Results of Legendre and Related Functions

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
14.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(1-x^{2}\right)\deriv[2]{w}{x}-2x\deriv{w}{x}+\nu(\nu+1)w = 0} (1 - (x)^(2))* diff(w, [x$(2)])- 2*x*diff(w, x)+ nu*(nu + 1)* w = 0 (1 - (x)^(2))* D[w, {x, 2}]- 2*x*D[w, x]+ \[Nu]*(\[Nu]+ 1)* w = 0 Failure Failure
Fail
-5.656854245+9.656854243*I <- {nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
9.656854243+5.656854245*I <- {nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
5.656854245-9.656854243*I <- {nu = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
-9.656854243-5.656854245*I <- {nu = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-5.656854249492381, 9.65685424949238] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[9.65685424949238, -5.656854249492381] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.656854249492381, 1.6568542494923806] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.6568542494923806, -5.656854249492381] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(1-x^{2}\right)\deriv[2]{w}{x}-2x\deriv{w}{x}+\left(\nu(\nu+1)-\frac{\mu^{2}}{1-x^{2}}\right)w = 0} (1 - (x)^(2))* diff(w, [x$(2)])- 2*x*diff(w, x)+(nu*(nu + 1)-((mu)^(2))/(1 - (x)^(2)))* w = 0 (1 - (x)^(2))* D[w, {x, 2}]- 2*x*D[w, x]+(\[Nu]*(\[Nu]+ 1)-Divide[(\[Mu])^(2),1 - (x)^(2)])* w = 0 Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), x = 1}
-7.542472327+11.54247233*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), x = 2}
-6.363961026+10.36396102*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-7.5424723326565095, 11.542472332656509] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-6.36396103067893, 10.36396103067893] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.2.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[\mu]{\nu+1}@{x}\FerrersQ[\mu]{\nu}@{x}-\FerrersP[\mu]{\nu}@{x}\FerrersQ[\mu]{\nu+1}@{x} = \frac{\EulerGamma@{\nu+\mu+1}}{\EulerGamma@{\nu-\mu+2}}} LegendreP(nu + 1, mu, x)*LegendreQ(nu, mu, x)- LegendreP(nu, mu, x)*LegendreQ(nu + 1, mu, x)=(GAMMA(nu + mu + 1))/(GAMMA(nu - mu + 2)) LegendreP[\[Nu]+ 1, \[Mu], x]*LegendreQ[\[Nu], \[Mu], x]- LegendreP[\[Nu], \[Mu], x]*LegendreQ[\[Nu]+ 1, \[Mu], x]=Divide[Gamma[\[Nu]+ \[Mu]+ 1],Gamma[\[Nu]- \[Mu]+ 2]] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
.118833e-2-.67509e-3*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Successful
14.3.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[\mu]{\nu}@{x} = \left(\frac{1+x}{1-x}\right)^{\mu/2}\hyperOlverF@{\nu+1}{-\nu}{1-\mu}{\tfrac{1}{2}-\tfrac{1}{2}x}} LegendreP(nu, mu, x)=((1 + x)/(1 - x))^(mu/ 2)* hypergeom([nu + 1, - nu], [1 - mu], (1)/(2)-(1)/(2)*x)/GAMMA(1 - mu) LegendreP[\[Nu], \[Mu], x]=(Divide[1 + x,1 - x])^(\[Mu]/ 2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], 1 - \[Mu], Divide[1,2]-Divide[1,2]*x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
9.841425439+29.20009169*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 2}
22.82321651+33.19943936*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[9.841425469606474, 29.20009174654549] <- {Rule[x, 2], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[22.823216526761424, 33.199439403579085] <- {Rule[x, 3], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.3.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[\mu]{\nu}@{x} = \frac{\pi}{2\sin@{\mu\pi}}\left(\cos@{\mu\pi}\left(\frac{1+x}{1-x}\right)^{\mu/2}\hyperOlverF@{\nu+1}{-\nu}{1-\mu}{\tfrac{1}{2}-\tfrac{1}{2}x}-\frac{\EulerGamma@{\nu+\mu+1}}{\EulerGamma@{\nu-\mu+1}}\left(\frac{1-x}{1+x}\right)^{\mu/2}\hyperOlverF@{\nu+1}{-\nu}{1+\mu}{\tfrac{1}{2}-\tfrac{1}{2}x}\right)} LegendreQ(nu, mu, x)=(Pi)/(2*sin(mu*Pi))*(cos(mu*Pi)*((1 + x)/(1 - x))^(mu/ 2)* hypergeom([nu + 1, - nu], [1 - mu], (1)/(2)-(1)/(2)*x)/GAMMA(1 - mu)-(GAMMA(nu + mu + 1))/(GAMMA(nu - mu + 1))*((1 - x)/(1 + x))^(mu/ 2)* hypergeom([nu + 1, - nu], [1 + mu], (1)/(2)-(1)/(2)*x)/GAMMA(1 + mu)) LegendreQ[\[Nu], \[Mu], x]=Divide[Pi,2*Sin[\[Mu]*Pi]]*(Cos[\[Mu]*Pi]*(Divide[1 + x,1 - x])^(\[Mu]/ 2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], 1 - \[Mu], Divide[1,2]-Divide[1,2]*x]-Divide[Gamma[\[Nu]+ \[Mu]+ 1],Gamma[\[Nu]- \[Mu]+ 1]]*(Divide[1 - x,1 + x])^(\[Mu]/ 2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], 1 + \[Mu], Divide[1,2]-Divide[1,2]*x]) Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
45.85870096-15.44869178*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 2}
52.14226531-35.83470770*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Skip
14.3.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \hyperOlverF@{a}{b}{c}{x} = \frac{1}{\EulerGamma@{c}}\hyperF@{a}{b}{c}{x}} hypergeom([a, b], [c], x)/GAMMA(c)=(1)/(GAMMA(c))*hypergeom([a, b], [c], x) Hypergeometric2F1Regularized[a, b, c, x]=Divide[1,Gamma[c]]*Hypergeometric2F1[a, b, c, x] Successful Successful - -
14.3.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[m]{\nu}@{x} = (-1)^{m}\frac{\EulerGamma@{\nu+m+1}}{2^{m}\EulerGamma@{\nu-m+1}}\left(1-x^{2}\right)^{m/2}\hyperOlverF@{\nu+m+1}{m-\nu}{m+1}{\tfrac{1}{2}-\tfrac{1}{2}x}} LegendreP(nu, m, x)=(- 1)^(m)*(GAMMA(nu + m + 1))/((2)^(m)* GAMMA(nu - m + 1))*(1 - (x)^(2))^(m/ 2)* hypergeom([nu + m + 1, m - nu], [m + 1], (1)/(2)-(1)/(2)*x)/GAMMA(m + 1) LegendreP[\[Nu], m, x]=(- 1)^(m)*Divide[Gamma[\[Nu]+ m + 1],(2)^(m)* Gamma[\[Nu]- m + 1]]*(1 - (x)^(2))^(m/ 2)* Hypergeometric2F1Regularized[\[Nu]+ m + 1, m - \[Nu], m + 1, Divide[1,2]-Divide[1,2]*x] Failure Failure Successful Successful
14.3.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[m]{\nu}@{x} = (-1)^{m}\frac{\EulerGamma@{\nu+m+1}}{\EulerGamma@{\nu-m+1}}\left(\frac{1-x}{1+x}\right)^{m/2}\hyperOlverF@{\nu+1}{-\nu}{m+1}{\tfrac{1}{2}-\tfrac{1}{2}x}} LegendreP(nu, m, x)=(- 1)^(m)*(GAMMA(nu + m + 1))/(GAMMA(nu - m + 1))*((1 - x)/(1 + x))^(m/ 2)* hypergeom([nu + 1, - nu], [m + 1], (1)/(2)-(1)/(2)*x)/GAMMA(m + 1) LegendreP[\[Nu], m, x]=(- 1)^(m)*Divide[Gamma[\[Nu]+ m + 1],Gamma[\[Nu]- m + 1]]*(Divide[1 - x,1 + x])^(m/ 2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], m + 1, Divide[1,2]-Divide[1,2]*x] Failure Failure Successful Successful
14.3.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[\mu]{\nu}@{x} = \left(\frac{x+1}{x-1}\right)^{\mu/2}\hyperOlverF@{\nu+1}{-\nu}{1-\mu}{\tfrac{1}{2}-\tfrac{1}{2}x}} LegendreP(nu, mu, x)=((x + 1)/(x - 1))^(mu/ 2)* hypergeom([nu + 1, - nu], [1 - mu], (1)/(2)-(1)/(2)*x)/GAMMA(1 - mu) LegendreP[\[Nu], \[Mu], 3, x]=(Divide[x + 1,x - 1])^(\[Mu]/ 2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], 1 - \[Mu], Divide[1,2]-Divide[1,2]*x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.3.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[m]{\nu}@{x} = \frac{\EulerGamma@{\nu+m+1}}{2^{m}\EulerGamma@{\nu-m+1}}\left(x^{2}-1\right)^{m/2}\hyperOlverF@{\nu+m+1}{m-\nu}{m+1}{\tfrac{1}{2}-\tfrac{1}{2}x}} LegendreP(nu, m, x)=(GAMMA(nu + m + 1))/((2)^(m)* GAMMA(nu - m + 1))*((x)^(2)- 1)^(m/ 2)* hypergeom([nu + m + 1, m - nu], [m + 1], (1)/(2)-(1)/(2)*x)/GAMMA(m + 1) LegendreP[\[Nu], m, 3, x]=Divide[Gamma[\[Nu]+ m + 1],(2)^(m)* Gamma[\[Nu]- m + 1]]*((x)^(2)- 1)^(m/ 2)* Hypergeometric2F1Regularized[\[Nu]+ m + 1, m - \[Nu], m + 1, Divide[1,2]-Divide[1,2]*x] Failure Failure Successful Successful
14.3.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-\mu]{\nu}@{x} = \left(\frac{x-1}{x+1}\right)^{\mu/2}\hyperOlverF@{\nu+1}{-\nu}{\mu+1}{\tfrac{1}{2}-\tfrac{1}{2}x}} LegendreP(nu, - mu, x)=((x - 1)/(x + 1))^(mu/ 2)* hypergeom([nu + 1, - nu], [mu + 1], (1)/(2)-(1)/(2)*x)/GAMMA(mu + 1) LegendreP[\[Nu], - \[Mu], 3, x]=(Divide[x - 1,x + 1])^(\[Mu]/ 2)* Hypergeometric2F1Regularized[\[Nu]+ 1, - \[Nu], \[Mu]+ 1, Divide[1,2]-Divide[1,2]*x] Failure Successful
Fail
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
-
14.3.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[\mu]{\nu}@{x} = \cos@{\tfrac{1}{2}(\nu+\mu)\pi}w_{1}(\nu,\mu,x)+\sin@{\tfrac{1}{2}(\nu+\mu)\pi}w_{2}(\nu,\mu,x)} LegendreP(nu, mu, x)= cos((1)/(2)*(nu + mu)* Pi)*w[1]*(nu , mu , x)+ sin((1)/(2)*(nu + mu)* Pi)*w[2]*(nu , mu , x) LegendreP[\[Nu], \[Mu], x]= Cos[Divide[1,2]*(\[Nu]+ \[Mu])* Pi]*Subscript[w, 1]*(\[Nu], \[Mu], x)+ Sin[Divide[1,2]*(\[Nu]+ \[Mu])* Pi]*Subscript[w, 2]*(\[Nu], \[Mu], x) Failure Failure Error Error
14.3.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[\mu]{\nu}@{x} = -\tfrac{1}{2}\pi\sin@{\tfrac{1}{2}(\nu+\mu)\pi}w_{1}(\nu,\mu,x)+\tfrac{1}{2}\pi\cos@{\tfrac{1}{2}(\nu+\mu)\pi}w_{2}(\nu,\mu,x)} LegendreQ(nu, mu, x)= -(1)/(2)*Pi*sin((1)/(2)*(nu + mu)* Pi)*w[1]*(nu , mu , x)+(1)/(2)*Pi*cos((1)/(2)*(nu + mu)* Pi)*w[2]*(nu , mu , x) LegendreQ[\[Nu], \[Mu], x]= -Divide[1,2]*Pi*Sin[Divide[1,2]*(\[Nu]+ \[Mu])* Pi]*Subscript[w, 1]*(\[Nu], \[Mu], x)+Divide[1,2]*Pi*Cos[Divide[1,2]*(\[Nu]+ \[Mu])* Pi]*Subscript[w, 2]*(\[Nu], \[Mu], x) Failure Failure Error Error
14.3.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w_{1}(\nu,\mu,x) = \frac{2^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}}\left(1-x^{2}\right)^{-\mu/2}\hyperOlverF@{-\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+\tfrac{1}{2}}{\tfrac{1}{2}}{x^{2}}} w[1]*(nu , mu , x)=((2)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu + 1))*(1 - (x)^(2))^(- mu/ 2)* hypergeom([-(1)/(2)*nu -(1)/(2)*mu, (1)/(2)*nu -(1)/(2)*mu +(1)/(2)], [(1)/(2)], (x)^(2))/GAMMA((1)/(2)) Subscript[w, 1]*(\[Nu], \[Mu], x)=Divide[(2)^(\[Mu])* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1]]*(1 - (x)^(2))^(- \[Mu]/ 2)* Hypergeometric2F1Regularized[-Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu], Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2], Divide[1,2], (x)^(2)] Failure Failure Error Error
14.3.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w_{2}(\nu,\mu,x) = \frac{2^{\mu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+1}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+\frac{1}{2}}}x\left(1-x^{2}\right)^{-\mu/2}\hyperOlverF@{\tfrac{1}{2}-\tfrac{1}{2}\nu-\tfrac{1}{2}\mu}{\tfrac{1}{2}\nu-\tfrac{1}{2}\mu+1}{\tfrac{3}{2}}{x^{2}}} w[2]*(nu , mu , x)=((2)^(mu)* GAMMA((1)/(2)*nu +(1)/(2)*mu + 1))/(GAMMA((1)/(2)*nu -(1)/(2)*mu +(1)/(2)))*x*(1 - (x)^(2))^(- mu/ 2)* hypergeom([(1)/(2)-(1)/(2)*nu -(1)/(2)*mu, (1)/(2)*nu -(1)/(2)*mu + 1], [(3)/(2)], (x)^(2))/GAMMA((3)/(2)) Subscript[w, 2]*(\[Nu], \[Mu], x)=Divide[(2)^(\[Mu])* Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+Divide[1,2]]]*x*(1 - (x)^(2))^(- \[Mu]/ 2)* Hypergeometric2F1Regularized[Divide[1,2]-Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu], Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1, Divide[3,2], (x)^(2)] Failure Failure Error Error
14.3.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-\mu]{\nu}@{x} = 2^{-\mu}\left(x^{2}-1\right)^{\mu/2}\hyperOlverF@{\mu-\nu}{\nu+\mu+1}{\mu+1}{\tfrac{1}{2}-\tfrac{1}{2}x}} LegendreP(nu, - mu, x)= (2)^(- mu)*((x)^(2)- 1)^(mu/ 2)* hypergeom([mu - nu, nu + mu + 1], [mu + 1], (1)/(2)-(1)/(2)*x)/GAMMA(mu + 1) LegendreP[\[Nu], - \[Mu], 3, x]= (2)^(- \[Mu])*((x)^(2)- 1)^(\[Mu]/ 2)* Hypergeometric2F1Regularized[\[Mu]- \[Nu], \[Nu]+ \[Mu]+ 1, \[Mu]+ 1, Divide[1,2]-Divide[1,2]*x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.3.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@{\nu\pi}\assLegendreP[-\mu]{\nu}@{x} = \frac{2^{\nu}\pi^{1/2}x^{\nu-\mu}\left(x^{2}-1\right)^{\mu/2}}{\EulerGamma@{\nu+\mu+1}}\hyperOlverF@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}{\tfrac{1}{2}-\nu}{\frac{1}{x^{2}}}-\frac{\pi^{1/2}\left(x^{2}-1\right)^{\mu/2}}{2^{\nu+1}\EulerGamma@{\mu-\nu}x^{\nu+\mu+1}}\hyperOlverF@{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+1}{\tfrac{1}{2}\nu+\tfrac{1}{2}\mu+\tfrac{1}{2}}{\nu+\tfrac{3}{2}}{\frac{1}{x^{2}}}} cos(nu*Pi)*LegendreP(nu, - mu, x)=((2)^(nu)* (Pi)^(1/ 2)* (x)^(nu - mu)*((x)^(2)- 1)^(mu/ 2))/(GAMMA(nu + mu + 1))*hypergeom([(1)/(2)*mu -(1)/(2)*nu, (1)/(2)*mu -(1)/(2)*nu +(1)/(2)], [(1)/(2)- nu], (1)/((x)^(2)))/GAMMA((1)/(2)- nu)-((Pi)^(1/ 2)*((x)^(2)- 1)^(mu/ 2))/((2)^(nu + 1)* GAMMA(mu - nu)*(x)^(nu + mu + 1))*hypergeom([(1)/(2)*nu +(1)/(2)*mu + 1, (1)/(2)*nu +(1)/(2)*mu +(1)/(2)], [nu +(3)/(2)], (1)/((x)^(2)))/GAMMA(nu +(3)/(2)) Cos[\[Nu]*Pi]*LegendreP[\[Nu], - \[Mu], 3, x]=Divide[(2)^(\[Nu])* (Pi)^(1/ 2)* (x)^(\[Nu]- \[Mu])*((x)^(2)- 1)^(\[Mu]/ 2),Gamma[\[Nu]+ \[Mu]+ 1]]*Hypergeometric2F1Regularized[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu], Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2], Divide[1,2]- \[Nu], Divide[1,(x)^(2)]]-Divide[(Pi)^(1/ 2)*((x)^(2)- 1)^(\[Mu]/ 2),(2)^(\[Nu]+ 1)* Gamma[\[Mu]- \[Nu]]*(x)^(\[Nu]+ \[Mu]+ 1)]*Hypergeometric2F1Regularized[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1, Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2], \[Nu]+Divide[3,2], Divide[1,(x)^(2)]] Failure Failure
Fail
Float(undefined)+Float(undefined)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(undefined)+Float(undefined)*I <- {mu = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Skip
14.3.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-\mu]{\nu}@{x} = \frac{\pi\left(x^{2}-1\right)^{\mu/2}}{2^{\mu}}\left(\frac{\hyperOlverF@{\frac{1}{2}\mu-\frac{1}{2}\nu}{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}{\frac{1}{2}}{x^{2}}}{\EulerGamma@{\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+1}}-\frac{x\hyperOlverF@{\frac{1}{2}\mu-\frac{1}{2}\nu+\frac{1}{2}}{\frac{1}{2}\nu+\frac{1}{2}\mu+1}{\frac{3}{2}}{x^{2}}}{\EulerGamma@{\frac{1}{2}\mu-\frac{1}{2}\nu}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}\right)} LegendreP(nu, - mu, x)=(Pi*((x)^(2)- 1)^(mu/ 2))/((2)^(mu))*((hypergeom([(1)/(2)*mu -(1)/(2)*nu, (1)/(2)*nu +(1)/(2)*mu +(1)/(2)], [(1)/(2)], (x)^(2))/GAMMA((1)/(2)))/(GAMMA((1)/(2)*mu -(1)/(2)*nu +(1)/(2))*GAMMA((1)/(2)*nu +(1)/(2)*mu + 1))-(x*hypergeom([(1)/(2)*mu -(1)/(2)*nu +(1)/(2), (1)/(2)*nu +(1)/(2)*mu + 1], [(3)/(2)], (x)^(2))/GAMMA((3)/(2)))/(GAMMA((1)/(2)*mu -(1)/(2)*nu)*GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))) LegendreP[\[Nu], - \[Mu], 3, x]=Divide[Pi*((x)^(2)- 1)^(\[Mu]/ 2),(2)^(\[Mu])]*(Divide[Hypergeometric2F1Regularized[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu], Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2], Divide[1,2], (x)^(2)],Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2]]*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1]]-Divide[x*Hypergeometric2F1Regularized[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2], Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1, Divide[3,2], (x)^(2)],Gamma[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]]*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]]]) Failure Failure
