# Results of Numerical Methods

DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
3.3#Ex2 ${\displaystyle{\displaystyle\ell_{k}(z_{j})=\delta_{k,j}}}$ ell[k]*(z[j])= KroneckerDelta[k, j] Subscript[\[ScriptL], k]*(Subscript[z, j])= KroneckerDelta[k, j] Failure Failure
Fail
-1.414213562+2.585786436*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-1.414213562+5.414213560*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
1.414213562+5.414213560*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
1.414213562+2.585786436*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
2.585786436-1.414213562*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
2.585786436+1.414213562*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
5.414213560+1.414213562*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
5.414213560-1.414213562*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
-1.414213562-5.414213560*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-1.414213562-2.585786436*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
1.414213562-2.585786436*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
1.414213562-5.414213560*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
-5.414213560-1.414213562*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-5.414213560+1.414213562*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
-2.585786436+1.414213562*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
-2.585786436-1.414213562*I <- {ell[k] = 2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
2.585786436-1.414213562*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
2.585786436+1.414213562*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
5.414213560+1.414213562*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
5.414213560-1.414213562*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
-1.414213562-5.414213560*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-1.414213562-2.585786436*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
1.414213562-2.585786436*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
1.414213562-5.414213560*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
-5.414213560-1.414213562*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-5.414213560+1.414213562*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
-2.585786436+1.414213562*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
-2.585786436-1.414213562*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
-1.414213562+2.585786436*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-1.414213562+5.414213560*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
1.414213562+5.414213560*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
1.414213562+2.585786436*I <- {ell[k] = 2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
-1.414213562-5.414213560*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-1.414213562-2.585786436*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
1.414213562-2.585786436*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
1.414213562-5.414213560*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
-5.414213560-1.414213562*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-5.414213560+1.414213562*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
-2.585786436+1.414213562*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
-2.585786436-1.414213562*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
-1.414213562+2.585786436*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-1.414213562+5.414213560*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
1.414213562+5.414213560*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
1.414213562+2.585786436*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
2.585786436-1.414213562*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
2.585786436+1.414213562*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
5.414213560+1.414213562*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
5.414213560-1.414213562*I <- {ell[k] = -2^(1/2)-I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
-5.414213560-1.414213562*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-5.414213560+1.414213562*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
-2.585786436+1.414213562*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
-2.585786436-1.414213562*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
-1.414213562+2.585786436*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-1.414213562+5.414213560*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
1.414213562+5.414213560*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
1.414213562+2.585786436*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = 2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
2.585786436-1.414213562*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
2.585786436+1.414213562*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
5.414213560+1.414213562*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
5.414213560-1.414213562*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)-I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
-1.414213562-5.414213560*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)+I*2^(1/2)}
-1.414213562-2.585786436*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = 2^(1/2)-I*2^(1/2)}
1.414213562-2.585786436*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)-I*2^(1/2)}
1.414213562-5.414213560*I <- {ell[k] = -2^(1/2)+I*2^(1/2), z[j] = -2^(1/2)+I*2^(1/2), KroneckerDelta[k,j] = -2^(1/2)+I*2^(1/2)}
Successful
3.3.E13 ${\displaystyle{\displaystyle\left|R_{n,t}\right|<=c_{n}h^{n+1}\left|f^{(n+1)}(% \xi)\right|}}$ abs(R[n , t])< = c[n]*(h)^(n + 1)* abs((f)^(n + 1)*(xi)) Abs[Subscript[R, n , t]]< = Subscript[c, n]*(h)^(n + 1)* Abs[(f)^(n + 1)*(\[Xi])] Failure Failure Skip Skip
3.4.E19 ${\displaystyle{\displaystyle\frac{1}{k!}=\frac{1}{2\pi r^{k}}\int_{0}^{2\pi}e^% {r\cos\theta}\cos\left(r\sin\theta-k\theta\right)\mathrm{d}\theta}}$ (1)/(factorial(k))=(1)/(2*Pi*(r)^(k))*int(exp(r*cos(theta))*cos(r*sin(theta)- k*theta), theta = 0..2*Pi) Divide[1,(k)!]=Divide[1,2*Pi*(r)^(k)]*Integrate[Exp[r*Cos[\[Theta]]]*Cos[r*Sin[\[Theta]]- k*\[Theta]], {\[Theta], 0, 2*Pi}] Failure Failure Skip Error
3.5.E14 ${\displaystyle{\displaystyle\int_{0}^{\infty}e^{-pt}J_{0}\left(t\right)\mathrm% {d}t=\frac{1}{\sqrt{p^{2}+1}}}}$ int(exp(- p*t)*BesselJ(0, t), t = 0..infinity)=(1)/(sqrt((p)^(2)+ 1)) Integrate[Exp[- p*t]*BesselJ[0, t], {t, 0, Infinity}]=Divide[1,Sqrt[(p)^(2)+ 1]] Successful Failure - Error
3.5.E16 ${\displaystyle{\displaystyle w_{k}=\frac{g_{k}}{n}\left(1-\sum_{j=1}^{\left% \lfloor n/2\right\rfloor}\frac{b_{j}}{4j^{2}-1}\cos\left(2jk\pi/n\right)\right% )}}$ w[k]=(g[k])/(n)*(1 - sum((b[j])/(4*(j)^(2)- 1)*cos(2*j*k*Pi/ n), j = 1..floor(n/ 2))) Subscript[w, k]=Divide[Subscript[g, k],n]*(1 - Sum[Divide[Subscript[b, j],4*(j)^(2)- 1]*Cos[2*j*k*Pi/ n], {j, 1, Floor[n/ 2]}]) Failure Failure Skip Skip
3.5#Ex6 ${\displaystyle{\displaystyle\gamma_{n}=\frac{\pi}{2^{2n-1}}}}$ gamma[n]=(Pi)/((2)^(2*n - 1)) Subscript[\[Gamma], n]=Divide[Pi,(2)^(2*n - 1)] Failure Failure
Fail
-.156582765+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.021514480+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.316038792+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
