1)^(k)*Divide[Pochhammer[p, k],(z)^(k)], {k, 0, n - 1}]+(- 1)^(n)*Divide[Pochhammer[p, n]*Exp[z],(z)^(n - 1)]*ExpIntegralE[n + p, z]) Failure Successful Skip -
8.20.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A_{k+1}(\lambda) = (1-2k\lambda)A_{k}(\lambda)+\lambda(\lambda+1)\deriv{A_{k}(\lambda)}{\lambda}} A[k + 1]*(lambda)=(1 - 2*k*lambda)* A[k]*(lambda)+ lambda*(lambda + 1)* diff(A[k]*(lambda), lambda) Subscript[A, k + 1]*(\[Lambda])=(1 - 2*k*\[Lambda])* Subscript[A, k]*(\[Lambda])+ \[Lambda]*(\[Lambda]+ 1)* D[Subscript[A, k]*(\[Lambda]), \[Lambda]] Failure Failure
Fail
-28.28427122+24.28427123*I <- {lambda = 2^(1/2)+I*2^(1/2), A[k] = 2^(1/2)+I*2^(1/2), A[k+1] = 2^(1/2)+I*2^(1/2), k = 3}
-24.28427122+20.28427123*I <- {lambda = 2^(1/2)+I*2^(1/2), A[k] = 2^(1/2)+I*2^(1/2), A[k+1] = 2^(1/2)-I*2^(1/2), k = 3}
-28.28427122+16.28427123*I <- {lambda = 2^(1/2)+I*2^(1/2), A[k] = 2^(1/2)+I*2^(1/2), A[k+1] = -2^(1/2)-I*2^(1/2), k = 3}
-32.28427122+20.28427123*I <- {lambda = 2^(1/2)+I*2^(1/2), A[k] = 2^(1/2)+I*2^(1/2), A[k+1] = -2^(1/2)+I*2^(1/2), k = 3}
... skip entries to safe data
Successful
8.21.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}} int((t)^(a - 1)* exp(+ I*t), t = 0..infinity)= exp(+(1)/(2)*Pi*I*a)*GAMMA(a) Integrate[(t)^(a - 1)* Exp[+ I*t], {t, 0, Infinity}]= Exp[+Divide[1,2]*Pi*I*a]*Gamma[a] Successful Failure - Successful
8.21.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}} int((t)^(a - 1)* exp(- I*t), t = 0..infinity)= exp(-(1)/(2)*Pi*I*a)*GAMMA(a) Integrate[(t)^(a - 1)* Exp[- I*t], {t, 0, Infinity}]= Exp[-Divide[1,2]*Pi*I*a]*Gamma[a] Successful Failure - Successful
8.22.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\EulerGamma@{p}}{2\pi}z^{1-p}\genexpintE{p}@{z} = \frac{\EulerGamma@{p}}{2\pi}\incGamma@{1-p}{z}} (GAMMA(p))/(2*Pi)*(z)^(1 - p)* Ei(p, z)=(GAMMA(p))/(2*Pi)*GAMMA(1 - p, z) Divide[Gamma[p],2*Pi]*(z)^(1 - p)* ExpIntegralE[p, z]=Divide[Gamma[p],2*Pi]*Gamma[1 - p, z] Successful Successful - -
8.22.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \zeta_{x}(s) = \sum_{k=1}^{\infty}k^{-s}\normincGammaP@{s}{kx}} zeta[x]*(s)= sum((k)^(- s)* (GAMMA(s)-GAMMA(s, k*x))/GAMMA(s), k = 1..infinity) Subscript[\[zeta], x]*(s)= Sum[(k)^(- s)* GammaRegularized[s, 0, k*x], {k, 1, Infinity}] Failure Failure Skip Error