Fail
Float(undefined)+Float(undefined)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(undefined)+Float(undefined)*I <- {mu = 2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.3.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-\mu]{\nu}@{x} = 2^{-\mu}x^{\nu-\mu}\left(x^{2}-1\right)^{\mu/2}\hyperOlverF@{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu}{\tfrac{1}{2}\mu-\tfrac{1}{2}\nu+\tfrac{1}{2}}{\mu+1}{1-\frac{1}{x^{2}}}} LegendreP(nu, - mu, x)= (2)^(- mu)* (x)^(nu - mu)*((x)^(2)- 1)^(mu/ 2)* hypergeom([(1)/(2)*mu -(1)/(2)*nu, (1)/(2)*mu -(1)/(2)*nu +(1)/(2)], [mu + 1], 1 -(1)/((x)^(2)))/GAMMA(mu + 1) LegendreP[\[Nu], - \[Mu], 3, x]= (2)^(- \[Mu])* (x)^(\[Nu]- \[Mu])*((x)^(2)- 1)^(\[Mu]/ 2)* Hypergeometric2F1Regularized[Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu], Divide[1,2]*\[Mu]-Divide[1,2]*\[Nu]+Divide[1,2], \[Mu]+ 1, 1 -Divide[1,(x)^(2)]] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = -2^(1/2)-I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.3.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[\mu]{\nu}@{x} = \frac{2^{\mu}\EulerGamma@{1-2\mu}\EulerGamma@{\nu+\mu+1}}{\EulerGamma@{\nu-\mu+1}\EulerGamma@{1-\mu}\left(1-x^{2}\right)^{\mu/2}}\ultrasphpoly{\frac{1}{2}-\mu}{\nu+\mu}@{x}} LegendreP(nu, mu, x)=((2)^(mu)* GAMMA(1 - 2*mu)*GAMMA(nu + mu + 1))/(GAMMA(nu - mu + 1)*GAMMA(1 - mu)*(1 - (x)^(2))^(mu/ 2))*GegenbauerC(nu + mu, (1)/(2)- mu, x) LegendreP[\[Nu], \[Mu], x]=Divide[(2)^(\[Mu])* Gamma[1 - 2*\[Mu]]*Gamma[\[Nu]+ \[Mu]+ 1],Gamma[\[Nu]- \[Mu]+ 1]*Gamma[1 - \[Mu]]*(1 - (x)^(2))^(\[Mu]/ 2)]*GegenbauerC[\[Nu]+ \[Mu], Divide[1,2]- \[Mu], x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(-infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.3.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[\mu]{\nu}@{x} = \frac{2^{\mu}\EulerGamma@{1-2\mu}\EulerGamma@{\nu+\mu+1}}{\EulerGamma@{\nu-\mu+1}\EulerGamma@{1-\mu}\left(x^{2}-1\right)^{\mu/2}}\ultrasphpoly{\frac{1}{2}-\mu}{\nu+\mu}@{x}} LegendreP(nu, mu, x)=((2)^(mu)* GAMMA(1 - 2*mu)*GAMMA(nu + mu + 1))/(GAMMA(nu - mu + 1)*GAMMA(1 - mu)*((x)^(2)- 1)^(mu/ 2))*GegenbauerC(nu + mu, (1)/(2)- mu, x) LegendreP[\[Nu], \[Mu], 3, x]=Divide[(2)^(\[Mu])* Gamma[1 - 2*\[Mu]]*Gamma[\[Nu]+ \[Mu]+ 1],Gamma[\[Nu]- \[Mu]+ 1]*Gamma[1 - \[Mu]]*((x)^(2)- 1)^(\[Mu]/ 2)]*GegenbauerC[\[Nu]+ \[Mu], Divide[1,2]- \[Mu], x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(-infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.3.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[\mu]{\nu}@{x} = \frac{1}{\EulerGamma@{1-\mu}}\left(\frac{x+1}{x-1}\right)^{\mu/2}\Jacobiphi{-\mu}{\mu}{-\iunit(2\nu+1)}@{\asinh@{(\tfrac{1}{2}x-\tfrac{1}{2})^{\ifrac{1}{2}}}}} LegendreP(nu, mu, x)=(1)/(GAMMA(1 - mu))*((x + 1)/(x - 1))^(mu/ 2)* hypergeom([((- mu)+(mu)+1-I*(- I*(2*nu + 1)))/2, ((- mu)+(mu)+1+I*(- I*(2*nu + 1)))], [(- mu)+1], -sinh(arcsinh(((1)/(2)*x -(1)/(2))^((1)/(2))))^2) Error Failure Error
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
2.046636964-.4107385956*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 2}
2.134810006+6.018716078*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
-
14.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[\mu]{\nu}@{0} = \frac{2^{\mu}\pi^{1/2}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}\EulerGamma@{\frac{1}{2}-\frac{1}{2}\nu-\frac{1}{2}\mu}}} LegendreP(nu, mu, 0)=((2)^(mu)* (Pi)^(1/ 2))/(GAMMA((1)/(2)*nu -(1)/(2)*mu + 1)*GAMMA((1)/(2)-(1)/(2)*nu -(1)/(2)*mu)) LegendreP[\[Nu], \[Mu], 0]=Divide[(2)^(\[Mu])* (Pi)^(1/ 2),Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1]*Gamma[Divide[1,2]-Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]]] Successful Failure - Successful
14.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[\mu]{\nu}@{0} = -\frac{2^{\mu-1}\pi^{1/2}\sin@{\frac{1}{2}(\nu+\mu)\pi}\EulerGamma@{\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{1}{2}}}{\EulerGamma@{\frac{1}{2}\nu-\frac{1}{2}\mu+1}}} LegendreQ(nu, mu, 0)= -((2)^(mu - 1)* (Pi)^(1/ 2)* sin((1)/(2)*(nu + mu)* Pi)*GAMMA((1)/(2)*nu +(1)/(2)*mu +(1)/(2)))/(GAMMA((1)/(2)*nu -(1)/(2)*mu + 1)) LegendreQ[\[Nu], \[Mu], 0]= -Divide[(2)^(\[Mu]- 1)* (Pi)^(1/ 2)* Sin[Divide[1,2]*(\[Nu]+ \[Mu])* Pi]*Gamma[Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[1,2]],Gamma[Divide[1,2]*\[Nu]-Divide[1,2]*\[Mu]+ 1]] Successful Failure - Successful
14.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{0}@{x} = \assLegendreP[]{0}@{x}} LegendreP(0, x)= LegendreP(0, x) LegendreP[0, x]= LegendreP[0, 0, 3, x] Successful Successful - -
14.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[]{0}@{x} = 1} LegendreP(0, x)= 1 LegendreP[0, 0, 3, x]= 1 Successful Successful - -
14.5.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{1}@{x} = \assLegendreP[]{1}@{x}} LegendreP(1, x)= LegendreP(1, x) LegendreP[1, x]= LegendreP[1, 0, 3, x] Successful Successful - -
14.5.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[]{1}@{x} = x} LegendreP(1, x)= x LegendreP[1, 0, 3, x]= x Successful Successful - -
14.5.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[]{0}@{x} = \frac{1}{2}\ln@{\frac{1+x}{1-x}}} LegendreQ(0, x)=(1)/(2)*ln((1 + x)/(1 - x)) LegendreQ[0, x]=Divide[1,2]*Log[Divide[1 + x,1 - x]] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {x = 1}
-.2e-9-3.141592654*I <- {x = 2}
0.-3.141592654*I <- {x = 3}
Fail
Complex[0.0, -3.141592653589793] <- {Rule[x, 2]}
Complex[0.0, -3.141592653589793] <- {Rule[x, 3]}
14.5.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[]{1}@{x} = \frac{x}{2}\ln@{\frac{1+x}{1-x}}-1} LegendreQ(1, x)=(x)/(2)*ln((1 + x)/(1 - x))- 1 LegendreQ[1, x]=Divide[x,2]*Log[Divide[1 + x,1 - x]]- 1 Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {x = 1}
0.-6.283185308*I <- {x = 2}
0.-9.424777961*I <- {x = 3}
Fail
Complex[0.0, -6.283185307179586] <- {Rule[x, 2]}
Complex[0.0, -9.42477796076938] <- {Rule[x, 3]}
14.5.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreOlverQ[]{0}@{x} = \frac{1}{2}\ln@{\frac{x+1}{x-1}}} LegendreQ(0,x)/GAMMA(0+1)=(1)/(2)*ln((x + 1)/(x - 1)) Exp[-0 Pi I] LegendreQ[0, 2, 3, x]/Gamma[0 + 3]=Divide[1,2]*Log[Divide[x + 1,x - 1]] Successful Failure -
Fail
Complex[0.11736052233261163, -1.6328623988631373*^-16] <- {Rule[x, 2]}
Complex[0.028426409720027357, -9.184850993605148*^-17] <- {Rule[x, 3]}
14.5.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreOlverQ[]{1}@{x} = \frac{x}{2}\ln@{\frac{x+1}{x-1}}-1} LegendreQ(1,x)/GAMMA(1+1)=(x)/(2)*ln((x + 1)/(x - 1))- 1 Exp[-1 Pi I] LegendreQ[1, 2, 3, x]/Gamma[1 + 3]=Divide[x,2]*Log[Divide[x + 1,x - 1]]- 1 Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {x = 1}
Fail
Complex[-0.20972339977922083, 2.7214373314385625*^-17] <- {Rule[x, 2]}
Complex[-0.0813874375065845, 1.020538999289461*^-17] <- {Rule[x, 3]}
14.5.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[1/2]{\nu}@{\cos@@{\theta}} = \left(\frac{2}{\pi\sin@@{\theta}}\right)^{1/2}\cos@{\left(\nu+\tfrac{1}{2}\right)\theta}} LegendreP(nu, 1/ 2, cos(theta))=((2)/(Pi*sin(theta)))^(1/ 2)* cos((nu +(1)/(2))* theta) LegendreP[\[Nu], 1/ 2, Cos[\[Theta]]]=(Divide[2,Pi*Sin[\[Theta]]])^(1/ 2)* Cos[(\[Nu]+Divide[1,2])* \[Theta]] Failure Failure
Fail
.36871967-42.38335731*I <- {nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
.4400371092-.3893821086*I <- {nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
.4400371092+.3893821086*I <- {nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
.36871967+42.38335731*I <- {nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[0.3687196755643214, -42.38335740304453] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.4400371109210073, 0.3893821072191709] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[10.19189212608922, -1.5333343011916822] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.6928135017632475, 0.6617977898574373] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.5.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[-1/2]{\nu}@{\cos@@{\theta}} = \left(\frac{2}{\pi\sin@@{\theta}}\right)^{1/2}\frac{\sin@{\left(\nu+\frac{1}{2}\right)\theta}}{\nu+\frac{1}{2}}} LegendreP(nu, - 1/ 2, cos(theta))=((2)/(Pi*sin(theta)))^(1/ 2)*(sin((nu +(1)/(2))* theta))/(nu +(1)/(2)) LegendreP[\[Nu], - 1/ 2, Cos[\[Theta]]]=(Divide[2,Pi*Sin[\[Theta]]])^(1/ 2)*Divide[Sin[(\[Nu]+Divide[1,2])* \[Theta]],\[Nu]+Divide[1,2]] Failure Failure
Fail
10.45952059+14.41340860*I <- {nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
-.867303992e-1+.3960930964*I <- {nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
-.867303992e-1-.3960930964*I <- {nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
10.45952059-14.41340860*I <- {nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[10.459520610822572, 14.413408633208103] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.08673039966401005, -0.3960930962039164] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.5351323601542646, 5.567755012428927] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.3292536871449429, -0.1342721773397682] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.5.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[1/2]{\nu}@{\cos@@{\theta}} = -\left(\frac{\pi}{2\sin@@{\theta}}\right)^{1/2}\sin@{\left(\nu+\tfrac{1}{2}\right)\theta}} LegendreQ(nu, 1/ 2, cos(theta))= -((Pi)/(2*sin(theta)))^(1/ 2)* sin((nu +(1)/(2))* theta) LegendreQ[\[Nu], 1/ 2, Cos[\[Theta]]]= -(Divide[Pi,2*Sin[\[Theta]]])^(1/ 2)* Sin[(\[Nu]+Divide[1,2])* \[Theta]] Failure Failure
Fail
.56844255-66.57402099*I <- {nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
1.140682031-.9983219148*I <- {nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
1.140682031+.9983219148*I <- {nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
.56844255+66.57402099*I <- {nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[0.5684425392649075, -66.57402114898068] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.1406820325736367, 0.9983219133728708] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-16.00900172909977, 2.3638891588232163] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.7711003361816383, 0.5385971330629152] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.5.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[-1/2]{\nu}@{\cos@@{\theta}} = \left(\frac{\pi}{2\sin@@{\theta}}\right)^{1/2}\frac{\cos@{\left(\nu+\frac{1}{2}\right)\theta}}{\nu+\frac{1}{2}}} LegendreQ(nu, - 1/ 2, cos(theta))=((Pi)/(2*sin(theta)))^(1/ 2)*(cos((nu +(1)/(2))* theta))/(nu +(1)/(2)) LegendreQ[\[Nu], - 1/ 2, Cos[\[Theta]]]=(Divide[Pi,2*Sin[\[Theta]]])^(1/ 2)*Divide[Cos[(\[Nu]+Divide[1,2])* \[Theta]],\[Nu]+Divide[1,2]] Failure Failure
Fail
-16.42654635-22.64375209*I <- {nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
.808817414e-1-.3792805859*I <- {nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
.808817414e-1+.3792805859*I <- {nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
-16.42654635+22.64375209*I <- {nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-16.426546382051445, -22.64375214004543] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.08088174281192567, 0.37928058584668234] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.960025306655171, 8.760400975986027] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.8692668859401657, 0.20758769049185705] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.5.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[1/2]{\nu}@{\cosh@@{\xi}} = \left(\frac{2}{\pi\sinh@@{\xi}}\right)^{1/2}\cosh@{\left(\nu+\tfrac{1}{2}\right)\xi}} LegendreP(nu, 1/ 2, cosh(xi))=((2)/(Pi*sinh(xi)))^(1/ 2)* cosh((nu +(1)/(2))* xi) LegendreP[\[Nu], 1/ 2, 3, Cosh[\[Xi]]]=(Divide[2,Pi*Sinh[\[Xi]]])^(1/ 2)* Cosh[(\[Nu]+Divide[1,2])* \[Xi]] Failure Failure
Fail
-.5864879536-.358184945e-1*I <- {nu = 2^(1/2)+I*2^(1/2), xi = -2^(1/2)-I*2^(1/2)}
29.70883518+30.23028354*I <- {nu = 2^(1/2)+I*2^(1/2), xi = -2^(1/2)+I*2^(1/2)}
29.70883518-30.23028354*I <- {nu = 2^(1/2)-I*2^(1/2), xi = -2^(1/2)-I*2^(1/2)}
-.5864879536+.358184945e-1*I <- {nu = 2^(1/2)-I*2^(1/2), xi = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.5864879535933634, -0.03581849661859793] <- {Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[29.708835246197378, 30.230283612094272] <- {Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[29.70883524619738, -30.230283612094276] <- {Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5864879535933634, 0.03581849661859793] <- {Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.5.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-1/2]{\nu}@{\cosh@@{\xi}} = \left(\frac{2}{\pi\sinh@@{\xi}}\right)^{1/2}\frac{\sinh@{\left(\nu+\frac{1}{2}\right)\xi}}{\nu+\frac{1}{2}}} LegendreP(nu, - 1/ 2, cosh(xi))=((2)/(Pi*sinh(xi)))^(1/ 2)*(sinh((nu +(1)/(2))* xi))/(nu +(1)/(2)) LegendreP[\[Nu], - 1/ 2, 3, Cosh[\[Xi]]]=(Divide[2,Pi*Sinh[\[Xi]]])^(1/ 2)*Divide[Sinh[(\[Nu]+Divide[1,2])* \[Xi]],\[Nu]+Divide[1,2]] Failure Failure
Fail
-.2187524610-.3414077677*I <- {nu = 2^(1/2)+I*2^(1/2), xi = -2^(1/2)-I*2^(1/2)}
2.795821027-17.58781691*I <- {nu = 2^(1/2)+I*2^(1/2), xi = -2^(1/2)+I*2^(1/2)}
2.795821027+17.58781691*I <- {nu = 2^(1/2)-I*2^(1/2), xi = -2^(1/2)-I*2^(1/2)}
-.2187524610+.3414077677*I <- {nu = 2^(1/2)-I*2^(1/2), xi = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.21875246056952388, -0.34140776804440603] <- {Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.7958210326810695, -17.58781693642728] <- {Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.7958210326810704, 17.58781693642728] <- {Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.21875246056952388, 0.34140776804440603] <- {Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.5.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[-\nu]{\nu}@{\cos@@{\theta}} = \frac{(\sin@@{\theta})^{\nu}}{2^{\nu}\EulerGamma@{\nu+1}}} LegendreP(nu, - nu, cos(theta))=((sin(theta))^(nu))/((2)^(nu)* GAMMA(nu + 1)) LegendreP[\[Nu], - \[Nu], Cos[\[Theta]]]=Divide[(Sin[\[Theta]])^(\[Nu]),(2)^(\[Nu])* Gamma[\[Nu]+ 1]] Failure Failure
Fail
-43.52472475-91.18820633*I <- {nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
.7853993815-1.577945162*I <- {nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
.7853993815+1.577945162*I <- {nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