-.156582765-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.021514480-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.316038792-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-2.985009889-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.806912644-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.512388332-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-2.985009889+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.806912644+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.512388332+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
Successful
3.5#Ex7 ${\displaystyle{\displaystyle x_{k}=\cos\left(\frac{2k-1}{2n}\pi\right)}}$ x[k]= cos((2*k - 1)/(2*n)*Pi) Subscript[x, k]= Cos[Divide[2*k - 1,2*n]*Pi] Failure Failure
Fail
1.414213562+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.7071067809+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.5481881582+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.414213561+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
2.121320343+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
1.414213562+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.414213563+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
2.121320342+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
2.280238966+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
1.414213562-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.7071067809-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.5481881582-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.414213561-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
2.121320343-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
1.414213562-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.414213563-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
2.121320342-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
2.280238966-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-1.414213562-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.121320343-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.280238966-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.414213563-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-.7071067809-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.414213562-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.414213561-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-.7071067815-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-.5481881577-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-1.414213562+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.121320343+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.280238966+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.414213563+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-.7071067809+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.414213562+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.414213561+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-.7071067815+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-.5481881577+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
Successful
3.5#Ex8 ${\displaystyle{\displaystyle w_{k}=\frac{\pi}{n}}}$ w[k]=(Pi)/(n) Subscript[w, k]=Divide[Pi,n] Failure Failure
Fail
-1.727379092+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), n = 1}
-.156582765+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), n = 2}
.367016011+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), n = 3}
-1.727379092-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), n = 1}
-.156582765-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), n = 2}
.367016011-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), n = 3}
-4.555806216-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), n = 1}
-2.985009889-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), n = 2}
-2.461411113-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), n = 3}
-4.555806216+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), n = 1}
-2.985009889+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), n = 2}
-2.461411113+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), n = 3}
Fail
Complex[-1.727379091216698, 1.4142135623730951] <- {Rule[n, 1], Rule[Subscript[w, k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.1565827644218014, 1.4142135623730951] <- {Rule[n, 2], Rule[Subscript[w, k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.3670160111764975, 1.4142135623730951] <- {Rule[n, 3], Rule[Subscript[w, k], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.727379091216698, -1.4142135623730951] <- {Rule[n, 1], Rule[Subscript[w, k], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.1565827644218014, -1.4142135623730951] <- {Rule[n, 2], Rule[Subscript[w, k], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.3670160111764975, -1.4142135623730951] <- {Rule[n, 3], Rule[Subscript[w, k], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.555806215962888, -1.4142135623730951] <- {Rule[n, 1], Rule[Subscript[w, k], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.9850098891679915, -1.4142135623730951] <- {Rule[n, 2], Rule[Subscript[w, k], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.4614111135696928, -1.4142135623730951] <- {Rule[n, 3], Rule[Subscript[w, k], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.555806215962888, 1.4142135623730951] <- {Rule[n, 1], Rule[Subscript[w, k], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.9850098891679915, 1.4142135623730951] <- {Rule[n, 2], Rule[Subscript[w, k], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.4614111135696928, 1.4142135623730951] <- {Rule[n, 3], Rule[Subscript[w, k], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
3.5#Ex9 ${\displaystyle{\displaystyle x_{k}=\cos\left(\frac{k}{n+1}\pi\right)}}$ x[k]= cos((k)/(n + 1)*Pi) Subscript[x, k]= Cos[Divide[k,n + 1]*Pi] Failure Failure
Fail
1.414213562+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.9142135618+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.7071067809+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
2.414213562+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
1.914213562+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
1.414213562+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.414213561+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
2.414213562+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
2.121320343+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
1.414213562-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.9142135618-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.7071067809-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
2.414213562-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
1.914213562-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
1.414213562-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.414213561-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
2.414213562-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
2.121320343-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-1.414213562-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-1.914213562-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.121320343-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-.414213562-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-.9142135615-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.414213562-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.414213563-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-.414213562-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-.7071067809-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-1.414213562+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-1.914213562+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.121320343+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-.414213562+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-.9142135615+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.414213562+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.414213563+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-.414213562+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-.7071067809+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
Successful
3.5#Ex10 ${\displaystyle{\displaystyle w_{k}=\frac{\pi}{n+1}{\sin^{2}}\left(\frac{k}{n+1% }\pi\right)}}$ w[k]=(Pi)/(n + 1)*(sin((k)/(n + 1)*Pi))^(2) Subscript[w, k]=Divide[Pi,n + 1]*(Sin[Divide[k,n + 1]*Pi])^(2) Failure Failure
Fail
-.156582765+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.6288153988+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
1.021514480+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.414213562+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.6288153991+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.6288153985+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
-.156582765+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.414213562+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.021514480+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
-.156582765-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.6288153988-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
1.021514480-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.414213562-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.6288153991-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.6288153985-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
-.156582765-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.414213562-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.021514480-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.985009889-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.199611725-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-1.806912644-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.414213562-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.199611725-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.199611726-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-2.985009889-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.414213562-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.806912644-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.985009889+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.199611725+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-1.806912644+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.414213562+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.199611725+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.199611726+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-2.985009889+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.414213562+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.806912644+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
Successful
3.5#Ex11 ${\displaystyle{\displaystyle\gamma_{n}=\frac{\pi}{2^{2n+1}}}}$ gamma[n]=(Pi)/((2)^(2*n + 1)) Subscript[\[Gamma], n]=Divide[Pi,(2)^(2*n + 1)] Failure Failure
Fail
1.021514480+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.316038792+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.389669869+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.021514480-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.316038792-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.389669869-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.806912644-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.512388332-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.438757255-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.806912644+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.512388332+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.438757255+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
Successful
3.5#Ex12 ${\displaystyle{\displaystyle x_{k}=+\cos\left(\frac{2k}{2n+1}\pi\right)}}$ x[k]= + cos((2*k)/(2*n + 1)*Pi) Subscript[x, k]= + Cos[Divide[2*k,2*n + 1]*Pi] Failure Failure
Fail
1.914213562+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
1.105196568+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.7907237604+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.914213561+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
2.223230556+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
1.636734496+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
.414213562+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
2.223230556+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
2.315182430+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
1.914213562-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
1.105196568-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.7907237604-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.914213561-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
2.223230556-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
1.636734496-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
.414213562-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
2.223230556-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
2.315182430-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-.9142135623-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-1.723230556-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.037703364-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-.9142135631-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-.6051965675-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.191692628-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-2.414213562-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-.6051965680-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-.5132446937-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-.9142135623+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-1.723230556+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.037703364+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-.9142135631+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-.6051965675+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.191692628+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-2.414213562+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-.6051965680+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-.5132446937+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
Successful
3.5#Ex12 ${\displaystyle{\displaystyle x_{k}=-\cos\left(\frac{2k}{2n+1}\pi\right)}}$ x[k]= - cos((2*k)/(2*n + 1)*Pi) Subscript[x, k]= - Cos[Divide[2*k,2*n + 1]*Pi] Failure Failure
Fail
.9142135623+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
1.723230556+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
2.037703364+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
.9142135631+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.6051965675+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