-43.52472475+91.18820633*I <- {nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-43.52472498317512, -91.18820649263243] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.7853993822180476, 1.5779451625825405] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.58992974788194, -1.258674442064952] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-254.2316906545912, -207.99030953967707] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.5.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-\nu]{\nu}@{\cosh@@{\xi}} = \frac{(\sinh@@{\xi})^{\nu}}{2^{\nu}\EulerGamma@{\nu+1}}} LegendreP(nu, - nu, cosh(xi))=((sinh(xi))^(nu))/((2)^(nu)* GAMMA(nu + 1)) LegendreP[\[Nu], - \[Nu], 3, Cosh[\[Xi]]]=Divide[(Sinh[\[Xi]])^(\[Nu]),(2)^(\[Nu])* Gamma[\[Nu]+ 1]] Failure Failure
Fail
15.96343012-3.050402005*I <- {nu = 2^(1/2)+I*2^(1/2), xi = -2^(1/2)-I*2^(1/2)}
-10.72821959-2.234163594*I <- {nu = 2^(1/2)+I*2^(1/2), xi = -2^(1/2)+I*2^(1/2)}
-10.72821959+2.234163594*I <- {nu = 2^(1/2)-I*2^(1/2), xi = -2^(1/2)-I*2^(1/2)}
15.96343012+3.050402005*I <- {nu = 2^(1/2)-I*2^(1/2), xi = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[15.96343013583397, -3.050402002455038] <- {Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-10.728219617058079, -2.2341635916670013] <- {Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-10.728219617058079, 2.2341635916670013] <- {Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[15.96343013583397, 3.050402002455038] <- {Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.5.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{\frac{1}{2}}@{\cos@@{\theta}} = \frac{2}{\pi}\left(2\!\compellintEk@{\sin@{\tfrac{1}{2}\theta}}-\compellintKk@{\sin@{\tfrac{1}{2}\theta}}\right)} LegendreP((1)/(2), cos(theta))=(2)/(Pi)*(2*EllipticE(sin((1)/(2)*theta))- EllipticK(sin((1)/(2)*theta))) LegendreP[Divide[1,2], Cos[\[Theta]]]=Divide[2,Pi]*(2*EllipticE[(Sin[Divide[1,2]*\[Theta]])^2]- EllipticK[(Sin[Divide[1,2]*\[Theta]])^2]) Failure Failure Successful Successful
14.5.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{-\frac{1}{2}}@{\cos@@{\theta}} = \frac{2}{\pi}\compellintKk@{\sin@{\tfrac{1}{2}\theta}}} LegendreP(-(1)/(2), cos(theta))=(2)/(Pi)*EllipticK(sin((1)/(2)*theta)) LegendreP[-Divide[1,2], Cos[\[Theta]]]=Divide[2,Pi]*EllipticK[(Sin[Divide[1,2]*\[Theta]])^2] Failure Successful Successful -
14.5.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[]{\frac{1}{2}}@{\cos@@{\theta}} = \compellintKk@{\cos@{\tfrac{1}{2}\theta}}-2\!\compellintEk@{\cos@{\tfrac{1}{2}\theta}}} LegendreQ((1)/(2), cos(theta))= EllipticK(cos((1)/(2)*theta))- 2*EllipticE(cos((1)/(2)*theta)) LegendreQ[Divide[1,2], Cos[\[Theta]]]= EllipticK[(Cos[Divide[1,2]*\[Theta]])^2]- 2*EllipticE[(Cos[Divide[1,2]*\[Theta]])^2] Failure Failure Successful Successful
14.5.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[]{-\frac{1}{2}}@{\cos@@{\theta}} = \compellintKk@{\cos@{\tfrac{1}{2}\theta}}} LegendreQ(-(1)/(2), cos(theta))= EllipticK(cos((1)/(2)*theta)) LegendreQ[-Divide[1,2], Cos[\[Theta]]]= EllipticK[(Cos[Divide[1,2]*\[Theta]])^2] Failure Failure Successful Successful
14.5.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[]{\frac{1}{2}}@{\cosh@@{\xi}} = \frac{2}{\pi}e^{\xi/2}\compellintEk@{\left(1-e^{-2\xi}\right)^{1/2}}} LegendreP((1)/(2), cosh(xi))=(2)/(Pi)*exp(xi/ 2)*EllipticE((1 - exp(- 2*xi))^(1/ 2)) LegendreP[Divide[1,2], 0, 3, Cosh[\[Xi]]]=Divide[2,Pi]*Exp[\[Xi]/ 2]*EllipticE[((1 - Exp[- 2*\[Xi]])^(1/ 2))^2] Failure Failure Successful Successful
14.5.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[]{-\frac{1}{2}}@{\cosh@@{\xi}} = \frac{2}{\pi\cosh@{\frac{1}{2}\xi}}\compellintKk@{\tanh@{\tfrac{1}{2}\xi}}} LegendreP(-(1)/(2), cosh(xi))=(2)/(Pi*cosh((1)/(2)*xi))*EllipticK(tanh((1)/(2)*xi)) LegendreP[-Divide[1,2], 0, 3, Cosh[\[Xi]]]=Divide[2,Pi*Cosh[Divide[1,2]*\[Xi]]]*EllipticK[(Tanh[Divide[1,2]*\[Xi]])^2] Failure Failure Successful Successful
14.5.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreOlverQ[]{\frac{1}{2}}@{\cosh@@{\xi}} = 2\pi^{-1/2}\cosh@@{\xi}\sech@{\tfrac{1}{2}\xi}\compellintKk@{\sech@{\tfrac{1}{2}\xi}}-4\pi^{-1/2}\cosh@{\tfrac{1}{2}\xi}\compellintEk@{\sech@{\tfrac{1}{2}\xi}}} LegendreQ((1)/(2),cosh(xi))/GAMMA((1)/(2)+1)= 2*(Pi)^(- 1/ 2)* cosh(xi)*sech((1)/(2)*xi)*EllipticK(sech((1)/(2)*xi))- 4*(Pi)^(- 1/ 2)* cosh((1)/(2)*xi)*EllipticE(sech((1)/(2)*xi)) Exp[-Divide[1,2] Pi I] LegendreQ[Divide[1,2], 2, 3, Cosh[\[Xi]]]/Gamma[Divide[1,2] + 3]= 2*(Pi)^(- 1/ 2)* Cosh[\[Xi]]*Sech[Divide[1,2]*\[Xi]]*EllipticK[(Sech[Divide[1,2]*\[Xi]])^2]- 4*(Pi)^(- 1/ 2)* Cosh[Divide[1,2]*\[Xi]]*EllipticE[(Sech[Divide[1,2]*\[Xi]])^2] Failure Failure Successful
Fail
Complex[-0.044625103511119146, 0.2806690096307465] <- {Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.26468966664049587, -0.07266499814523009] <- {Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.044625103511119146, 0.2806690096307465] <- {Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.26468966664049587, -0.07266499814523009] <- {Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
14.5.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreOlverQ[]{-\frac{1}{2}}@{\cosh@@{\xi}} = 2\pi^{-1/2}e^{-\xi/2}\compellintKk@{e^{-\xi}}} LegendreQ(-(1)/(2),cosh(xi))/GAMMA(-(1)/(2)+1)= 2*(Pi)^(- 1/ 2)* exp(- xi/ 2)*EllipticK(exp(- xi)) Exp[--Divide[1,2] Pi I] LegendreQ[-Divide[1,2], 2, 3, Cosh[\[Xi]]]/Gamma[-Divide[1,2] + 3]= 2*(Pi)^(- 1/ 2)* Exp[- \[Xi]/ 2]*EllipticK[(Exp[- \[Xi]])^2] Failure Failure
Fail
-.4187536393-1.678029842*I <- {xi = -2^(1/2)-I*2^(1/2)}
-.4187536393+1.678029842*I <- {xi = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-1.1386459372175475, 0.07969681822998748] <- {Rule[ξ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.16714638755886108, -1.0459557923897413] <- {Rule[ξ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5573995767093396, -1.598333024494445] <- {Rule[ξ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5859000270506534, 0.6320740503346911] <- {Rule[ξ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
14.5.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{2}@{x} = \assLegendreP[]{2}@{x}} LegendreP(2, x)= LegendreP(2, x) LegendreP[2, x]= LegendreP[2, 0, 3, x] Successful Successful - -
14.5.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[]{2}@{x} = \frac{3x^{2}-1}{2}} LegendreP(2, x)=(3*(x)^(2)- 1)/(2) LegendreP[2, 0, 3, x]=Divide[3*(x)^(2)- 1,2] Successful Successful - -
14.5.E29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[]{2}@{x} = \frac{3x^{2}-1}{4}\ln@{\frac{1+x}{1-x}}-\frac{3}{2}x} LegendreQ(2, x)=(3*(x)^(2)- 1)/(4)*ln((1 + x)/(1 - x))-(3)/(2)*x LegendreQ[2, x]=Divide[3*(x)^(2)- 1,4]*Log[Divide[1 + x,1 - x]]-Divide[3,2]*x Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {x = 1}
-.1e-8-17.27875960*I <- {x = 2}
-.1e-8-40.84070450*I <- {x = 3}
Fail
Complex[0.0, -17.27875959474386] <- {Rule[x, 2]}
Complex[0.0, -40.840704496667314] <- {Rule[x, 3]}
14.5.E30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreOlverQ[]{2}@{x} = \frac{3x^{2}-1}{8}\ln@{\frac{x+1}{x-1}}-\frac{3}{4}x} LegendreQ(2,x)/GAMMA(2+1)=(3*(x)^(2)- 1)/(8)*ln((x + 1)/(x - 1))-(3)/(4)*x Exp[-2 Pi I] LegendreQ[2, 2, 3, x]/Gamma[2 + 3]=Divide[3*(x)^(2)- 1,8]*Log[Divide[x + 1,x - 1]]-Divide[3,4]*x Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {x = 1}
Successful
14.6.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[m]{\nu}@{x} = (-1)^{m}\left(1-x^{2}\right)^{m/2}\deriv[m]{\FerrersP[]{\nu}@{x}}{x}} LegendreP(nu, m, x)=(- 1)^(m)*(1 - (x)^(2))^(m/ 2)* diff(LegendreP(nu, x), [x$(m)]) LegendreP[\[Nu], m, x]=(- 1)^(m)*(1 - (x)^(2))^(m/ 2)* D[LegendreP[\[Nu], x], {x, m}] Failure Failure Successful Successful
14.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[m]{\nu}@{x} = (-1)^{m}\left(1-x^{2}\right)^{m/2}\deriv[m]{\FerrersQ[]{\nu}@{x}}{x}} LegendreQ(nu, m, x)=(- 1)^(m)*(1 - (x)^(2))^(m/ 2)* diff(LegendreQ(nu, x), [x$(m)]) LegendreQ[\[Nu], m, x]=(- 1)^(m)*(1 - (x)^(2))^(m/ 2)* D[LegendreQ[\[Nu], x], {x, m}] Failure Failure Skip Successful
14.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[m]{\nu}@{x} = \left(x^{2}-1\right)^{m/2}\deriv[m]{\assLegendreP[]{\nu}@{x}}{x}} LegendreP(nu, m, x)=((x)^(2)- 1)^(m/ 2)* diff(LegendreP(nu, x), [x$(m)]) LegendreP[\[Nu], m, 3, x]=((x)^(2)- 1)^(m/ 2)* D[LegendreP[\[Nu], 0, 3, x], {x, m}] Failure Failure Successful Successful
14.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[0]{n}@{x} = \FerrersP[]{n}@{x}} LegendreP(n, 0, x)= LegendreP(n, x) LegendreP[n, 0, x]= LegendreP[n, x] Successful Failure - Successful
14.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{n}@{x} = \assLegendreP[0]{n}@{x}} LegendreP(n, x)= LegendreP(n, 0, x) LegendreP[n, x]= LegendreP[n, 0, 3, x] Successful Failure - Successful
14.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[0]{n}@{x} = \LegendrepolyP{n}@{x}} LegendreP(n, 0, x)= LegendreP(n, x) LegendreP[n, 0, 3, x]= LegendreP[n, x] Successful Failure - Successful
14.7.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[0]{n}@{x} = \FerrersQ[]{n}@{x}} LegendreQ(n, 0, x)= LegendreQ(n, x) LegendreQ[n, 0, x]= LegendreQ[n, x] Successful Successful - -
14.7.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[]{n}@{x} = \frac{1}{2}\LegendrepolyP{n}@{x}\ln@{\frac{1+x}{1-x}}-W_{n-1}(x)} LegendreQ(n, x)=(1)/(2)*LegendreP(n, x)*ln((1 + x)/(1 - x))- W[n - 1]*(x) LegendreQ[n, x]=Divide[1,2]*LegendreP[n, x]*Log[Divide[1 + x,1 - x]]- Subscript[W, n - 1]*(x) Failure Failure Error Successful
14.7.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle W_{n-1}(x) = \sum_{s=0}^{n-1}\frac{(n+s)!(\digamma@{n+1}-\digamma@{s+1})}{2^{s}(n-s)!(s!)^{2}}{(x-1)^{s}}} W[n - 1]*(x)= sum((factorial(n + s)*(Psi(n + 1)- Psi(s + 1)))/((2)^(s)*factorial(n - s)*(factorial(s))^(2))*(x - 1)^(s), s = 0..n - 1) Subscript[W, n - 1]*(x)= Sum[Divide[(n + s)!*(PolyGamma[n + 1]- PolyGamma[s + 1]),(2)^(s)*(n - s)!*((s)!)^(2)]*(x - 1)^(s), {s, 0, n - 1}] Failure Failure Skip Successful
14.7.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle W_{n-1}(x) = \sum_{k=1}^{n}\frac{1}{k}\LegendrepolyP{k-1}@{x}\LegendrepolyP{n-k}@{x}} W[n - 1]*(x)= sum((1)/(k)*LegendreP(k - 1, x)*LegendreP(n - k, x), k = 1..n) Subscript[W, n - 1]*(x)= Sum[Divide[1,k]*LegendreP[k - 1, x]*LegendreP[n - k, x], {k, 1, n}] Failure Failure Skip Successful
14.7.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreQ[]{n}@{x} = \frac{1}{2}\LegendrepolyP{n}@{x}\ln@{\frac{x+1}{x-1}}-W_{n-1}(x)} LegendreQ(n, x)=(1)/(2)*LegendreP(n, x)*ln((x + 1)/(x - 1))- W[n - 1]*(x) LegendreQ[n, 0, 3, x]=Divide[1,2]*LegendreP[n, x]*Log[Divide[x + 1,x - 1]]- Subscript[W, n - 1]*(x) Failure Failure Error Successful
14.7.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[m]{n}@{x} = (-1)^{m}\left(1-x^{2}\right)^{m/2}\deriv[m]{}{x}\FerrersP[]{n}@{x}} LegendreP(n, m, x)=(- 1)^(m)*(1 - (x)^(2))^(m/ 2)* diff(LegendreP(n, x), [x$(m)]) LegendreP[n, m, x]=(- 1)^(m)*(1 - (x)^(2))^(m/ 2)* D[LegendreP[n, x], {x, m}] Failure Failure Successful Successful
14.7.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[m]{n}@{x} = (-1)^{m}\left(1-x^{2}\right)^{m/2}\deriv[m]{}{x}\FerrersQ[]{n}@{x}} LegendreQ(n, m, x)=(- 1)^(m)*(1 - (x)^(2))^(m/ 2)* diff(LegendreQ(n, x), [x$(m)]) LegendreQ[n, m, x]=(- 1)^(m)*(1 - (x)^(2))^(m/ 2)* D[LegendreQ[n, x], {x, m}] Failure Failure Skip Successful
14.7.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[m]{n}@{x} = (-1)^{m+n}\frac{\left(1-x^{2}\right)^{m/2}}{2^{n}n!}\deriv[m+n]{}{x}\left(1-x^{2}\right)^{n}} LegendreP(n, m, x)=(- 1)^(m + n)*((1 - (x)^(2))^(m/ 2))/((2)^(n)* factorial(n))*diff((1 - (x)^(2))^(n), [x$(m + n)]) LegendreP[n, m, x]=(- 1)^(m + n)*Divide[(1 - (x)^(2))^(m/ 2),(2)^(n)* (n)!]*D[(1 - (x)^(2))^(n), {x, m + n}] Failure Failure
Fail
Float(undefined)+Float(undefined)*I <- {m = 1, n = 1, x = 1}
Float(undefined)+Float(undefined)*I <- {m = 1, n = 1, x = 2}
Float(undefined)+Float(undefined)*I <- {m = 1, n = 1, x = 3}
Float(undefined)+Float(undefined)*I <- {m = 1, n = 2, x = 1}
... skip entries to safe data
Successful
14.7.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[m]{n}@{x} = \left(x^{2}-1\right)^{m/2}\deriv[m]{}{x}\LegendrepolyP{n}@{x}} LegendreP(n, m, x)=((x)^(2)- 1)^(m/ 2)* diff(LegendreP(n, x), [x$(m)]) LegendreP[n, m, 3, x]=((x)^(2)- 1)^(m/ 2)* D[LegendreP[n, x], {x, m}] Failure Failure Successful Successful
14.7.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \LegendrepolyP{n}@{x} = \frac{1}{2^{n}n!}\deriv[n]{}{x}\left(x^{2}-1\right)^{n}} LegendreP(n, x)=(1)/((2)^(n)* factorial(n))*diff(((x)^(2)- 1)^(n), [x$(n)]) LegendreP[n, x]=Divide[1,(2)^(n)* (n)!]*D[((x)^(2)- 1)^(n), {x, n}] Failure Failure Error Successful
14.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[m]{n}@{x} = \frac{\left(x^{2}-1\right)^{m/2}}{2^{n}n!}\deriv[m+n]{}{x}\left(x^{2}-1\right)^{n}} LegendreP(n, m, x)=(((x)^(2)- 1)^(m/ 2))/((2)^(n)* factorial(n))*diff(((x)^(2)- 1)^(n), [x$(m + n)]) LegendreP[n, m, 3, x]=Divide[((x)^(2)- 1)^(m/ 2),(2)^(n)* (n)!]*D[((x)^(2)- 1)^(n), {x, m + n}] Failure Failure
Fail
Float(undefined)+Float(undefined)*I <- {m = 1, n = 1, x = 1}
Float(undefined)+Float(undefined)*I <- {m = 1, n = 1, x = 2}
Float(undefined)+Float(undefined)*I <- {m = 1, n = 1, x = 3}
Float(undefined)+Float(undefined)*I <- {m = 1, n = 2, x = 1}
... skip entries to safe data
Successful
14.7.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[m]{m}@{x} = \frac{(2m)!}{2^{m}m!}\left(x^{2}-1\right)^{m/2}} LegendreP(m, m, x)=(factorial(2*m))/((2)^(m)* factorial(m))*((x)^(2)- 1)^(m/ 2) LegendreP[m, m, 3, x]=Divide[(2*m)!,(2)^(m)* (m)!]*((x)^(2)- 1)^(m/ 2) Failure Failure Successful Successful
14.7.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[m]{n}@{x} = \assLegendreP[m]{n}@{x}} LegendreP(n, m, x)= LegendreP(n, m, x) LegendreP[n, m, x]= LegendreP[n, m, 3, x] Successful Failure - Successful
14.7.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[m]{n}@{x} = 0} LegendreP(n, m, x)= 0 LegendreP[n, m, 3, x]= 0 Failure Failure Skip Successful
14.7.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[m]{n}@{-x} = (-1)^{n-m}\FerrersP[m]{n}@{x}} LegendreP(n, m, - x)=(- 1)^(n - m)* LegendreP(n, m, x) LegendreP[n, m, - x]=(- 1)^(n - m)* LegendreP[n, m, x] Failure Failure Successful Successful
14.7.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[+ m]{n}@{-x} = (-1)^{n-m-1}\FerrersQ[+ m]{n}@{x}} LegendreQ(n, + m, - x)=(- 1)^(n - m - 1)* LegendreQ(n, + m, x) LegendreQ[n, + m, - x]=(- 1)^(n - m - 1)* LegendreQ[n, + m, x] Failure Failure Error Successful