1.191692628+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
2.414213562+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
.6051965680+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
.5132446937+1.414213562*I <- {x[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.9142135623-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
1.723230556-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
2.037703364-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
.9142135631-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.6051965675-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
1.191692628-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
2.414213562-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
.6051965680-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
.5132446937-1.414213562*I <- {x[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-1.914213562-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-1.105196568-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-.7907237604-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.914213561-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.223230556-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.636734496-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-.414213562-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-2.223230556-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-2.315182430-1.414213562*I <- {x[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-1.914213562+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-1.105196568+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-.7907237604+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.914213561+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.223230556+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.636734496+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-.414213562+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-2.223230556+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-2.315182430+1.414213562*I <- {x[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
Successful
3.5#Ex13 ${\displaystyle{\displaystyle w_{k}=\frac{4\pi}{2n+1}{\sin^{2}}\left(\frac{k}{2% n+1}\pi\right)}}$ w[k]=(4*Pi)/(2*n + 1)*(sin((k)/(2*n + 1)*Pi))^(2) Subscript[w, k]=Divide[4*Pi,2*n + 1]*(Sin[Divide[k,2*n + 1]*Pi])^(2) Failure Failure
Fail
-1.727379092+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.5458987077+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
1.076258798+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.727379090+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
-.859064240+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.316881337+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.414213562+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
-.859064238+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
-.292092105+1.414213562*I <- {w[k] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
-1.727379092-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.5458987077-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
1.076258798-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.727379090-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
-.859064240-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.316881337-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.414213562-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
-.859064238-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
-.292092105-1.414213562*I <- {w[k] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-4.555806216-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.282528416-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-1.752168326-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-4.555806214-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-3.687491364-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.511545787-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.414213562-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-3.687491362-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-3.120519229-1.414213562*I <- {w[k] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-4.555806216+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.282528416+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-1.752168326+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-4.555806214+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-3.687491364+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.511545787+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.414213562+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-3.687491362+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-3.120519229+1.414213562*I <- {w[k] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
Successful
3.5#Ex14 ${\displaystyle{\displaystyle\gamma_{n}=\frac{\pi}{2^{2n}}}}$ gamma[n]=(Pi)/((2)^(2*n)) Subscript[\[Gamma], n]=Divide[Pi,(2)^(2*n)] Failure Failure
Fail
.6288153985+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.217864021+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.365126177+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
.6288153985-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.217864021-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.365126177-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-2.199611726-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.610563103-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.463300947-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-2.199611726+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.610563103+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.463300947+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
Successful
3.5#Ex17 ${\displaystyle{\displaystyle\gamma_{n}=\dfrac{\Gamma\left(n+\alpha+1\right)% \Gamma\left(n+\beta+1\right)\Gamma\left(n+\alpha+\beta+1\right)}{(2n+\alpha+% \beta+1)(\Gamma\left(2n+\alpha+\beta+1\right))^{2}}2^{2n+\alpha+\beta+1}n!}}$ gamma[n]=(GAMMA(n + alpha + 1)*GAMMA(n + beta + 1)*GAMMA(n + alpha + beta + 1))/((2*n + alpha + beta + 1)*(GAMMA(2*n + alpha + beta + 1))^(2))*(2)^(2*n + alpha + beta + 1)* factorial(n) Subscript[\[Gamma], n]=Divide[Gamma[n + \[Alpha]+ 1]*Gamma[n + \[Beta]+ 1]*Gamma[n + \[Alpha]+ \[Beta]+ 1],(2*n + \[Alpha]+ \[Beta]+ 1)*(Gamma[2*n + \[Alpha]+ \[Beta]+ 1])^(2)]*(2)^(2*n + \[Alpha]+ \[Beta]+ 1)* (n)! Failure Failure
Fail