14.7.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[- m]{n}@{-x} = (-1)^{n-m-1}\FerrersQ[- m]{n}@{x}} LegendreQ(n, - m, - x)=(- 1)^(n - m - 1)* LegendreQ(n, - m, x) LegendreQ[n, - m, - x]=(- 1)^(n - m - 1)* LegendreQ[n, - m, x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {m = 1, n = 1, x = 1}
Float(infinity)+Float(infinity)*I <- {m = 1, n = 2, x = 1}
Float(infinity)+Float(infinity)*I <- {m = 1, n = 3, x = 1}
Float(infinity)+Float(infinity)*I <- {m = 2, n = 1, x = 1}
... skip entries to safe data
Successful
14.7.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\FerrersP[]{n}@{x}h^{n} = \left(1-2xh+h^{2}\right)^{-1/2}} sum(LegendreP(n, x)*(h)^(n), n = 0..infinity)=(1 - 2*x*h + (h)^(2))^(- 1/ 2) Sum[LegendreP[n, x]*(h)^(n), {n, 0, Infinity}]=(1 - 2*x*h + (h)^(2))^(- 1/ 2) Failure Successful Skip -
14.7.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\FerrersQ[]{n}@{x}h^{n} = \frac{1}{\left(1-2xh+h^{2}\right)^{1/2}}\*\ln@{\frac{x-h+\left(1-2xh+h^{2}\right)^{1/2}}{\left(1-x^{2}\right)^{1/2}}}} sum(LegendreQ(n, x)*(h)^(n), n = 0..infinity)=(1)/((1 - 2*x*h + (h)^(2))^(1/ 2))* ln((x - h +(1 - 2*x*h + (h)^(2))^(1/ 2))/((1 - (x)^(2))^(1/ 2))) Sum[LegendreQ[n, x]*(h)^(n), {n, 0, Infinity}]=Divide[1,(1 - 2*x*h + (h)^(2))^(1/ 2)]* Log[Divide[x - h +(1 - 2*x*h + (h)^(2))^(1/ 2),(1 - (x)^(2))^(1/ 2)]] Failure Failure Skip Skip
14.7.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\FerrersP[]{n}@{x}h^{-n-1} = \left(1-2xh+h^{2}\right)^{-1/2}} sum(LegendreP(n, x)*(h)^(- n - 1), n = 0..infinity)=(1 - 2*x*h + (h)^(2))^(- 1/ 2) Sum[LegendreP[n, x]*(h)^(- n - 1), {n, 0, Infinity}]=(1 - 2*x*h + (h)^(2))^(- 1/ 2) Failure Failure Skip
Fail
Complex[-0.15300174890586637, -0.8864791595823325] <- {Rule[h, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-0.18053688047160102, -0.6525291152630062] <- {Rule[h, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-0.15300174890586637, 0.8864791595823325] <- {Rule[h, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-0.18053688047160102, 0.6525291152630062] <- {Rule[h, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
... skip entries to safe data
14.7.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\assLegendreQ[]{n}@{x}h^{n} = \frac{1}{\left(1-2xh+h^{2}\right)^{1/2}}\*\ln@{\frac{x-h+\left(1-2xh+h^{2}\right)^{1/2}}{\left(x^{2}-1\right)^{1/2}}}} sum(LegendreQ(n, x)*(h)^(n), n = 0..infinity)=(1)/((1 - 2*x*h + (h)^(2))^(1/ 2))* ln((x - h +(1 - 2*x*h + (h)^(2))^(1/ 2))/(((x)^(2)- 1)^(1/ 2))) Sum[LegendreQ[n, 0, 3, x]*(h)^(n), {n, 0, Infinity}]=Divide[1,(1 - 2*x*h + (h)^(2))^(1/ 2)]* Log[Divide[x - h +(1 - 2*x*h + (h)^(2))^(1/ 2),((x)^(2)- 1)^(1/ 2)]] Failure Failure Skip Skip
14.9.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\pi\sin@{\mu\pi}}{2\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{x} = -\frac{1}{\EulerGamma@{\nu+\mu+1}}\FerrersQ[\mu]{\nu}@{x}+\frac{\cos@{\mu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersQ[-\mu]{\nu}@{x}} (Pi*sin(mu*Pi))/(2*GAMMA(nu - mu + 1))*LegendreP(nu, - mu, x)= -(1)/(GAMMA(nu + mu + 1))*LegendreQ(nu, mu, x)+(cos(mu*Pi))/(GAMMA(nu - mu + 1))*LegendreQ(nu, - mu, x) Divide[Pi*Sin[\[Mu]*Pi],2*Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], x]= -Divide[1,Gamma[\[Nu]+ \[Mu]+ 1]]*LegendreQ[\[Nu], \[Mu], x]+Divide[Cos[\[Mu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreQ[\[Nu], - \[Mu], x] Successful Successful - -
14.9.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2\sin@{\mu\pi}}{\pi\EulerGamma@{\nu-\mu+1}}\FerrersQ[-\mu]{\nu}@{x} = \frac{1}{\EulerGamma@{\nu+\mu+1}}\FerrersP[\mu]{\nu}@{x}-\frac{\cos@{\mu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{x}} (2*sin(mu*Pi))/(Pi*GAMMA(nu - mu + 1))*LegendreQ(nu, - mu, x)=(1)/(GAMMA(nu + mu + 1))*LegendreP(nu, mu, x)-(cos(mu*Pi))/(GAMMA(nu - mu + 1))*LegendreP(nu, - mu, x) Divide[2*Sin[\[Mu]*Pi],Pi*Gamma[\[Nu]- \[Mu]+ 1]]*LegendreQ[\[Nu], - \[Mu], x]=Divide[1,Gamma[\[Nu]+ \[Mu]+ 1]]*LegendreP[\[Nu], \[Mu], x]-Divide[Cos[\[Mu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], x] Successful Successful - -
14.9.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[-m]{\nu}@{x} = (-1)^{m}\frac{\EulerGamma@{\nu-m+1}}{\EulerGamma@{\nu+m+1}}\FerrersP[m]{\nu}@{x}} LegendreP(nu, - m, x)=(- 1)^(m)*(GAMMA(nu - m + 1))/(GAMMA(nu + m + 1))*LegendreP(nu, m, x) LegendreP[\[Nu], - m, x]=(- 1)^(m)*Divide[Gamma[\[Nu]- m + 1],Gamma[\[Nu]+ m + 1]]*LegendreP[\[Nu], m, x] Failure Failure Successful Successful
14.9.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[-m]{\nu}@{x} = (-1)^{m}\frac{\EulerGamma@{\nu-m+1}}{\EulerGamma@{\nu+m+1}}\FerrersQ[m]{\nu}@{x}} LegendreQ(nu, - m, x)=(- 1)^(m)*(GAMMA(nu - m + 1))/(GAMMA(nu + m + 1))*LegendreQ(nu, m, x) LegendreQ[\[Nu], - m, x]=(- 1)^(m)*Divide[Gamma[\[Nu]- m + 1],Gamma[\[Nu]+ m + 1]]*LegendreQ[\[Nu], m, x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {nu = 2^(1/2)+I*2^(1/2), m = 1, x = 1}
Float(infinity)+Float(infinity)*I <- {nu = 2^(1/2)+I*2^(1/2), m = 2, x = 1}
Float(infinity)+Float(infinity)*I <- {nu = 2^(1/2)+I*2^(1/2), m = 3, x = 1}
Float(infinity)+Float(infinity)*I <- {nu = 2^(1/2)-I*2^(1/2), m = 1, x = 1}
... skip entries to safe data
Successful
14.9#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[\mu]{-\nu-1}@{x} = \FerrersP[\mu]{\nu}@{x}} LegendreP(- nu - 1, mu, x)= LegendreP(nu, mu, x) LegendreP[- \[Nu]- 1, \[Mu], x]= LegendreP[\[Nu], \[Mu], x] Successful Failure - Successful
14.9#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[-\mu]{-\nu-1}@{x} = \FerrersP[-\mu]{\nu}@{x}} LegendreP(- nu - 1, - mu, x)= LegendreP(nu, - mu, x) LegendreP[- \[Nu]- 1, - \[Mu], x]= LegendreP[\[Nu], - \[Mu], x] Successful Failure - Successful
14.9.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pi\cos@{\nu\pi}\cos@{\mu\pi}\FerrersP[\mu]{\nu}@{x} = \sin@{(\nu+\mu)\pi}\FerrersQ[\mu]{\nu}@{x}-\sin@{(\nu-\mu)\pi}\FerrersQ[\mu]{-\nu-1}@{x}} Pi*cos(nu*Pi)*cos(mu*Pi)*LegendreP(nu, mu, x)= sin((nu + mu)* Pi)*LegendreQ(nu, mu, x)- sin((nu - mu)* Pi)*LegendreQ(- nu - 1, mu, x) Pi*Cos[\[Nu]*Pi]*Cos[\[Mu]*Pi]*LegendreP[\[Nu], \[Mu], x]= Sin[(\[Nu]+ \[Mu])* Pi]*LegendreQ[\[Nu], \[Mu], x]- Sin[(\[Nu]- \[Mu])* Pi]*LegendreQ[- \[Nu]- 1, \[Mu], x] Successful Failure - Successful
14.9.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\sin@{(\nu-\mu)\pi}}{\EulerGamma@{\nu+\mu+1}}\FerrersP[\mu]{\nu}@{x} = \frac{\sin@{\nu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{x}-\frac{\sin@{\mu\pi}}{\EulerGamma@{\nu-\mu+1}}\FerrersP[-\mu]{\nu}@{-x}} (sin((nu - mu)* Pi))/(GAMMA(nu + mu + 1))*LegendreP(nu, mu, x)=(sin(nu*Pi))/(GAMMA(nu - mu + 1))*LegendreP(nu, - mu, x)-(sin(mu*Pi))/(GAMMA(nu - mu + 1))*LegendreP(nu, - mu, - x) Divide[Sin[(\[Nu]- \[Mu])* Pi],Gamma[\[Nu]+ \[Mu]+ 1]]*LegendreP[\[Nu], \[Mu], x]=Divide[Sin[\[Nu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], x]-Divide[Sin[\[Mu]*Pi],Gamma[\[Nu]- \[Mu]+ 1]]*LegendreP[\[Nu], - \[Mu], - x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
Successful
14.9.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}\pi\sin@{(\nu-\mu)\pi}\FerrersP[-\mu]{\nu}@{x} = -\cos@{(\nu-\mu)\pi}\FerrersQ[-\mu]{\nu}@{x}-\FerrersQ[-\mu]{\nu}@{-x}} (1)/(2)*Pi*sin((nu - mu)* Pi)*LegendreP(nu, - mu, x)= - cos((nu - mu)* Pi)*LegendreQ(nu, - mu, x)- LegendreQ(nu, - mu, - x) Divide[1,2]*Pi*Sin[(\[Nu]- \[Mu])* Pi]*LegendreP[\[Nu], - \[Mu], x]= - Cos[(\[Nu]- \[Mu])* Pi]*LegendreQ[\[Nu], - \[Mu], x]- LegendreQ[\[Nu], - \[Mu], - x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
Successful
14.9.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\EulerGamma@{\nu+\mu+1}\EulerGamma@{\mu-\nu}}\FerrersQ[\mu]{\nu}@{x} = -\cos@{\nu\pi}\FerrersP[-\mu]{\nu}@{x}+\cos@{\mu\pi}\FerrersP[-\mu]{\nu}@{-x}} (2)/(GAMMA(nu + mu + 1)*GAMMA(mu - nu))*LegendreQ(nu, mu, x)= - cos(nu*Pi)*LegendreP(nu, - mu, x)+ cos(mu*Pi)*LegendreP(nu, - mu, - x) Divide[2,Gamma[\[Nu]+ \[Mu]+ 1]*Gamma[\[Mu]- \[Nu]]]*LegendreQ[\[Nu], \[Mu], x]= - Cos[\[Nu]*Pi]*LegendreP[\[Nu], - \[Mu], x]+ Cos[\[Mu]*Pi]*LegendreP[\[Nu], - \[Mu], - x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.9.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (2/\pi)\sin@{(\nu-\mu)\pi}\FerrersQ[-\mu]{\nu}@{x} = \cos@{(\nu-\mu)\pi}\FerrersP[-\mu]{\nu}@{x}-\FerrersP[-\mu]{\nu}@{-x}} (2/ Pi)* sin((nu - mu)* Pi)*LegendreQ(nu, - mu, x)= cos((nu - mu)* Pi)*LegendreP(nu, - mu, x)- LegendreP(nu, - mu, - x) (2/ Pi)* Sin[(\[Nu]- \[Mu])* Pi]*LegendreQ[\[Nu], - \[Mu], x]= Cos[(\[Nu]- \[Mu])* Pi]*LegendreP[\[Nu], - \[Mu], x]- LegendreP[\[Nu], - \[Mu], - x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)-I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.9#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-\mu]{-\nu-1}@{x} = \assLegendreP[-\mu]{\nu}@{x}} LegendreP(- nu - 1, - mu, x)= LegendreP(nu, - mu, x) LegendreP[- \[Nu]- 1, - \[Mu], 3, x]= LegendreP[\[Nu], - \[Mu], 3, x] Successful Successful - -
14.9#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[\mu]{-\nu-1}@{x} = \assLegendreP[\mu]{\nu}@{x}} LegendreP(- nu - 1, mu, x)= LegendreP(nu, mu, x) LegendreP[- \[Nu]- 1, \[Mu], 3, x]= LegendreP[\[Nu], \[Mu], 3, x] Successful Successful - -
14.9.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-m]{\nu}@{x} = \frac{\EulerGamma@{\nu-m+1}}{\EulerGamma@{\nu+m+1}}\assLegendreP[m]{\nu}@{x}} LegendreP(nu, - m, x)=(GAMMA(nu - m + 1))/(GAMMA(nu + m + 1))*LegendreP(nu, m, x) LegendreP[\[Nu], - m, 3, x]=Divide[Gamma[\[Nu]- m + 1],Gamma[\[Nu]+ m + 1]]*LegendreP[\[Nu], m, 3, x] Failure Failure Successful Successful
14.10.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\FerrersP[\mu+2]{\nu}@{x}+2(\mu+1)x\left(1-x^{2}\right)^{-1/2}\FerrersP[\mu+1]{\nu}@{x}}+(\nu-\mu)(\nu+\mu+1)\FerrersP[\mu]{\nu}@{x} = 0} LegendreP(nu, mu + 2, x)+ 2*(mu + 1)* x*(1 - (x)^(2))^(- 1/ 2)* LegendreP(nu, mu + 1, x)+(nu - mu)*(nu + mu + 1)* LegendreP(nu, mu, x)= 0 LegendreP[\[Nu], \[Mu]+ 2, x]+ 2*(\[Mu]+ 1)* x*(1 - (x)^(2))^(- 1/ 2)* LegendreP[\[Nu], \[Mu]+ 1, x]+(\[Nu]- \[Mu])*(\[Nu]+ \[Mu]+ 1)* LegendreP[\[Nu], \[Mu], x]= 0 Failure Successful
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
-
14.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\left(1-x^{2}\right)^{1/2}\FerrersP[\mu+1]{\nu}@{x}-(\nu-\mu+1)\FerrersP[\mu]{\nu+1}@{x}}+(\nu+\mu+1)x\FerrersP[\mu]{\nu}@{x} = 0} (1 - (x)^(2))^(1/ 2)* LegendreP(nu, mu + 1, x)-(nu - mu + 1)* LegendreP(nu + 1, mu, x)+(nu + mu + 1)* x*LegendreP(nu, mu, x)= 0 (1 - (x)^(2))^(1/ 2)* LegendreP[\[Nu], \[Mu]+ 1, x]-(\[Nu]- \[Mu]+ 1)* LegendreP[\[Nu]+ 1, \[Mu], x]+(\[Nu]+ \[Mu]+ 1)* x*LegendreP[\[Nu], \[Mu], x]= 0 Failure Successful
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(-infinity)-Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
-
14.10.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {(\nu-\mu+2)\FerrersP[\mu]{\nu+2}@{x}-(2\nu+3)x\FerrersP[\mu]{\nu+1}@{x}}+(\nu+\mu+1)\FerrersP[\mu]{\nu}@{x} = 0} (nu - mu + 2)* LegendreP(nu + 2, mu, x)-(2*nu + 3)* x*LegendreP(nu + 1, mu, x)+(nu + mu + 1)* LegendreP(nu, mu, x)= 0 (\[Nu]- \[Mu]+ 2)* LegendreP[\[Nu]+ 2, \[Mu], x]-(2*\[Nu]+ 3)* x*LegendreP[\[Nu]+ 1, \[Mu], x]+(\[Nu]+ \[Mu]+ 1)* LegendreP[\[Nu], \[Mu], x]= 0 Successful Successful - -
14.10.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(1-x^{2}\right)\deriv{\FerrersP[\mu]{\nu}@{x}}{x} = {(\mu-\nu-1)\FerrersP[\mu]{\nu+1}@{x}+(\nu+1)x\FerrersP[\mu]{\nu}@{x}}} (1 - (x)^(2))* diff(LegendreP(nu, mu, x), x)=(mu - nu - 1)* LegendreP(nu + 1, mu, x)+(nu + 1)* x*LegendreP(nu, mu, x) (1 - (x)^(2))* D[LegendreP[\[Nu], \[Mu], x], x]=(\[Mu]- \[Nu]- 1)* LegendreP[\[Nu]+ 1, \[Mu], x]+(\[Nu]+ 1)* x*LegendreP[\[Nu], \[Mu], x] Successful Successful - -
14.10.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(1-x^{2}\right)\deriv{\FerrersP[\mu]{\nu}@{x}}{x} = (\nu+\mu)\FerrersP[\mu]{\nu-1}@{x}-\nu x\FerrersP[\mu]{\nu}@{x}} (1 - (x)^(2))* diff(LegendreP(nu, mu, x), x)=(nu + mu)* LegendreP(nu - 1, mu, x)- nu*x*LegendreP(nu, mu, x) (1 - (x)^(2))* D[LegendreP[\[Nu], \[Mu], x], x]=(\[Nu]+ \[Mu])* LegendreP[\[Nu]- 1, \[Mu], x]- \[Nu]*x*LegendreP[\[Nu], \[Mu], x] Successful Successful - -
14.10.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\assLegendreP[\mu+2]{\nu}@{x}+2(\mu+1)x\left(x^{2}-1\right)^{-1/2}\assLegendreP[\mu+1]{\nu}@{x}}-(\nu-\mu)(\nu+\mu+1)\assLegendreP[\mu]{\nu}@{x} = 0} LegendreP(nu, mu + 2, x)+ 2*(mu + 1)* x*((x)^(2)- 1)^(- 1/ 2)* LegendreP(nu, mu + 1, x)-(nu - mu)*(nu + mu + 1)* LegendreP(nu, mu, x)= 0 LegendreP[\[Nu], \[Mu]+ 2, 3, x]+ 2*(\[Mu]+ 1)* x*((x)^(2)- 1)^(- 1/ 2)* LegendreP[\[Nu], \[Mu]+ 1, 3, x]-(\[Nu]- \[Mu])*(\[Nu]+ \[Mu]+ 1)* LegendreP[\[Nu], \[Mu], 3, x]= 0 Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.10.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\left(x^{2}-1\right)^{1/2}\assLegendreP[\mu+1]{\nu}@{x}-(\nu-\mu+1)\assLegendreP[\mu]{\nu+1}@{x}}+(\nu+\mu+1)x\assLegendreP[\mu]{\nu}@{x} = 0} ((x)^(2)- 1)^(1/ 2)* LegendreP(nu, mu + 1, x)-(nu - mu + 1)* LegendreP(nu + 1, mu, x)+(nu + mu + 1)* x*LegendreP(nu, mu, x)= 0 ((x)^(2)- 1)^(1/ 2)* LegendreP[\[Nu], \[Mu]+ 1, 3, x]-(\[Nu]- \[Mu]+ 1)* LegendreP[\[Nu]+ 1, \[Mu], 3, x]+(\[Nu]+ \[Mu]+ 1)* x*LegendreP[\[Nu], \[Mu], 3, x]= 0 Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
Float(-infinity)-Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)-I*2^(1/2), x = 1}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = -2^(1/2)+I*2^(1/2), x = 1}
... skip entries to safe data
Successful
14.11.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{}{\nu}\FerrersP[\mu]{\nu}@{x} = \pi\cot@{\nu\pi}\FerrersP[\mu]{\nu}@{x}-\frac{1}{\pi}\mathsf{A}_{\nu}^{\mu}(x)} diff(LegendreP(nu, mu, x), nu)= Pi*cot(nu*Pi)*LegendreP(nu, mu, x)-(1)/(Pi)*(A[nu])^(mu)*(x) D[LegendreP[\[Nu], \[Mu], x], \[Nu]]= Pi*Cot[\[Nu]*Pi]*LegendreP[\[Nu], \[Mu], x]-Divide[1,Pi]*(Subscript[A, \[Nu]])^(\[Mu])*(x) Failure Failure Skip Skip
14.11.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{}{\nu}\FerrersQ[\mu]{\nu}@{x} = -\tfrac{1}{2}\pi^{2}\FerrersP[\mu]{\nu}@{x}+\frac{\pi\sin@{\mu\pi}}{\sin@{\nu\pi}\sin@{(\nu+\mu)\pi}}\FerrersQ[\mu]{\nu}@{x}-\tfrac{1}{2}\cot@{(\nu+\mu)\pi}\mathsf{A}_{\nu}^{\mu}(x)+\tfrac{1}{2}\csc@{(\nu+\mu)\pi}\mathsf{A}_{\nu}^{\mu}(-x)} diff(LegendreQ(nu, mu, x), nu)= -(1)/(2)*(Pi)^(2)* LegendreP(nu, mu, x)+(Pi*sin(mu*Pi))/(sin(nu*Pi)*sin((nu + mu)* Pi))*LegendreQ(nu, mu, x)-(1)/(2)*cot((nu + mu)* Pi)*(A[nu])^(mu)*(x)+(1)/(2)*csc((nu + mu)* Pi)*(A[nu])^(mu)*(- x) D[LegendreQ[\[Nu], \[Mu], x], \[Nu]]= -Divide[1,2]*(Pi)^(2)* LegendreP[\[Nu], \[Mu], x]+Divide[Pi*Sin[\[Mu]*Pi],Sin[\[Nu]*Pi]*Sin[(\[Nu]+ \[Mu])* Pi]]*LegendreQ[\[Nu], \[Mu], x]-Divide[1,2]*Cot[(\[Nu]+ \[Mu])* Pi]*(Subscript[A, \[Nu]])^(\[Mu])*(x)+Divide[1,2]*Csc[(\[Nu]+ \[Mu])* Pi]*(Subscript[A, \[Nu]])^(\[Mu])*(- x) Failure Failure Skip Skip
14.11.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mathsf{A}_{\nu}^{\mu}(x) = \sin@{\nu\pi}\left(\frac{1+x}{1-x}\right)^{\mu/2}\*\sum_{k=0}^{\infty}\frac{\left(\frac{1}{2}-\frac{1}{2}x\right)^{k}\EulerGamma@{k-\nu}\EulerGamma@{k+\nu+1}}{k!\EulerGamma@{k-\mu+1}}\*\left(\digamma@{k+\nu+1}-\digamma@{k-\nu}\right)} (A[nu])^(mu)*(x)= sin(nu*Pi)*((1 + x)/(1 - x))^(mu/ 2)* sum((((1)/(2)-(1)/(2)*x)^(k)* GAMMA(k - nu)*GAMMA(k + nu + 1))/(factorial(k)*GAMMA(k - mu + 1))*(Psi(k + nu + 1)- Psi(k - nu)), k = 0..infinity) (Subscript[A, \[Nu]])^(\[Mu])*(x)= Sin[\[Nu]*Pi]*(Divide[1 + x,1 - x])^(\[Mu]/ 2)* Sum[Divide[(Divide[1,2]-Divide[1,2]*x)^(k)* Gamma[k - \[Nu]]*Gamma[k + \[Nu]+ 1],(k)!*Gamma[k - \[Mu]+ 1]]*(PolyGamma[k + \[Nu]+ 1]- PolyGamma[k - \[Nu]]), {k, 0, Infinity}] Failure Failure Skip Error
14.12.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[\mu]{\nu}@{\cos@@{\theta}} = \frac{2^{1/2}(\sin@@{\theta})^{\mu}}{\pi^{1/2}\EulerGamma@{\frac{1}{2}-\mu}}\int_{0}^{\theta}\frac{\cos@{\left(\nu+\frac{1}{2}\right)t}}{(\cos@@{t}-\cos@@{\theta})^{\mu+(1/2)}}\diff{t}} LegendreP(nu, mu, cos(theta))=((2)^(1/ 2)*(sin(theta))^(mu))/((Pi)^(1/ 2)* GAMMA((1)/(2)- mu))*int((cos((nu +(1)/(2))* t))/((cos(t)- cos(theta))^(mu +(1/ 2))), t = 0..theta) LegendreP[\[Nu], \[Mu], Cos[\[Theta]]]=Divide[(2)^(1/ 2)*(Sin[\[Theta]])^(\[Mu]),(Pi)^(1/ 2)* Gamma[Divide[1,2]- \[Mu]]]*Integrate[Divide[Cos[(\[Nu]+Divide[1,2])* t],(Cos[t]- Cos[\[Theta]])^(\[Mu]+(1/ 2))], {t, 0, \[Theta]}] Failure Failure Skip Error
14.12.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[-\mu]{\nu}@{x} = \frac{\left(1-x^{2}\right)^{-\mu/2}}{\EulerGamma@{\mu}}\int_{x}^{1}\FerrersP[]{\nu}@{t}(t-x)^{\mu-1}\diff{t}} LegendreP(nu, - mu, x)=((1 - (x)^(2))^(- mu/ 2))/(GAMMA(mu))*int(LegendreP(nu, t)*(t - x)^(mu - 1), t = x..1) LegendreP[\[Nu], - \[Mu], x]=Divide[(1 - (x)^(2))^(- \[Mu]/ 2),Gamma[\[Mu]]]*Integrate[LegendreP[\[Nu], t]*(t - x)^(\[Mu]- 1), {t, x, 1}] Failure Failure Skip Skip
14.12.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-\mu]{\nu}@{x} = \frac{2^{1/2}\EulerGamma@{\mu+\frac{1}{2}}\left(x^{2}-1\right)^{\mu/2}}{\pi^{1/2}\EulerGamma@{\nu+\mu+1}\EulerGamma@{\mu-\nu}}\*\int_{0}^{\infty}\frac{\cosh@{\left(\nu+\frac{1}{2}\right)t}}{(x+\cosh@@{t})^{\mu+(1/2)}}\diff{t}} LegendreP(nu, - mu, x)=((2)^(1/ 2)* GAMMA(mu +(1)/(2))*((x)^(2)- 1)^(mu/ 2))/((Pi)^(1/ 2)* GAMMA(nu + mu + 1)*GAMMA(mu - nu))* int((cosh((nu +(1)/(2))* t))/((x + cosh(t))^(mu +(1/ 2))), t = 0..infinity) LegendreP[\[Nu], - \[Mu], 3, x]=Divide[(2)^(1/ 2)* Gamma[\[Mu]+Divide[1,2]]*((x)^(2)- 1)^(\[Mu]/ 2),(Pi)^(1/ 2)* Gamma[\[Nu]+ \[Mu]+ 1]*Gamma[\[Mu]- \[Nu]]]* Integrate[Divide[Cosh[(\[Nu]+Divide[1,2])* t],(x + Cosh[t])^(\[Mu]+(1/ 2))], {t, 0, Infinity}] Failure Failure Skip Error
14.12.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-\mu]{\nu}@{x} = \frac{\left(x^{2}-1\right)^{-\mu/2}}{\EulerGamma@{\mu}}\int_{1}^{x}\LegendrepolyP{\nu}@{t}(x-t)^{\mu-1}\diff{t}} LegendreP(nu, - mu, x)=(((x)^(2)- 1)^(- mu/ 2))/(GAMMA(mu))*int(LegendreP(nu, t)*(x - t)^(mu - 1), t = 1..x) LegendreP[\[Nu], - \[Mu], 3, x]=Divide[((x)^(2)- 1)^(- \[Mu]/ 2),Gamma[\[Mu]]]*Integrate[LegendreP[\[Nu], t]*(x - t)^(\[Mu]- 1), {t, 1, x}] Failure Failure Skip Skip
14.12.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[m]{\nu}@{x} = \frac{\Pochhammersym{\nu+1}{m}}{\pi}\*\int_{0}^{\pi}\left(x+\left(x^{2}-1\right)^{1/2}\cos@@{\phi}\right)^{\nu}\cos@{m\phi}\diff{\phi}} LegendreP(nu, m, x)=(pochhammer(nu + 1, m))/(Pi)* int((x +((x)^(2)- 1)^(1/ 2)* cos(phi))^(nu)* cos(m*phi), phi = 0..Pi) LegendreP[\[Nu], m, 3, x]=Divide[Pochhammer[\[Nu]+ 1, m],Pi]* Integrate[(x +((x)^(2)- 1)^(1/ 2)* Cos[\[Phi]])^(\[Nu])* Cos[m*\[Phi]], {\[Phi], 0, Pi}] Failure Failure Skip Skip
14.12.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[m]{n}@{x} = \frac{2^{m}m!(n+m)!\left(x^{2}-1\right)^{m/2}}{(2m)!(n-m)!\pi}\int_{0}^{\pi}\left(x+\left(x^{2}-1\right)^{1/2}\cos@@{\phi}\right)^{n-m}(\sin@@{\phi})^{2m}\diff{\phi}} LegendreP(n, m, x)=((2)^(m)* factorial(m)*factorial(n + m)*((x)^(2)- 1)^(m/ 2))/(factorial(2*m)*factorial(n - m)*Pi)*int((x +((x)^(2)- 1)^(1/ 2)* cos(phi))^(n - m)*(sin(phi))^(2*m), phi = 0..Pi) LegendreP[n, m, 3, x]=Divide[(2)^(m)* (m)!*(n + m)!*((x)^(2)- 1)^(m/ 2),(2*m)!*(n - m)!*Pi]*Integrate[(x +((x)^(2)- 1)^(1/ 2)* Cos[\[Phi]])^(n - m)*(Sin[\[Phi]])^(2*m), {\[Phi], 0, Pi}] Failure Failure Skip Error
14.12.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle u = \frac{1}{2}\ln@{\frac{x+1}{x-1}}} u =(1)/(2)*ln((x + 1)/(x - 1)) u =Divide[1,2]*Log[Divide[x + 1,x - 1]] Failure Failure
Fail
Float(-infinity)+1.414213562*I <- {u = 2^(1/2)+I*2^(1/2), x = 1}
.8649074175+1.414213562*I <- {u = 2^(1/2)+I*2^(1/2), x = 2}
1.067639972+1.414213562*I <- {u = 2^(1/2)+I*2^(1/2), x = 3}
Float(-infinity)-1.414213562*I <- {u = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[-1] <- {Rule[u, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[0.8649074180390403, 1.4142135623730951] <- {Rule[u, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[1.0676399720931224, 1.4142135623730951] <- {Rule[u, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
DirectedInfinity[-1] <- {Rule[u, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
... skip entries to safe data
14.12.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreOlverQ[]{n}@{x} = \frac{1}{2(n!)}\int_{-1}^{1}\frac{\LegendrepolyP{n}@{t}}{x-t}\diff{t}} LegendreQ(n,x)/GAMMA(n+1)=(1)/(2*(factorial(n)))*int((LegendreP(n, t))/(x - t), t = - 1..1) Exp[-n Pi I] LegendreQ[n, 2, 3, x]/Gamma[n + 3]=Divide[1,2*((n)!)]*Integrate[Divide[LegendreP[n, t],x - t], {t, - 1, 1}] Failure Failure Skip Error
14.12.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreOlverQ[]{n}@{x} = \frac{1}{n!}\int_{0}^{\infty}\frac{\diff{t}}{\left(x+(x^{2}-1)^{1/2}\cosh@@{t}\right)^{n+1}}} LegendreQ(n,x)/GAMMA(n+1)=(1)/(factorial(n))*int((1)/((x +((x)^(2)- 1)^(1/ 2)* cosh(t))^(n + 1)), t = 0..infinity) Exp[-n Pi I] LegendreQ[n, 2, 3, x]/Gamma[n + 3]=Divide[1,(n)!]*Integrate[Divide[1,(x +((x)^(2)- 1)^(1/ 2)* Cosh[t])^(n + 1)], {t, 0, Infinity}] Failure Failure Skip Error
14.13#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle +\frac{1}{2}\pi i\FerrersP[\mu]{\nu}@{\cos@@{\theta}}+\FerrersQ[\mu]{\nu}@{\cos@@{\theta}} = \pi^{\frac{1}{2}}\EulerGamma@{\nu+\mu+1}(2\sin@@{\theta})^{\mu}e^{+(\nu+\mu+1)i\theta}\*\hyperOlverF@{\nu+\mu+1}{\mu+\frac{1}{2}}{\nu+\frac{3}{2}}{e^{+ 2i\theta}}} +(1)/(2)*Pi*I*LegendreP(nu, mu, cos(theta))+ LegendreQ(nu, mu, cos(theta))= (Pi)^((1)/(2))* GAMMA(nu + mu + 1)*(2*sin(theta))^(mu)* exp(+(nu + mu + 1)* I*theta)* hypergeom([nu + mu + 1, mu +(1)/(2)], [nu +(3)/(2)], exp(+ 2*I*theta))/GAMMA(nu +(3)/(2)) +Divide[1,2]*Pi*I*LegendreP[\[Nu], \[Mu], Cos[\[Theta]]]+ LegendreQ[\[Nu], \[Mu], Cos[\[Theta]]]= (Pi)^(Divide[1,2])* Gamma[\[Nu]+ \[Mu]+ 1]*(2*Sin[\[Theta]])^(\[Mu])* Exp[+(\[Nu]+ \[Mu]+ 1)* I*\[Theta]]* Hypergeometric2F1Regularized[\[Nu]+ \[Mu]+ 1, \[Mu]+Divide[1,2], \[Nu]+Divide[3,2], Exp[+ 2*I*\[Theta]]] Failure Failure
Fail
-16028.04070+41946.17697*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
-.1085313814+.1259393077*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
-10838.77596-7620.380119*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
-62.65836322-72.59645613*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
14.13#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\frac{1}{2}\pi i\FerrersP[\mu]{\nu}@{\cos@@{\theta}}+\FerrersQ[\mu]{\nu}@{\cos@@{\theta}} = \pi^{\frac{1}{2}}\EulerGamma@{\nu+\mu+1}(2\sin@@{\theta})^{\mu}e^{-(\nu+\mu+1)i\theta}\*\hyperOlverF@{\nu+\mu+1}{\mu+\frac{1}{2}}{\nu+\frac{3}{2}}{e^{- 2i\theta}}} -(1)/(2)*Pi*I*LegendreP(nu, mu, cos(theta))+ LegendreQ(nu, mu, cos(theta))= (Pi)^((1)/(2))* GAMMA(nu + mu + 1)*(2*sin(theta))^(mu)* exp(-(nu + mu + 1)* I*theta)* hypergeom([nu + mu + 1, mu +(1)/(2)], [nu +(3)/(2)], exp(- 2*I*theta))/GAMMA(nu +(3)/(2)) -Divide[1,2]*Pi*I*LegendreP[\[Nu], \[Mu], Cos[\[Theta]]]+ LegendreQ[\[Nu], \[Mu], Cos[\[Theta]]]= (Pi)^(Divide[1,2])* Gamma[\[Nu]+ \[Mu]+ 1]*(2*Sin[\[Theta]])^(\[Mu])* Exp[-(\[Nu]+ \[Mu]+ 1)* I*\[Theta]]* Hypergeometric2F1Regularized[\[Nu]+ \[Mu]+ 1, \[Mu]+Divide[1,2], \[Nu]+Divide[3,2], Exp[- 2*I*\[Theta]]] Failure Failure
Fail
-525.7608359-50.44260442*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
2.999684768+4.050396905*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
56.23820942-132.0163440*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)-I*2^(1/2)}
.4211699594-1.140171137*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), theta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
14.15.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \rho = \frac{1}{2}\ln@{\frac{1+p}{1-p}}+\frac{1}{2}\alpha\ln@{\frac{1-\alpha p}{1+\alpha p}}} rho =(1)/(2)*ln((1 + p)/(1 - p))+(1)/(2)*alpha*ln((1 - alpha*p)/(1 + alpha*p)) \[Rho]=Divide[1,2]*Log[Divide[1 + p,1 - p]]+Divide[1,2]*\[Alpha]*Log[Divide[1 - \[Alpha]*p,1 + \[Alpha]*p]] Failure Failure
Fail
-.781353228+2.096391260*I <- {alpha = 2^(1/2)+I*2^(1/2), p = 2^(1/2)+I*2^(1/2), rho = 2^(1/2)+I*2^(1/2)}
-.781353228-.732035864*I <- {alpha = 2^(1/2)+I*2^(1/2), p = 2^(1/2)+I*2^(1/2), rho = 2^(1/2)-I*2^(1/2)}
-3.609780352-.732035864*I <- {alpha = 2^(1/2)+I*2^(1/2), p = 2^(1/2)+I*2^(1/2), rho = -2^(1/2)-I*2^(1/2)}
-3.609780352+2.096391260*I <- {alpha = 2^(1/2)+I*2^(1/2), p = 2^(1/2)+I*2^(1/2), rho = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.7813532286851879, 2.0963912619832947] <- {Rule[p, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ρ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.7813532286851879, -0.7320358627628958] <- {Rule[p, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ρ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.6097803534313786, -0.7320358627628958] <- {Rule[p, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ρ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.6097803534313786, 2.0963912619832947] <- {Rule[p, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ρ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.15.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha\ln@{\left(\alpha^{2}+\eta^{2}\right)^{1/2}+\alpha}-\alpha\ln@@{\eta}-\left(\alpha^{2}+\eta^{2}\right)^{1/2} = \frac{1}{2}\ln@{\frac{\left(1+\alpha^{2}\right)x^{2}+1-\alpha^{2}-2x\left(\alpha^{2}x^{2}-\alpha^{2}+1\right)^{1/2}}{\left(x^{2}-1\right)\left(1-\alpha^{2}\right)}}+\frac{1}{2}\alpha\ln@{\frac{\alpha^{2}\left(2x^{2}-1\right)+1+2\alpha x\left(\alpha^{2}x^{2}-\alpha^{2}+1\right)^{1/2}}{1-\alpha^{2}}}} alpha*ln(((alpha)^(2)+ (eta)^(2))^(1/ 2)+ alpha)- alpha*ln(eta)-((alpha)^(2)+ (eta)^(2))^(1/ 2)=(1)/(2)*ln(((1 + (alpha)^(2))* (x)^(2)+ 1 - (alpha)^(2)- 2*x*((alpha)^(2)* (x)^(2)- (alpha)^(2)+ 1)^(1/ 2))/(((x)^(2)- 1)*(1 - (alpha)^(2))))+(1)/(2)*alpha*ln(((alpha)^(2)*(2*(x)^(2)- 1)+ 1 + 2*alpha*x*((alpha)^(2)* (x)^(2)- (alpha)^(2)+ 1)^(1/ 2))/(1 - (alpha)^(2))) \[Alpha]*Log[((\[Alpha])^(2)+ (\[Eta])^(2))^(1/ 2)+ \[Alpha]]- \[Alpha]*Log[\[Eta]]-((\[Alpha])^(2)+ (\[Eta])^(2))^(1/ 2)=Divide[1,2]*Log[Divide[(1 + (\[Alpha])^(2))* (x)^(2)+ 1 - (\[Alpha])^(2)- 2*x*((\[Alpha])^(2)* (x)^(2)- (\[Alpha])^(2)+ 1)^(1/ 2),((x)^(2)- 1)*(1 - (\[Alpha])^(2))]]+Divide[1,2]*\[Alpha]*Log[Divide[(\[Alpha])^(2)*(2*(x)^(2)- 1)+ 1 + 2*\[Alpha]*x*((\[Alpha])^(2)* (x)^(2)- (\[Alpha])^(2)+ 1)^(1/ 2),1 - (\[Alpha])^(2)]] Failure Failure
Fail
Float(undefined)+Float(undefined)*I <- {alpha = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), x = 1}
-.1981647463-3.477041044*I <- {alpha = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), x = 2}
-.8454592291-4.091101615*I <- {alpha = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), x = 3}
Float(undefined)+Float(undefined)*I <- {alpha = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[-0.19816474611075496, -3.4770410458684844] <- {Rule[x, 2], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.8454592292078034, -4.091101617492367] <- {Rule[x, 3], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.666056695470399, -0.5020500570697619] <- {Rule[x, 2], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.3133511785674474, -1.116110628693645] <- {Rule[x, 3], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.15.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(y-\alpha^{2}\right)^{1/2}-\alpha\atan@{\frac{\left(y-\alpha^{2}\right)^{1/2}}{\alpha}} = \acos@{\frac{x}{\left(1-\alpha^{2}\right)^{1/2}}}-\frac{\alpha}{2}\acos@{\frac{\left(1+\alpha^{2}\right)x^{2}-1+\alpha^{2}}{\left(1-\alpha^{2}\right)\left(1-x^{2}\right)}}} (y - (alpha)^(2))^(1/ 2)- alpha*arctan(((y - (alpha)^(2))^(1/ 2))/(alpha))= arccos((x)/((1 - (alpha)^(2))^(1/ 2)))-(alpha)/(2)*arccos(((1 + (alpha)^(2))* (x)^(2)- 1 + (alpha)^(2))/((1 - (alpha)^(2))*(1 - (x)^(2)))) (y - (\[Alpha])^(2))^(1/ 2)- \[Alpha]*ArcTan[Divide[(y - (\[Alpha])^(2))^(1/ 2),\[Alpha]]]= ArcCos[Divide[x,(1 - (\[Alpha])^(2))^(1/ 2)]]-Divide[\[Alpha],2]*ArcCos[Divide[(1 + (\[Alpha])^(2))* (x)^(2)- 1 + (\[Alpha])^(2),(1 - (\[Alpha])^(2))*(1 - (x)^(2))]] Failure Failure Skip Successful
14.15.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\left(\alpha^{2}-y\right)^{1/2}+\tfrac{1}{2}\alpha\ln@@{|y|}-\alpha\ln@{\left(\alpha^{2}-y\right)^{1/2}+\alpha}} = {\ln@{\frac{x+\left(x^{2}-1+\alpha^{2}\right)^{1/2}}{\left(1-\alpha^{2}\right)^{1/2}}}+\frac{\alpha}{2}\ln@{\frac{\left(1-\alpha^{2}\right)\left|1-x^{2}\right|}{\left(1+\alpha^{2}\right)x^{2}-1+\alpha^{2}+2\alpha x\left(x^{2}-1+\alpha^{2}\right)^{1/2}}}}} ((alpha)^(2)- y)^(1/ 2)+(1)/(2)*alpha*ln(abs(y))- alpha*ln(((alpha)^(2)- y)^(1/ 2)+ alpha)=ln((x +((x)^(2)- 1 + (alpha)^(2))^(1/ 2))/((1 - (alpha)^(2))^(1/ 2)))+(alpha)/(2)*ln(((1 - (alpha)^(2))*abs(1 - (x)^(2)))/((1 + (alpha)^(2))* (x)^(2)- 1 + (alpha)^(2)+ 2*alpha*x*((x)^(2)- 1 + (alpha)^(2))^(1/ 2))) ((\[Alpha])^(2)- y)^(1/ 2)+Divide[1,2]*\[Alpha]*Log[Abs[y]]- \[Alpha]*Log[((\[Alpha])^(2)- y)^(1/ 2)+ \[Alpha]]=Log[Divide[x +((x)^(2)- 1 + (\[Alpha])^(2))^(1/ 2),(1 - (\[Alpha])^(2))^(1/ 2)]]+Divide[\[Alpha],2]*Log[Divide[(1 - (\[Alpha])^(2))*Abs[1 - (x)^(2)],(1 + (\[Alpha])^(2))* (x)^(2)- 1 + (\[Alpha])^(2)+ 2*\[Alpha]*x*((x)^(2)- 1 + (\[Alpha])^(2))^(1/ 2)]] Failure Failure Skip Successful
14.15#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \begin{cases}\left(\paraU^{2}@{-c}{x}+\paraUbar^{2}@{-c}{x}\right)^{1/2},&0 <= x} Error Failure - Error
14.15#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \begin{cases}\left(\paraU^{2}@{-c}{x}+\paraUbar^{2}@{-c}{x}\right)^{1/2},&0 <= x} Error Error - -
14.15.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2}\zeta\left(\zeta^{2}-\alpha^{2}\right)^{1/2}-\frac{1}{2}\alpha^{2}\acosh@{\frac{\zeta}{\alpha}} = \left(1-a^{2}\right)^{1/2}\atanh@{\frac{1}{x}\left(\frac{x^{2}-a^{2}}{1-a^{2}}\right)^{1/2}}-\acosh@{\frac{x}{a}}} (1)/(2)*zeta*((zeta)^(2)- (alpha)^(2))^(1/ 2)-(1)/(2)*(alpha)^(2)* arccosh((zeta)/(alpha))=(1 - (a)^(2))^(1/ 2)* arctanh((1)/(x)*(((x)^(2)- (a)^(2))/(1 - (a)^(2)))^(1/ 2))- arccosh((x)/(a)) Divide[1,2]*\[zeta]*((\[zeta])^(2)- (\[Alpha])^(2))^(1/ 2)-Divide[1,2]*(\[Alpha])^(2)* ArcCosh[Divide[\[zeta],\[Alpha]]]=(1 - (a)^(2))^(1/ 2)* ArcTanh[Divide[1,x]*(Divide[(x)^(2)- (a)^(2),1 - (a)^(2)])^(1/ 2)]- ArcCosh[Divide[x,a]] Failure Failure Skip Error
14.15.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2}\alpha^{2}\asin@{\frac{\zeta}{\alpha}}+\frac{1}{2}\zeta\left(\alpha^{2}-\zeta^{2}\right)^{1/2} = \asin@{\frac{x}{a}}-\left(1-a^{2}\right)^{1/2}\atan@{x\left(\frac{1-a^{2}}{a^{2}-x^{2}}\right)^{1/2}}} (1)/(2)*(alpha)^(2)* arcsin((zeta)/(alpha))+(1)/(2)*zeta*((alpha)^(2)- (zeta)^(2))^(1/ 2)= arcsin((x)/(a))-(1 - (a)^(2))^(1/ 2)* arctan(x*((1 - (a)^(2))/((a)^(2)- (x)^(2)))^(1/ 2)) Divide[1,2]*(\[Alpha])^(2)* ArcSin[Divide[\[zeta],\[Alpha]]]+Divide[1,2]*\[zeta]*((\[Alpha])^(2)- (\[zeta])^(2))^(1/ 2)= ArcSin[Divide[x,a]]-(1 - (a)^(2))^(1/ 2)* ArcTan[x*(Divide[1 - (a)^(2),(a)^(2)- (x)^(2)])^(1/ 2)] Failure Failure Skip Error
14.15.E29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \zeta^{2} = -\ln@{1-x^{2}}} (zeta)^(2)= - ln(1 - (x)^(2)) (\[zeta])^(2)= - Log[1 - (x)^(2)] Failure Failure
Fail
-.2876820725+3.999999998*I <- {zeta = 2^(1/2)+I*2^(1/2), x = 1/2}
-.2876820725-3.999999998*I <- {zeta = 2^(1/2)-I*2^(1/2), x = 1/2}
-.2876820725+3.999999998*I <- {zeta = -2^(1/2)-I*2^(1/2), x = 1/2}
-.2876820725-3.999999998*I <- {zeta = -2^(1/2)+I*2^(1/2), x = 1/2}
Error
14.15.E31 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2}\zeta\left(\zeta^{2}+\alpha^{2}\right)^{1/2}+\frac{1}{2}\alpha^{2}\asinh@{\frac{\zeta}{\alpha}} = \left(1+a^{2}\right)^{1/2}\atanh@{x\left(\frac{1+a^{2}}{x^{2}+a^{2}}\right)^{1/2}}-\asinh@{\frac{x}{a}}} (1)/(2)*zeta*((zeta)^(2)+ (alpha)^(2))^(1/ 2)+(1)/(2)*(alpha)^(2)* arcsinh((zeta)/(alpha))=(1 + (a)^(2))^(1/ 2)* arctanh(x*((1 + (a)^(2))/((x)^(2)+ (a)^(2)))^(1/ 2))- arcsinh((x)/(a)) Divide[1,2]*\[zeta]*((\[zeta])^(2)+ (\[Alpha])^(2))^(1/ 2)+Divide[1,2]*(\[Alpha])^(2)* ArcSinh[Divide[\[zeta],\[Alpha]]]=(1 + (a)^(2))^(1/ 2)* ArcTanh[x*(Divide[1 + (a)^(2),(x)^(2)+ (a)^(2)])^(1/ 2)]- ArcSinh[Divide[x,a]] Failure Failure Skip Error
14.17.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\int\left(1-x^{2}\right)^{-\mu/2}\FerrersP[\mu]{\nu}@{x}\diff{x}} = {-\left(1-x^{2}\right)^{-(\mu-1)/2}\FerrersP[\mu-1]{\nu}@{x}}} int((1 - (x)^(2))^(- mu/ 2)* LegendreP(nu, mu, x), x)=-(1 - (x)^(2))^(-(mu - 1)/ 2)* LegendreP(nu, mu - 1, x) Integrate[(1 - (x)^(2))^(- \[Mu]/ 2)* LegendreP[\[Nu], \[Mu], x], x]=-(1 - (x)^(2))^(-(\[Mu]- 1)/ 2)* LegendreP[\[Nu], \[Mu]- 1, x] Failure Failure Skip Successful
14.17.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\left(1-x^{2}\right)^{\mu/2}\FerrersP[\mu]{\nu}@{x}\diff{x} = \frac{\left(1-x^{2}\right)^{(\mu+1)/2}}{(\nu-\mu)(\nu+\mu+1)}\FerrersP[\mu+1]{\nu}@{x}} int((1 - (x)^(2))^(mu/ 2)* LegendreP(nu, mu, x), x)=((1 - (x)^(2))^((mu + 1)/ 2))/((nu - mu)*(nu + mu + 1))*LegendreP(nu, mu + 1, x) Integrate[(1 - (x)^(2))^(\[Mu]/ 2)* LegendreP[\[Nu], \[Mu], x], x]=Divide[(1 - (x)^(2))^((\[Mu]+ 1)/ 2),(\[Nu]- \[Mu])*(\[Nu]+ \[Mu]+ 1)]*LegendreP[\[Nu], \[Mu]+ 1, x] Error Failure - Successful
14.17.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int x\FerrersP[\mu]{\nu}@{x}\FerrersQ[\mu]{\nu}@{x}\diff{x} = \frac{1}{2\nu(\nu+1)}\left((\mu^{2}-(\nu+1)(\nu+x^{2}))\FerrersP[\mu]{\nu}@{x}\FerrersQ[\mu]{\nu}@{x}+(\nu+1)(\nu-\mu+1)x(\FerrersP[\mu]{\nu}@{x}\FerrersQ[\mu]{\nu+1}@{x}+\FerrersP[\mu]{\nu+1}@{x}\FerrersQ[\mu]{\nu}@{x})-(\nu-\mu+1)^{2}\FerrersP[\mu]{\nu+1}@{x}\FerrersQ[\mu]{\nu+1}@{x}\right)} int(x*LegendreP(nu, mu, x)*LegendreQ(nu, mu, x), x)=(1)/(2*nu*(nu + 1))*(((mu)^(2)-(nu + 1)*(nu + (x)^(2)))*LegendreP(nu, mu, x)*LegendreQ(nu, mu, x)+(nu + 1)*(nu - mu + 1)*x*(LegendreP(nu, mu, x)*LegendreQ(nu + 1, mu, x)+ LegendreP(nu + 1, mu, x)*LegendreQ(nu, mu, x))-(nu - mu + 1)^(2)* LegendreP(nu + 1, mu, x)*LegendreQ(nu + 1, mu, x)) Integrate[x*LegendreP[\[Nu], \[Mu], x]*LegendreQ[\[Nu], \[Mu], x], x]=Divide[1,2*\[Nu]*(\[Nu]+ 1)]*(((\[Mu])^(2)-(\[Nu]+ 1)*(\[Nu]+ (x)^(2)))*LegendreP[\[Nu], \[Mu], x]*LegendreQ[\[Nu], \[Mu], x]+(\[Nu]+ 1)*(\[Nu]- \[Mu]+ 1)*x*(LegendreP[\[Nu], \[Mu], x]*LegendreQ[\[Nu]+ 1, \[Mu], x]+ LegendreP[\[Nu]+ 1, \[Mu], x]*LegendreQ[\[Nu], \[Mu], x])-(\[Nu]- \[Mu]+ 1)^(2)* LegendreP[\[Nu]+ 1, \[Mu], x]*LegendreQ[\[Nu]+ 1, \[Mu], x]) Error Failure - Successful
14.17.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int\frac{x}{\left(1-x^{2}\right)^{3/2}}\FerrersP[\mu]{\nu}@{x}\FerrersQ[\mu]{\nu}@{x}\diff{x} = \frac{1}{\left(1-4\mu^{2}\right)\left(1-x^{2}\right)^{1/2}}\left((1-2\mu^{2}+2\nu(\nu+1))\FerrersP[\mu]{\nu}@{x}\FerrersQ[\mu]{\nu}@{x}+(2\nu+1)(\mu-\nu-1)x(\FerrersP[\mu]{\nu}@{x}\FerrersQ[\mu]{\nu+1}@{x}+\FerrersP[\mu]{\nu+1}@{x}\FerrersQ[\mu]{\nu}@{x})+2(\mu-\nu-1)^{2}\FerrersP[\mu]{\nu+1}@{x}\FerrersQ[\mu]{\nu+1}@{x}\right)} int((x)/((1 - (x)^(2))^(3/ 2))*LegendreP(nu, mu, x)*LegendreQ(nu, mu, x), x)=(1)/((1 - 4*(mu)^(2))*(1 - (x)^(2))^(1/ 2))*((1 - 2*(mu)^(2)+ 2*nu*(nu + 1))*LegendreP(nu, mu, x)*LegendreQ(nu, mu, x)+(2*nu + 1)*(mu - nu - 1)*x*(LegendreP(nu, mu, x)*LegendreQ(nu + 1, mu, x)+ LegendreP(nu + 1, mu, x)*LegendreQ(nu, mu, x))+ 2*(mu - nu - 1)^(2)* LegendreP(nu + 1, mu, x)*LegendreQ(nu + 1, mu, x)) Integrate[Divide[x,(1 - (x)^(2))^(3/ 2)]*LegendreP[\[Nu], \[Mu], x]*LegendreQ[\[Nu], \[Mu], x], x]=Divide[1,(1 - 4*(\[Mu])^(2))*(1 - (x)^(2))^(1/ 2)]*((1 - 2*(\[Mu])^(2)+ 2*\[Nu]*(\[Nu]+ 1))*LegendreP[\[Nu], \[Mu], x]*LegendreQ[\[Nu], \[Mu], x]+(2*\[Nu]+ 1)*(\[Mu]- \[Nu]- 1)*x*(LegendreP[\[Nu], \[Mu], x]*LegendreQ[\[Nu]+ 1, \[Mu], x]+ LegendreP[\[Nu]+ 1, \[Mu], x]*LegendreQ[\[Nu], \[Mu], x])+ 2*(\[Mu]- \[Nu]- 1)^(2)* LegendreP[\[Nu]+ 1, \[Mu], x]*LegendreQ[\[Nu]+ 1, \[Mu], x]) Failure Failure Skip Error
14.17.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}x^{\sigma}\left(1-x^{2}\right)^{\mu/2}\FerrersP[-\mu]{\nu}@{x}\diff{x} = \frac{\EulerGamma@{\frac{1}{2}\sigma+\frac{1}{2}}\EulerGamma@{\frac{1}{2}\sigma+1}}{2^{\mu+1}\EulerGamma@{\frac{1}{2}\sigma-\frac{1}{2}\nu+\frac{1}{2}\mu+1}\EulerGamma@{\frac{1}{2}\sigma+\frac{1}{2}\nu+\frac{1}{2}\mu+\frac{3}{2}}}} int((x)^(sigma)*(1 - (x)^(2))^(mu/ 2)* LegendreP(nu, - mu, x), x = 0..1)=(GAMMA((1)/(2)*sigma +(1)/(2))*GAMMA((1)/(2)*sigma + 1))/((2)^(mu + 1)* GAMMA((1)/(2)*sigma -(1)/(2)*nu +(1)/(2)*mu + 1)*GAMMA((1)/(2)*sigma +(1)/(2)*nu +(1)/(2)*mu +(3)/(2))) Integrate[(x)^(\[Sigma])*(1 - (x)^(2))^(\[Mu]/ 2)* LegendreP[\[Nu], - \[Mu], x], {x, 0, 1}]=Divide[Gamma[Divide[1,2]*\[Sigma]+Divide[1,2]]*Gamma[Divide[1,2]*\[Sigma]+ 1],(2)^(\[Mu]+ 1)* Gamma[Divide[1,2]*\[Sigma]-Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+ 1]*Gamma[Divide[1,2]*\[Sigma]+Divide[1,2]*\[Nu]+Divide[1,2]*\[Mu]+Divide[3,2]]] Failure Failure Skip Successful
14.17.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-1}^{1}\FerrersP[m]{l}@{x}\FerrersP[m]{n}@{x}\diff{x} = \frac{(n+m)!}{(n-m)!\left(n+\frac{1}{2}\right)}\Kroneckerdelta{l}{n}} int(LegendreP(l, m, x)*LegendreP(n, m, x), x = - 1..1)=(factorial(n + m))/(factorial(n - m)*(n +(1)/(2)))*KroneckerDelta[l, n] Integrate[LegendreP[l, m, x]*LegendreP[n, m, x], {x, - 1, 1}]=Divide[(n + m)!,(n - m)!*(n +Divide[1,2])]*KroneckerDelta[l, n] Failure Failure Skip Error
14.17.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-1}^{1}\FerrersP[m]{l}@{x}\FerrersP[-m]{n}@{x}\diff{x} = \frac{(-1)^{m}}{l+\frac{1}{2}}\Kroneckerdelta{l}{n}} int(LegendreP(l, m, x)*LegendreP(n, - m, x), x = - 1..1)=((- 1)^(m))/(l +(1)/(2))*KroneckerDelta[l, n] Integrate[LegendreP[l, m, x]*LegendreP[n, - m, x], {x, - 1, 1}]=Divide[(- 1)^(m),l +Divide[1,2]]*KroneckerDelta[l, n] Failure Failure Skip Successful
14.17.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-1}^{1}\frac{\FerrersP[l]{n}@{x}\FerrersP[m]{n}@{x}}{1-x^{2}}\diff{x} = \frac{(n+m)!}{(n-m)!m}\Kroneckerdelta{l}{m}} int((LegendreP(n, l, x)*LegendreP(n, m, x))/(1 - (x)^(2)), x = - 1..1)=(factorial(n + m))/(factorial(n - m)*m)*KroneckerDelta[l, m] Integrate[Divide[LegendreP[n, l, x]*LegendreP[n, m, x],1 - (x)^(2)], {x, - 1, 1}]=Divide[(n + m)!,(n - m)!*m]*KroneckerDelta[l, m] Failure Failure Skip Error
14.17.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-1}^{1}\frac{\FerrersP[l]{n}@{x}\FerrersP[-m]{n}@{x}}{1-x^{2}}\diff{x} = \frac{(-1)^{l}}{l}\Kroneckerdelta{l}{m}} int((LegendreP(n, l, x)*LegendreP(n, - m, x))/(1 - (x)^(2)), x = - 1..1)=((- 1)^(l))/(l)*KroneckerDelta[l, m] Integrate[Divide[LegendreP[n, l, x]*LegendreP[n, - m, x],1 - (x)^(2)], {x, - 1, 1}]=Divide[(- 1)^(l),l]*KroneckerDelta[l, m] Failure Failure Skip Error
14.17.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-1}^{1}\FerrersP[]{\nu}@{x}\FerrersP[]{\lambda}@{x}\diff{x} = \frac{2\left(2\sin@{\nu\pi}\sin@{\lambda\pi}\left(\digamma@{\nu+1}-\digamma@{\lambda+1}\right)+\pi\sin@{(\lambda-\nu)\pi}\right)}{\pi^{2}(\lambda-\nu)(\lambda+\nu+1)}} int(LegendreP(nu, x)*LegendreP(lambda, x), x = - 1..1)=(2*(2*sin(nu*Pi)*sin(lambda*Pi)*(Psi(nu + 1)- Psi(lambda + 1))+ Pi*sin((lambda - nu)* Pi)))/((Pi)^(2)*(lambda - nu)*(lambda + nu + 1)) Integrate[LegendreP[\[Nu], x]*LegendreP[\[Lambda], x], {x, - 1, 1}]=Divide[2*(2*Sin[\[Nu]*Pi]*Sin[\[Lambda]*Pi]*(PolyGamma[\[Nu]+ 1]- PolyGamma[\[Lambda]+ 1])+ Pi*Sin[(\[Lambda]- \[Nu])* Pi]),(Pi)^(2)*(\[Lambda]- \[Nu])*(\[Lambda]+ \[Nu]+ 1)] Error Failure - Successful
14.17.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-1}^{1}\left(\FerrersP[]{\nu}@{x}\right)^{2}\diff{x} = \frac{\pi^{2}-2\sin^{2}@{\nu\pi}\digamma'@{\nu+1}}{\pi^{2}\left(\nu+\frac{1}{2}\right)}} int((LegendreP(nu, x))^(2), x = - 1..1)=((Pi)^(2)- 2*(sin(nu*Pi))^(2)* subs( temp=nu + 1, diff( Psi(temp), temp$(1) ) ))/((Pi)^(2)*(nu +(1)/(2))) Integrate[(LegendreP[\[Nu], x])^(2), {x, - 1, 1}]=Divide[(Pi)^(2)- 2*(Sin[\[Nu]*Pi])^(2)* (D[PolyGamma[temp], {temp, 1}]/.temp-> \[Nu]+ 1),(Pi)^(2)*(\[Nu]+Divide[1,2])] Failure Failure Skip Successful
14.17.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-1}^{1}\FerrersQ[]{\nu}@{x}\FerrersQ[]{\lambda}@{x}\diff{x} = \frac{\left((\digamma@{\nu+1}-\digamma@{\lambda+1})(1+\cos@{\nu\pi}\cos@{\lambda\pi})+\frac{1}{2}\pi\sin@{(\lambda-\nu)\pi}\right)}{(\lambda-\nu)(\lambda+\nu+1)}} int(LegendreQ(nu, x)*LegendreQ(lambda, x), x = - 1..1)=((Psi(nu + 1)- Psi(lambda + 1))*(1 + cos(nu*Pi)*cos(lambda*Pi))+(1)/(2)*Pi*sin((lambda - nu)* Pi))/((lambda - nu)*(lambda + nu + 1)) Integrate[LegendreQ[\[Nu], x]*LegendreQ[\[Lambda], x], {x, - 1, 1}]=Divide[(PolyGamma[\[Nu]+ 1]- PolyGamma[\[Lambda]+ 1])*(1 + Cos[\[Nu]*Pi]*Cos[\[Lambda]*Pi])+Divide[1,2]*Pi*Sin[(\[Lambda]- \[Nu])* Pi],(\[Lambda]- \[Nu])*(\[Lambda]+ \[Nu]+ 1)] Failure Failure Skip Skip
14.17.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-1}^{1}\left(\FerrersQ[]{\nu}@{x}\right)^{2}\diff{x} = \frac{\pi^{2}-2\left(1+\cos^{2}@{\nu\pi}\right)\digamma'@{\nu+1}}{2(2\nu+1)}} int((LegendreQ(nu, x))^(2), x = - 1..1)=((Pi)^(2)- 2*(1 + (cos(nu*Pi))^(2))* subs( temp=nu + 1, diff( Psi(temp), temp$(1) ) ))/(2*(2*nu + 1)) Integrate[(LegendreQ[\[Nu], x])^(2), {x, - 1, 1}]=Divide[(Pi)^(2)- 2*(1 + (Cos[\[Nu]*Pi])^(2))* (D[PolyGamma[temp], {temp, 1}]/.temp-> \[Nu]+ 1),2*(2*\[Nu]+ 1)] Failure Failure Skip Error
14.17.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-1}^{1}\FerrersP[]{\nu}@{x}\FerrersQ[]{\lambda}@{x}\diff{x} = \frac{2\sin@{\nu\pi}\cos@{\lambda\pi}\left(\digamma@{\nu+1}-\digamma@{\lambda+1}\right)+\pi\cos@{(\lambda-\nu)\pi}-\pi}{\pi(\lambda-\nu)(\lambda+\nu+1)}} int(LegendreP(nu, x)*LegendreQ(lambda, x), x = - 1..1)=(2*sin(nu*Pi)*cos(lambda*Pi)*(Psi(nu + 1)- Psi(lambda + 1))+ Pi*cos((lambda - nu)* Pi)- Pi)/(Pi*(lambda - nu)*(lambda + nu + 1)) Integrate[LegendreP[\[Nu], x]*LegendreQ[\[Lambda], x], {x, - 1, 1}]=Divide[2*Sin[\[Nu]*Pi]*Cos[\[Lambda]*Pi]*(PolyGamma[\[Nu]+ 1]- PolyGamma[\[Lambda]+ 1])+ Pi*Cos[(\[Lambda]- \[Nu])* Pi]- Pi,Pi*(\[Lambda]- \[Nu])*(\[Lambda]+ \[Nu]+ 1)] Failure Failure Skip Error
14.17.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-1}^{1}\FerrersP[]{\nu}@{x}\FerrersQ[]{\nu}@{x}\diff{x} = -\frac{\sin@{2\nu\pi}\digamma'@{\nu+1}}{\pi(2\nu+1)}} int(LegendreP(nu, x)*LegendreQ(nu, x), x = - 1..1)= -(sin(2*nu*Pi)*subs( temp=nu + 1, diff( Psi(temp), temp$(1) ) ))/(Pi*(2*nu + 1)) Integrate[LegendreP[\[Nu], x]*LegendreQ[\[Nu], x], {x, - 1, 1}]= -Divide[Sin[2*\[Nu]*Pi]*(D[PolyGamma[temp], {temp, 1}]/.temp-> \[Nu]+ 1),Pi*(2*\[Nu]+ 1)] Failure Failure Skip Error
14.17.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{-1}^{1}\FerrersP[m]{l}@{x}\FerrersQ[m]{n}@{x}\diff{x} = \frac{\left(1-(-1)^{l+n}\right)(l+m)!}{(l-n)(l+n+1)(l-m)!}} int(LegendreP(l, m, x)*LegendreQ(n, m, x), x = - 1..1)=((1 -(- 1)^(l + n))*factorial(l + m))/((l - n)*(l + n + 1)*factorial(l - m)) Integrate[LegendreP[l, m, x]*LegendreQ[n, m, x], {x, - 1, 1}]=Divide[(1 -(- 1)^(l + n))*(l + m)!,(l - n)*(l + n + 1)*(l - m)!] Failure Failure Skip Skip
14.17.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\pi}\FerrersQ[]{l}@{\cos@@{\theta}}\FerrersP[]{m}@{\cos@@{\theta}}\FerrersP[]{n}@{\cos@@{\theta}}\sin@@{\theta}\diff{\theta} = 0} int(LegendreQ(l, cos(theta))*LegendreP(m, cos(theta))*LegendreP(n, cos(theta))*sin(theta), theta = 0..Pi)= 0 Integrate[LegendreQ[l, Cos[\[Theta]]]*LegendreP[m, Cos[\[Theta]]]*LegendreP[n, Cos[\[Theta]]]*Sin[\[Theta]], {\[Theta], 0, Pi}]= 0 Failure Failure Skip Error
14.17.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{1}^{\infty}\assLegendreP[]{\nu}@{x}\assLegendreQ[]{\lambda}@{x}\diff{x} = \frac{1}{(\lambda-\nu)(\nu+\lambda+1)}} int(LegendreP(nu, x)*LegendreQ(lambda, x), x = 1..infinity)=(1)/((lambda - nu)*(nu + lambda + 1)) Integrate[LegendreP[\[Nu], 0, 3, x]*LegendreQ[\[Lambda], 0, 3, x], {x, 1, Infinity}]=Divide[1,(\[Lambda]- \[Nu])*(\[Nu]+ \[Lambda]+ 1)] Failure Failure Skip Successful
14.17.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{1}^{\infty}\assLegendreQ[]{\nu}@{x}\assLegendreQ[]{\lambda}@{x}\diff{x} = \frac{\digamma@{\lambda+1}-\digamma@{\nu+1}}{(\lambda-\nu)(\lambda+\nu+1)}} int(LegendreQ(nu, x)*LegendreQ(lambda, x), x = 1..infinity)=(Psi(lambda + 1)- Psi(nu + 1))/((lambda - nu)*(lambda + nu + 1)) Integrate[LegendreQ[\[Nu], 0, 3, x]*LegendreQ[\[Lambda], 0, 3, x], {x, 1, Infinity}]=Divide[PolyGamma[\[Lambda]+ 1]- PolyGamma[\[Nu]+ 1],(\[Lambda]- \[Nu])*(\[Lambda]+ \[Nu]+ 1)] Failure Failure Skip Skip
14.17.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{1}^{\infty}(\assLegendreQ[]{\nu}@{x})^{2}\diff{x} = \frac{\digamma'@{\nu+1}}{2\nu+1}} int((LegendreQ(nu, x))^(2), x = 1..infinity)=(subs( temp=nu + 1, diff( Psi(temp), temp$(1) ) ))/(2*nu + 1) Integrate[(LegendreQ[\[Nu], 0, 3, x])^(2), {x, 1, Infinity}]=Divide[D[PolyGamma[temp], {temp, 1}]/.temp-> \[Nu]+ 1,2*\[Nu]+ 1] Failure Failure Skip Successful
14.18.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{\nu}@{\cos@@{\theta_{1}}\cos@@{\theta_{2}}+\sin@@{\theta_{1}}\sin@@{\theta_{2}}\cos@@{\phi}} = \FerrersP[]{\nu}@{\cos@@{\theta_{1}}}\FerrersP[]{\nu}@{\cos@@{\theta_{2}}}+2\sum_{m=1}^{\infty}(-1)^{m}\FerrersP[-m]{\nu}@{\cos@@{\theta_{1}}}\FerrersP[m]{\nu}@{\cos@@{\theta_{2}}}\cos@{m\phi}} LegendreP(nu, cos(theta[1])*cos(theta[2])+ sin(theta[1])*sin(theta[2])*cos(phi))= LegendreP(nu, cos(theta[1]))*LegendreP(nu, cos(theta[2]))+ 2*sum((- 1)^(m)* LegendreP(nu, - m, cos(theta[1]))*LegendreP(nu, m, cos(theta[2]))*cos(m*phi), m = 1..infinity) LegendreP[\[Nu], Cos[Subscript[\[Theta], 1]]*Cos[Subscript[\[Theta], 2]]+ Sin[Subscript[\[Theta], 1]]*Sin[Subscript[\[Theta], 2]]*Cos[\[Phi]]]= LegendreP[\[Nu], Cos[Subscript[\[Theta], 1]]]*LegendreP[\[Nu], Cos[Subscript[\[Theta], 2]]]+ 2*Sum[(- 1)^(m)* LegendreP[\[Nu], - m, Cos[Subscript[\[Theta], 1]]]*LegendreP[\[Nu], m, Cos[Subscript[\[Theta], 2]]]*Cos[m*\[Phi]], {m, 1, Infinity}] Error Failure - Skip
14.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{n}@{\cos@@{\theta_{1}}\cos@@{\theta_{2}}+\sin@@{\theta_{1}}\sin@@{\theta_{2}}\cos@@{\phi}} = \sum_{m=-n}^{n}(-1)^{m}\FerrersP[-m]{n}@{\cos@@{\theta_{1}}}\FerrersP[m]{n}@{\cos@@{\theta_{2}}}\cos@{m\phi}} LegendreP(n, cos(theta[1])*cos(theta[2])+ sin(theta[1])*sin(theta[2])*cos(phi))= sum((- 1)^(m)* LegendreP(n, - m, cos(theta[1]))*LegendreP(n, m, cos(theta[2]))*cos(m*phi), m = - n..n) LegendreP[n, Cos[Subscript[\[Theta], 1]]*Cos[Subscript[\[Theta], 2]]+ Sin[Subscript[\[Theta], 1]]*Sin[Subscript[\[Theta], 2]]*Cos[\[Phi]]]= Sum[(- 1)^(m)* LegendreP[n, - m, Cos[Subscript[\[Theta], 1]]]*LegendreP[n, m, Cos[Subscript[\[Theta], 2]]]*Cos[m*\[Phi]], {m, - n, n}] Failure Failure Skip Skip
14.18.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersQ[]{\nu}@{\cos@@{\theta_{1}}\cos@@{\theta_{2}}+\sin@@{\theta_{1}}\sin@@{\theta_{2}}\cos@@{\phi}} = \FerrersP[]{\nu}@{\cos@@{\theta_{1}}}\FerrersQ[]{\nu}@{\cos@@{\theta_{2}}}+2\sum_{m=1}^{\infty}(-1)^{m}\FerrersP[-m]{\nu}@{\cos@@{\theta_{1}}}\FerrersQ[m]{\nu}@{\cos@@{\theta_{2}}}\cos@{m\phi}} LegendreQ(nu, cos(theta[1])*cos(theta[2])+ sin(theta[1])*sin(theta[2])*cos(phi))= LegendreP(nu, cos(theta[1]))*LegendreQ(nu, cos(theta[2]))+ 2*sum((- 1)^(m)* LegendreP(nu, - m, cos(theta[1]))*LegendreQ(nu, m, cos(theta[2]))*cos(m*phi), m = 1..infinity) LegendreQ[\[Nu], Cos[Subscript[\[Theta], 1]]*Cos[Subscript[\[Theta], 2]]+ Sin[Subscript[\[Theta], 1]]*Sin[Subscript[\[Theta], 2]]*Cos[\[Phi]]]= LegendreP[\[Nu], Cos[Subscript[\[Theta], 1]]]*LegendreQ[\[Nu], Cos[Subscript[\[Theta], 2]]]+ 2*Sum[(- 1)^(m)* LegendreP[\[Nu], - m, Cos[Subscript[\[Theta], 1]]]*LegendreQ[\[Nu], m, Cos[Subscript[\[Theta], 2]]]*Cos[m*\[Phi]], {m, 1, Infinity}] Error Failure - Skip
14.18.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[]{\nu}@{\cosh@@{\xi_{1}}\cosh@@{\xi_{2}}-\sinh@@{\xi_{1}}\sinh@@{\xi_{2}}\cos@@{\phi}} = \assLegendreP[]{\nu}@{\cosh@@{\xi_{1}}}\assLegendreP[]{\nu}@{\cosh@@{\xi_{2}}}+2\sum_{m=1}^{\infty}(-1)^{m}\assLegendreP[-m]{\nu}@{\cosh@@{\xi_{1}}}\assLegendreP[m]{\nu}@{\cosh@@{\xi_{2}}}\cos@{m\phi}} LegendreP(nu, cosh(xi[1])*cosh(xi[2])- sinh(xi[1])*sinh(xi[2])*cos(phi))= LegendreP(nu, cosh(xi[1]))*LegendreP(nu, cosh(xi[2]))+ 2*sum((- 1)^(m)* LegendreP(nu, - m, cosh(xi[1]))*LegendreP(nu, m, cosh(xi[2]))*cos(m*phi), m = 1..infinity) LegendreP[\[Nu], 0, 3, Cosh[Subscript[\[Xi], 1]]*Cosh[Subscript[\[Xi], 2]]- Sinh[Subscript[\[Xi], 1]]*Sinh[Subscript[\[Xi], 2]]*Cos[\[Phi]]]= LegendreP[\[Nu], 0, 3, Cosh[Subscript[\[Xi], 1]]]*LegendreP[\[Nu], 0, 3, Cosh[Subscript[\[Xi], 2]]]+ 2*Sum[(- 1)^(m)* LegendreP[\[Nu], - m, 3, Cosh[Subscript[\[Xi], 1]]]*LegendreP[\[Nu], m, 3, Cosh[Subscript[\[Xi], 2]]]*Cos[m*\[Phi]], {m, 1, Infinity}] Error Failure - Skip
14.18.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (x-y)\sum_{k=0}^{n}(2k+1)\assLegendreP[]{k}@{x}\assLegendreP[]{k}@{y} = (n+1)\left(\assLegendreP[]{n+1}@{x}\assLegendreP[]{n}@{y}-\assLegendreP[]{n}@{x}\assLegendreP[]{n+1}@{y}\right)} (x - y)* sum((2*k + 1)* LegendreP(k, x)*LegendreP(k, y), k = 0..n)=(n + 1)*(LegendreP(n + 1, x)*LegendreP(n, y)- LegendreP(n, x)*LegendreP(n + 1, y)) (x - y)* Sum[(2*k + 1)* LegendreP[k, 0, 3, x]*LegendreP[k, 0, 3, y], {k, 0, n}]=(n + 1)*(LegendreP[n + 1, 0, 3, x]*LegendreP[n, 0, 3, y]- LegendreP[n, 0, 3, x]*LegendreP[n + 1, 0, 3, y]) Failure Failure Skip Skip
14.18.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (x-y)\sum_{k=0}^{n}(2k+1)\assLegendreP[]{k}@{x}\assLegendreQ[]{k}@{y} = (n+1)\left(\assLegendreP[]{n+1}@{x}\assLegendreQ[]{n}@{y}-\assLegendreP[]{n}@{x}\assLegendreQ[]{n+1}@{y}\right)-1} (x - y)* sum((2*k + 1)* LegendreP(k, x)*LegendreQ(k, y), k = 0..n)=(n + 1)*(LegendreP(n + 1, x)*LegendreQ(n, y)- LegendreP(n, x)*LegendreQ(n + 1, y))- 1 (x - y)* Sum[(2*k + 1)* LegendreP[k, 0, 3, x]*LegendreQ[k, 0, 3, y], {k, 0, n}]=(n + 1)*(LegendreP[n + 1, 0, 3, x]*LegendreQ[n, 0, 3, y]- LegendreP[n, 0, 3, x]*LegendreQ[n + 1, 0, 3, y])- 1 Failure Failure Skip Successful
14.18.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{\nu}@{-x} = \frac{\sin@{\nu\pi}}{\pi}\sum_{n=0}^{\infty}\frac{2n+1}{(\nu-n)(\nu+n+1)}\FerrersP[]{n}@{x}} LegendreP(nu, - x)=(sin(nu*Pi))/(Pi)*sum((2*n + 1)/((nu - n)*(nu + n + 1))*LegendreP(n, x), n = 0..infinity) LegendreP[\[Nu], - x]=Divide[Sin[\[Nu]*Pi],Pi]*Sum[Divide[2*n + 1,(\[Nu]- n)*(\[Nu]+ n + 1)]*LegendreP[n, x], {n, 0, Infinity}] Failure Failure Skip Skip
14.18.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[-\mu]{\nu}@{x} = \frac{\sin@{\nu\pi}}{\pi}\sum_{n=0}^{\infty}(-1)^{n}\frac{2n+1}{(\nu-n)(\nu+n+1)}\FerrersP[-\mu]{n}@{x}} LegendreP(nu, - mu, x)=(sin(nu*Pi))/(Pi)*sum((- 1)^(n)*(2*n + 1)/((nu - n)*(nu + n + 1))*LegendreP(n, - mu, x), n = 0..infinity) LegendreP[\[Nu], - \[Mu], x]=Divide[Sin[\[Nu]*Pi],Pi]*Sum[(- 1)^(n)*Divide[2*n + 1,(\[Nu]- n)*(\[Nu]+ n + 1)]*LegendreP[n, - \[Mu], x], {n, 0, Infinity}] Failure Failure Skip Error
14.19#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x = \frac{c\sinh@@{\eta}\cos@@{\phi}}{\cosh@@{\eta}-\cos@@{\theta}}} x =(c*sinh(eta)*cos(phi))/(cosh(eta)- cos(theta)) x =Divide[c*Sinh[\[Eta]]*Cos[\[Phi]],Cosh[\[Eta]]- Cos[\[Theta]]] Failure Failure
Fail
-.616269251+1.502300221*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), x = 1}
.383730749+1.502300221*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), x = 2}
1.383730749+1.502300221*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Skip
14.19#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle y = \frac{c\sinh@@{\eta}\sin@@{\phi}}{\cosh@@{\eta}-\cos@@{\theta}}} y =(c*sinh(eta)*sin(phi))/(cosh(eta)- cos(theta)) y =Divide[c*Sinh[\[Eta]]*Sin[\[Phi]],Cosh[\[Eta]]- Cos[\[Theta]]] Failure Failure
Fail
-.746192753-1.746192753*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), y = 1}
.253807247-1.746192753*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), y = 2}
1.253807247-1.746192753*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), y = 3}
Float(infinity)+Float(infinity)*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)-I*2^(1/2), y = 1}
... skip entries to safe data
Skip
14.19#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z = \frac{c\sin@@{\theta}}{\cosh@@{\eta}-\cos@@{\theta}}} z =(c*sin(theta))/(cosh(eta)- cos(theta)) z =Divide[c*Sin[\[Theta]],Cosh[\[Eta]]- Cos[\[Theta]]] Failure Failure
Fail
.5066331465+2.098524802*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
.5066331465-.7299023223*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-2.321793978-.7299023223*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-2.321793978+2.098524802*I <- {c = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[0.5066331469868752, 2.0985248025073626] <- {Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[θ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[θ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.321793977759315, 0.7299023222388277] <- {Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[θ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.19.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[\mu]{\nu-\frac{1}{2}}@{\cosh@@{\xi}} = \frac{\EulerGamma@{\frac{1}{2}-\mu}}{\pi^{1/2}\left(1-e^{-2\xi}\right)^{\mu}e^{(\nu+(1/2))\xi}}\*\hyperOlverF@{\tfrac{1}{2}-\mu}{\tfrac{1}{2}+\nu-\mu}{1-2\mu}{1-e^{-2\xi}}} LegendreP(nu -(1)/(2), mu, cosh(xi))=(GAMMA((1)/(2)- mu))/((Pi)^(1/ 2)*(1 - exp(- 2*xi))^(mu)* exp((nu +(1/ 2))* xi))* hypergeom([(1)/(2)- mu, (1)/(2)+ nu - mu], [1 - 2*mu], 1 - exp(- 2*xi))/GAMMA(1 - 2*mu) LegendreP[\[Nu]-Divide[1,2], \[Mu], 3, Cosh[\[Xi]]]=Divide[Gamma[Divide[1,2]- \[Mu]],(Pi)^(1/ 2)*(1 - Exp[- 2*\[Xi]])^(\[Mu])* Exp[(\[Nu]+(1/ 2))* \[Xi]]]* Hypergeometric2F1Regularized[Divide[1,2]- \[Mu], Divide[1,2]+ \[Nu]- \[Mu], 1 - 2*\[Mu], 1 - Exp[- 2*\[Xi]]] Failure Failure
Fail
-17.12741418-18.21426284*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)+I*2^(1/2)}
6.524638641-39.40236575*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)-I*2^(1/2)}
-2.696896498+.2815203921*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), xi = -2^(1/2)-I*2^(1/2)}
325.5260470-172.1893792*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), xi = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
14.19#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[\mu]{\nu-\frac{1}{2}}@{\cosh@@{\xi}} = \frac{\EulerGamma@{1-2\mu}2^{2\mu}}{\EulerGamma@{1-\mu}\left(1-e^{-2\xi}\right)^{\mu}e^{(\nu+(1/2))\xi}}\*\hyperOlverF@{\tfrac{1}{2}-\mu}{\tfrac{1}{2}+\nu-\mu}{1-2\mu}{e^{-2\xi}}} LegendreP(nu -(1)/(2), mu, cosh(xi))=(GAMMA(1 - 2*mu)*(2)^(2*mu))/(GAMMA(1 - mu)*(1 - exp(- 2*xi))^(mu)* exp((nu +(1/ 2))* xi))* hypergeom([(1)/(2)- mu, (1)/(2)+ nu - mu], [1 - 2*mu], exp(- 2*xi))/GAMMA(1 - 2*mu) LegendreP[\[Nu]-Divide[1,2], \[Mu], 3, Cosh[\[Xi]]]=Divide[Gamma[1 - 2*\[Mu]]*(2)^(2*\[Mu]),Gamma[1 - \[Mu]]*(1 - Exp[- 2*\[Xi]])^(\[Mu])* Exp[(\[Nu]+(1/ 2))* \[Xi]]]* Hypergeometric2F1Regularized[Divide[1,2]- \[Mu], Divide[1,2]+ \[Nu]- \[Mu], 1 - 2*\[Mu], Exp[- 2*\[Xi]]] Failure Failure
Fail
-14.40303680-12.48223319*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)+I*2^(1/2)}
8.755806503-36.24067863*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), xi = 2^(1/2)-I*2^(1/2)}
-2.762869792-.3736752023e-1*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), xi = -2^(1/2)-I*2^(1/2)}
-23.95584924-45.55470526*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), xi = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
14.20.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(1-x^{2}\right)\deriv[2]{w}{x}-2x\deriv{w}{x}-\left(\tau^{2}+\frac{1}{4}+\frac{\mu^{2}}{1-x^{2}}\right)w = 0} (1 - (x)^(2))* diff(w, [x$(2)])- 2*x*diff(w, x)-((tau)^(2)+(1)/(4)+((mu)^(2))/(1 - (x)^(2)))* w = 0 (1 - (x)^(2))* D[w, {x, 2}]- 2*x*D[w, x]-((\[Tau])^(2)+Divide[1,4]+Divide[(\[Mu])^(2),1 - (x)^(2)])* w = 0 Failure Failure
Fail
Float(-infinity)-Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), tau = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), x = 1}
3.417682772-4.124789553*I <- {mu = 2^(1/2)+I*2^(1/2), tau = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), x = 2}
4.596194074-5.303300855*I <- {mu = 2^(1/2)+I*2^(1/2), tau = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), x = 3}
Float(-infinity)-Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), tau = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[τ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.417682775734979, -4.1247895569215265] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[τ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[4.596194077712559, -5.303300858899106] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[τ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[τ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.20.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{-\frac{1}{2}+i\tau}@{\cos@@{\theta}} = \frac{2}{\pi}\int_{0}^{\theta}\frac{\cosh@{\tau\phi}}{\sqrt{2(\cos@@{\phi}-\cos@@{\theta})}}\diff{\phi}} LegendreP(-(1)/(2)+ I*tau, cos(theta))=(2)/(Pi)*int((cosh(tau*phi))/(sqrt(2*(cos(phi)- cos(theta)))), phi = 0..theta) LegendreP[-Divide[1,2]+ I*\[Tau], Cos[\[Theta]]]=Divide[2,Pi]*Integrate[Divide[Cosh[\[Tau]*\[Phi]],Sqrt[2*(Cos[\[Phi]]- Cos[\[Theta]])]], {\[Phi], 0, \[Theta]}] Failure Failure Skip Skip
14.20.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[]{-\frac{1}{2}+i\tau}@{x} = \frac{\cosh@{\tau\pi}}{\pi}\int_{1}^{\infty}\frac{\assLegendreP[]{-\frac{1}{2}+i\tau}@{t}}{x+t}\diff{t}} LegendreP(-(1)/(2)+ I*tau, x)=(cosh(tau*Pi))/(Pi)*int((LegendreP(-(1)/(2)+ I*tau, t))/(x + t), t = 1..infinity) LegendreP[-Divide[1,2]+ I*\[Tau], 0, 3, x]=Divide[Cosh[\[Tau]*Pi],Pi]*Integrate[Divide[LegendreP[-Divide[1,2]+ I*\[Tau], 0, 3, t],x + t], {t, 1, Infinity}] Failure Failure Skip Error
14.20.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pi\int_{0}^{\infty}\frac{\tau\tanh@{\tau\pi}}{\cosh@{\tau\pi}}\assLegendreP[]{-\frac{1}{2}+i\tau}@{x}\assLegendreP[]{-\frac{1}{2}+i\tau}@{y}\diff{\tau} = \frac{1}{y+x}} Pi*int((tau*tanh(tau*Pi))/(cosh(tau*Pi))*LegendreP(-(1)/(2)+ I*tau, x)*LegendreP(-(1)/(2)+ I*tau, y), tau = 0..infinity)=(1)/(y + x) Pi*Integrate[Divide[\[Tau]*Tanh[\[Tau]*Pi],Cosh[\[Tau]*Pi]]*LegendreP[-Divide[1,2]+ I*\[Tau], 0, 3, x]*LegendreP[-Divide[1,2]+ I*\[Tau], 0, 3, y], {\[Tau], 0, Infinity}]=Divide[1,y + x] Failure Failure Skip Error
14.20.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sigma(\mu,\tau) = \frac{\exp@{\mu-\tau\atan@@{\alpha}}}{\left(\mu^{2}+\tau^{2}\right)^{\mu/2}}} sigma*(mu , tau)=(exp(mu - tau*arctan(alpha)))/(((mu)^(2)+ (tau)^(2))^(mu/ 2)) \[Sigma]*(\[Mu], \[Tau])=Divide[Exp[\[Mu]- \[Tau]*ArcTan[\[Alpha]]],((\[Mu])^(2)+ (\[Tau])^(2))^(\[Mu]/ 2)] Failure Failure Error Error
14.20.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\left(\alpha^{2}+\eta\right)^{1/2}+\tfrac{1}{2}\alpha\ln@@{\eta}-\alpha\ln@{\left(\alpha^{2}+\eta\right)^{1/2}+\alpha}} = {\acos@{\frac{x}{\left(1+\alpha^{2}\right)^{1/2}}}+\frac{\alpha}{2}\ln@{\frac{1+\alpha^{2}+\left(\alpha^{2}-1\right)x^{2}-2\alpha x\left(1+\alpha^{2}-x^{2}\right)^{1/2}}{\left(1+\alpha^{2}\right)\left(1-x^{2}\right)}}}} ((alpha)^(2)+ eta)^(1/ 2)+(1)/(2)*alpha*ln(eta)- alpha*ln(((alpha)^(2)+ eta)^(1/ 2)+ alpha)=arccos((x)/((1 + (alpha)^(2))^(1/ 2)))+(alpha)/(2)*ln((1 + (alpha)^(2)+((alpha)^(2)- 1)* (x)^(2)- 2*alpha*x*(1 + (alpha)^(2)- (x)^(2))^(1/ 2))/((1 + (alpha)^(2))*(1 - (x)^(2)))) ((\[Alpha])^(2)+ \[Eta])^(1/ 2)+Divide[1,2]*\[Alpha]*Log[\[Eta]]- \[Alpha]*Log[((\[Alpha])^(2)+ \[Eta])^(1/ 2)+ \[Alpha]]=ArcCos[Divide[x,(1 + (\[Alpha])^(2))^(1/ 2)]]+Divide[\[Alpha],2]*Log[Divide[1 + (\[Alpha])^(2)+((\[Alpha])^(2)- 1)* (x)^(2)- 2*\[Alpha]*x*(1 + (\[Alpha])^(2)- (x)^(2))^(1/ 2),(1 + (\[Alpha])^(2))*(1 - (x)^(2))]] Failure Failure
Fail
Float(undefined)+Float(undefined)*I <- {alpha = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), x = 1}
2.509204677-2.403472660*I <- {alpha = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), x = 2}
2.335929278-2.883411364*I <- {alpha = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)+I*2^(1/2), x = 3}
Float(undefined)+Float(undefined)*I <- {alpha = 2^(1/2)+I*2^(1/2), eta = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[Complex[-0.7071067811865475, -0.7071067811865475]] <- {Rule[x, 1], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.5092046786645588, -2.4034726594210074] <- {Rule[x, 2], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.3359292790943744, -2.883411363373449] <- {Rule[x, 3], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[Complex[-0.7071067811865475, -0.7071067811865475]] <- {Rule[x, 1], Rule[α, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[η, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.20.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \rho = \frac{1}{2}\ln@{\frac{\left(1-\beta^{2}\right)x^{2}+1+\beta^{2}+2x\left(1+\beta^{2}-\beta^{2}x^{2}\right)^{1/2}}{1-x^{2}}}+\beta\atan@{\frac{\beta x}{\sqrt{1+\beta^{2}-\beta^{2}x^{2}}}}-\frac{1}{2}\ln@{1+\beta^{2}}} rho =(1)/(2)*ln(((1 - (beta)^(2))* (x)^(2)+ 1 + (beta)^(2)+ 2*x*(1 + (beta)^(2)- (beta)^(2)* (x)^(2))^(1/ 2))/(1 - (x)^(2)))+ beta*arctan((beta*x)/(sqrt(1 + (beta)^(2)- (beta)^(2)* (x)^(2))))-(1)/(2)*ln(1 + (beta)^(2)) \[Rho]=Divide[1,2]*Log[Divide[(1 - (\[Beta])^(2))* (x)^(2)+ 1 + (\[Beta])^(2)+ 2*x*(1 + (\[Beta])^(2)- (\[Beta])^(2)* (x)^(2))^(1/ 2),1 - (x)^(2)]]+ \[Beta]*ArcTan[Divide[\[Beta]*x,Sqrt[1 + (\[Beta])^(2)- (\[Beta])^(2)* (x)^(2)]]]-Divide[1,2]*Log[1 + (\[Beta])^(2)] Failure Failure
Fail
Float(-infinity)-.631329830e-1*I <- {beta = 2^(1/2)+I*2^(1/2), rho = 2^(1/2)+I*2^(1/2), x = 1}
.8588287874-2.880074289*I <- {beta = 2^(1/2)+I*2^(1/2), rho = 2^(1/2)+I*2^(1/2), x = 2}
1.506123270-3.494134856*I <- {beta = 2^(1/2)+I*2^(1/2), rho = 2^(1/2)+I*2^(1/2), x = 3}
Float(-infinity)-2.891560107*I <- {beta = 2^(1/2)+I*2^(1/2), rho = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[-1] <- {Rule[x, 1], Rule[β, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ρ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.8588287887643107, -2.8800742905707475] <- {Rule[x, 2], Rule[β, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ρ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.5061232718613613, -3.4941348621946324] <- {Rule[x, 3], Rule[β, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ρ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
DirectedInfinity[-1] <- {Rule[x, 1], Rule[β, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ρ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.21.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(1-z^{2}\right)\deriv[2]{w}{z}-2z\deriv{w}{z}+\left(\nu(\nu+1)-\frac{\mu^{2}}{1-z^{2}}\right)w = 0} (1 - (z)^(2))* diff(w, [z$(2)])- 2*z*diff(w, z)+(nu*(nu + 1)-((mu)^(2))/(1 - (z)^(2)))* w = 0 (1 - (z)^(2))* D[w, {z, 2}]- 2*z*D[w, z]+(\[Nu]*(\[Nu]+ 1)-Divide[(\[Mu])^(2),1 - (z)^(2)])* w = 0 Failure Failure
Fail
-3.993073584+10.65512264*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-6.655122641+7.993073582*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-3.993073584+10.65512264*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-6.655122641+7.993073582*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-3.9930735878769763, 10.655122646461624] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[11.320634911107787, -4.658585852523139] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.9930735878769754, 2.655122646461624] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.320634911107787, -4.658585852523139] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.23.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[\mu]{\nu}@{x+ i0} = e^{-\mu\pi i/2}\FerrersP[\mu]{\nu}@{x}} LegendreP(nu, mu, x + I*0)= exp(- mu*Pi*I/ 2)*LegendreP(nu, mu, x) LegendreP[\[Nu], \[Mu], 3, x + I*0]= Exp[- \[Mu]*Pi*I/ 2]*LegendreP[\[Nu], \[Mu], x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
-145.9645465+265.3087326*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 2}
-88.63555579+385.8611656*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[-159.27099992888859, 235.28464740712568] <- {Rule[x, 2], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-116.1110150711135, 352.86522728793915] <- {Rule[x, 3], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-4037.028253953607, -377.07365549484035] <- {Rule[x, 2], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5888.751551022363, 3195.540326205004] <- {Rule[x, 3], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.23.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[\mu]{\nu}@{x- i0} = e^{+\mu\pi i/2}\FerrersP[\mu]{\nu}@{x}} LegendreP(nu, mu, x - I*0)= exp(+ mu*Pi*I/ 2)*LegendreP(nu, mu, x) LegendreP[\[Nu], \[Mu], 3, x - I*0]= Exp[+ \[Mu]*Pi*I/ 2]*LegendreP[\[Nu], \[Mu], x] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
13.30645315+30.02408580*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 2}
27.47545907+32.99593875*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Successful
14.23.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[\mu]{\nu}@{x} = e^{+\mu\pi i/2}\assLegendreP[\mu]{\nu}@{x+ i0}} LegendreP(nu, mu, x)= exp(+ mu*Pi*I/ 2)*LegendreP(nu, mu, x + I*0) LegendreP[\[Nu], \[Mu], x]= Exp[+ \[Mu]*Pi*I/ 2]*LegendreP[\[Nu], \[Mu], 3, x + I*0] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
13.30645315+30.02408580*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 2}
27.47545907+32.99593875*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[9.841425469606474, 29.20009174654549] <- {Rule[x, 2], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[22.823216526761424, 33.199439403579085] <- {Rule[x, 3], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-297.7310254998052, 323.60566796262134] <- {Rule[x, 2], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-111.07139755868064, 718.0843910470185] <- {Rule[x, 3], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
14.23.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[\mu]{\nu}@{x} = e^{-\mu\pi i/2}\assLegendreP[\mu]{\nu}@{x- i0}} LegendreP(nu, mu, x)= exp(- mu*Pi*I/ 2)*LegendreP(nu, mu, x - I*0) LegendreP[\[Nu], \[Mu], x]= Exp[- \[Mu]*Pi*I/ 2]*LegendreP[\[Nu], \[Mu], 3, x - I*0] Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 1}
-145.9645465+265.3087326*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 2}
-88.63555579+385.8611656*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {mu = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Successful
14.24.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-\mu]{\nu,s}@{z} = e^{s\mu\pi i}\assLegendreP[-\mu]{\nu}@{z}} LegendreP(nu , s, - mu, z)= exp(s*mu*Pi*I)*LegendreP(nu, - mu, z) LegendreP[\[Nu], s, - \[Mu], 3, z]= Exp[s*\[Mu]*Pi*I]*LegendreP[\[Nu], - \[Mu], 3, z] Error Failure - Skip
14.25.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[-\mu]{\nu}@{z} = \frac{\left(z^{2}-1\right)^{\mu/2}}{2^{\nu}\EulerGamma@{\mu-\nu}\EulerGamma@{\nu+1}}\int_{0}^{\infty}\frac{(\sinh@@{t})^{2\nu+1}}{(z+\cosh@@{t})^{\nu+\mu+1}}\diff{t}} LegendreP(nu, - mu, z)=(((z)^(2)- 1)^(mu/ 2))/((2)^(nu)* GAMMA(mu - nu)*GAMMA(nu + 1))*int(((sinh(t))^(2*nu + 1))/((z + cosh(t))^(nu + mu + 1)), t = 0..infinity) LegendreP[\[Nu], - \[Mu], 3, z]=Divide[((z)^(2)- 1)^(\[Mu]/ 2),(2)^(\[Nu])* Gamma[\[Mu]- \[Nu]]*Gamma[\[Nu]+ 1]]*Integrate[Divide[(Sinh[t])^(2*\[Nu]+ 1),(z + Cosh[t])^(\[Nu]+ \[Mu]+ 1)], {t, 0, Infinity}] Failure Failure Skip Error
14.28.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \assLegendreP[]{\nu}@{z_{1}z_{2}-\left(z_{1}^{2}-1\right)^{1/2}\left(z_{2}^{2}-1\right)^{1/2}\cos@@{\phi}} = \assLegendreP[]{\nu}@{z_{1}}\assLegendreP[]{\nu}@{z_{2}}+2\sum_{m=1}^{\infty}(-1)^{m}\frac{\EulerGamma@{\nu-m+1}}{\EulerGamma@{\nu+m+1}}\*\assLegendreP[m]{\nu}@{z_{1}}\assLegendreP[m]{\nu}(z_{2})\cos@{m\phi}} LegendreP(nu, z[1]*z[2]-(z(z[1])^(2)- 1)^(1/ 2)*(z(z[2])^(2)- 1)^(1/ 2)* cos(phi))= LegendreP(nu, z[1])*LegendreP(nu, z[2])+ 2*sum((- 1)^(m)*(GAMMA(nu - m + 1))/(GAMMA(nu + m + 1))* LegendreP(nu, m, z[1])*LegendreP(nu, m, (z[2])*)*cos(m*phi), m = 1..infinity) LegendreP[\[Nu], 0, 3, Subscript[z, 1]*Subscript[z, 2]-(z(Subscript[z, 1])^(2)- 1)^(1/ 2)*(z(Subscript[z, 2])^(2)- 1)^(1/ 2)* Cos[\[Phi]]]= LegendreP[\[Nu], 0, 3, Subscript[z, 1]]*LegendreP[\[Nu], 0, 3, Subscript[z, 2]]+ 2*Sum[(- 1)^(m)*Divide[Gamma[\[Nu]- m + 1],Gamma[\[Nu]+ m + 1]]* LegendreP[\[Nu], m, 3, Subscript[z, 1]]*LegendreP[\[Nu], m, 3, (Subscript[z, 2])*]*Cos[m*\[Phi]], {m, 1, Infinity}] Error Failure - Error
14.28.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}(2n+1)\assLegendreQ[]{n}@{z_{1}}\assLegendreP[]{n}@{z_{2}} = \frac{1}{z_{1}-z_{2}}} sum((2*n + 1)* LegendreQ(n, z[1])*LegendreP(n, z[2]), n = 0..infinity)=(1)/(z[1]- z[2]) Sum[(2*n + 1)* LegendreQ[n, 0, 3, Subscript[z, 1]]*LegendreP[n, 0, 3, Subscript[z, 2]], {n, 0, Infinity}]=Divide[1,Subscript[z, 1]- Subscript[z, 2]] Failure Failure Skip Successful
14.29.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(1-z^{2}\right)\deriv[2]{w}{z}-2z\deriv{w}{z}+{\left(\nu(\nu+1)-\frac{\mu_{1}^{2}}{2(1-z)}-\frac{\mu_{2}^{2}}{2(1+z)}\right)w} = 0} (1 - (z)^(2))* diff(w, [z$(2)])- 2*z*(nu*(nu + 1)-(mu(mu[1])^(2))/(2*(1 - z))-(mu(mu[2])^(2))/(2*(1 + z)))* w*= 0 (1 - (z)^(2))* D[w, {z, 2}]- 2*z*(\[Nu]*(\[Nu]+ 1)-Divide[\[Mu](Subscript[\[Mu], 1])^(2),2*(1 - z)]-Divide[\[Mu](Subscript[\[Mu], 2])^(2),2*(1 + z)])* w*= 0 Failure Failure Skip Successful
14.30.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphharmonicY{l}{m}@{\theta}{\phi} = \left(\frac{(l-m)!(2l+1)}{4\pi(l+m)!}\right)^{1/2}e^{im\phi}\FerrersP[m]{l}@{\cos@@{\theta}}} SphericalY(l, m, theta, phi)=((factorial(l - m)*(2*l + 1))/(4*Pi*factorial(l + m)))^(1/ 2)* exp(I*m*phi)*LegendreP(l, m, cos(theta)) SphericalHarmonicY[l, m, \[Theta], \[Phi]]=(Divide[(l - m)!*(2*l + 1),4*Pi*(l + m)!])^(1/ 2)* Exp[I*m*\[Phi]]*LegendreP[l, m, Cos[\[Theta]]] Failure Failure - Skip
14.30.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphharmonicY{l}{-m}@{\theta}{\phi} = (-1)^{m}\conj{\sphharmonicY{l}{m}@{\theta}{\phi}}} SphericalY(l, - m, theta, phi)=(- 1)^(m)* conjugate(SphericalY(l, m, theta, phi)) SphericalHarmonicY[l, - m, \[Theta], \[Phi]]=(- 1)^(m)* Conjugate[SphericalHarmonicY[l, m, \[Theta], \[Phi]]] Failure Failure
Fail
2.770814494+.8972490350*I <- {phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), l = 1, m = 1}
5.966262911-12.72066041*I <- {phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), l = 2, m = 1}
25.49303911+17.20629452*I <- {phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), l = 2, m = 2}
-42.95507842-34.73059764*I <- {phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), l = 3, m = 1}
... skip entries to safe data
Skip
14.30.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sphharmonicY{l}{m}@{\pi-\theta}{\phi+\pi} = (-1)^{l}\sphharmonicY{l}{m}@{\theta}{\phi}} SphericalY(l, m, Pi - theta, phi + Pi)=(- 1)^(l)* SphericalY(l, m, theta, phi) SphericalHarmonicY[l, m, Pi - \[Theta], \[Phi]+ Pi]=(- 1)^(l)* SphericalHarmonicY[l, m, \[Theta], \[Phi]] Failure Failure
Fail
-.3649216406+.6291037293e-2*I <- {phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), l = 1, m = 1}
.2502825188-1.564455147*I <- {phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), l = 2, m = 1}
6.418170178+2.106248885*I <- {phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), l = 3, m = 1}
-.1228000333+.6356041761e-2*I <- {phi = 2^(1/2)+I*2^(1/2), theta = 2^(1/2)+I*2^(1/2), l = 3, m = 3}
... skip entries to safe data
Skip
14.30.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FerrersP[]{l}@{\cos@@{\theta_{1}}\cos@@{\theta_{2}}+\sin@@{\theta_{1}}\sin@@{\theta_{2}}\cos@{\phi_{1}-\phi_{2}}} = \frac{4\pi}{2l+1}\sum_{m=-l}^{l}\conj{\sphharmonicY{l}{m}@{\theta_{1}}{\phi_{1}}}\sphharmonicY{l}{m}@{\theta_{2}}{\phi_{2}}} LegendreP(l, cos(theta[1])*cos(theta[2])+ sin(theta[1])*sin(theta[2])*cos(phi[1]- phi[2]))=(4*Pi)/(2*l + 1)*sum(conjugate(SphericalY(l, m, theta[1], phi[1]))*SphericalY(l, m, theta[2], phi[2]), m = - l..l) LegendreP[l, Cos[Subscript[\[Theta], 1]]*Cos[Subscript[\[Theta], 2]]+ Sin[Subscript[\[Theta], 1]]*Sin[Subscript[\[Theta], 2]]*Cos[Subscript[\[Phi], 1]- Subscript[\[Phi], 2]]]=Divide[4*Pi,2*l + 1]*Sum[Conjugate[SphericalHarmonicY[l, m, Subscript[\[Theta], 1], Subscript[\[Phi], 1]]]*SphericalHarmonicY[l, m, Subscript[\[Theta], 2], Subscript[\[Phi], 2]], {m, - l, l}] Failure Failure Skip Skip
14.30.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\frac{1}{\rho^{2}}\pderiv{}{\rho}\left(\rho^{2}\pderiv{W}{\rho}\right)+\frac{1}{\rho^{2}\sin@@{\theta}}\pderiv{}{\theta}\left(\sin@@{\theta}\pderiv{W}{\theta}\right)}+\frac{1}{\rho^{2}\sin^{2}@@{\theta}}\pderiv[2]{W}{\phi} = 0} (1)/((rho)^(2))*diff(((rho)^(2)* diff(W, rho))+(1)/((rho)^(2)* sin(theta))*diff(sin(theta)*diff(W, theta), theta), rho)+(1)/((rho)^(2)* (sin(theta))^(2))*diff(W, [phi$(2)])= 0 Divide[1,(\[Rho])^(2)]*D[((\[Rho])^(2)* D[W, \[Rho]])+Divide[1,(\[Rho])^(2)* Sin[\[Theta]]]*D[Sin[\[Theta]]*D[W, \[Theta]], \[Theta]], \[Rho]]+Divide[1,(\[Rho])^(2)* (Sin[\[Theta]])^(2)]*D[W, {\[Phi], 2}]= 0 Successful Successful - -