1.288578300+1.528723368*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.395381063+1.444046993*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.411166396+1.421669573*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.288578300-1.299703756*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.395381063-1.384380131*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.411166396-1.406757551*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.539848824-1.299703756*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.433046061-1.384380131*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.417260728-1.406757551*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.539848824+1.528723368*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.433046061+1.444046993*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.417260728+1.421669573*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.307324532+1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.387709512+1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.407572146+1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.307324532-1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.387709512-1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.407572146-1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.521102592-1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.440717612-1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.420854978-1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.521102592+1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.440717612+1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.420854978+1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.694351284+1.120027150*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.410467245+1.261060460*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.395747012+1.375259486*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.694351284-1.708399974*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.410467245-1.567366664*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.395747012-1.453167638*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.134075840-1.708399974*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.417959879-1.567366664*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.432680112-1.453167638*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.134075840+1.120027150*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.417959879+1.261060460*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.432680112+1.375259486*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.687803394+2.017411429*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.485586870+1.582353268*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.431816615+1.457407834*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.687803394-.8110156946*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.485586870-1.246073856*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.431816615-1.371019290*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.140623730-.8110156946*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.342840254-1.246073856*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.396610509-1.371019290*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.140623730+2.017411429*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.342840254+1.582353268*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.396610509+1.457407834*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.307324532+1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.387709512+1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.407572146+1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.307324532-1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.387709512-1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.407572146-1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.521102592-1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.440717612-1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.420854978-1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.521102592+1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.440717612+1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.420854978+1.414213562*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.288578300+1.299703756*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.395381063+1.384380131*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.411166396+1.406757551*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.288578300-1.528723368*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.395381063-1.444046993*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.411166396-1.421669573*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.539848824-1.528723368*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.433046061-1.444046993*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.417260728-1.421669573*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.539848824+1.299703756*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.433046061+1.384380131*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.417260728+1.406757551*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.687803394+.8110156946*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.485586870+1.246073856*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.431816615+1.371019290*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.687803394-2.017411429*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.485586870-1.582353268*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.431816615-1.457407834*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.140623730-2.017411429*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.342840254-1.582353268*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.396610509-1.457407834*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.140623730+.8110156946*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.342840254+1.246073856*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.396610509+1.371019290*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.694351284+1.708399974*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.410467245+1.567366664*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.395747012+1.453167638*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.694351284-1.120027150*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.410467245-1.261060460*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.395747012-1.375259486*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.134075840-1.120027150*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.417959879-1.261060460*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.432680112-1.375259486*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.134075840+1.708399974*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.417959879+1.567366664*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.432680112+1.453167638*I <- {alpha = 2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.694351284+1.120027150*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.410467245+1.261060460*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.395747012+1.375259486*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.694351284-1.708399974*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.410467245-1.567366664*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.395747012-1.453167638*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.134075840-1.708399974*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.417959879-1.567366664*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.432680112-1.453167638*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.134075840+1.120027150*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.417959879+1.261060460*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.432680112+1.375259486*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.687803394+.8110156946*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.485586870+1.246073856*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.431816615+1.371019290*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.687803394-2.017411429*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.485586870-1.582353268*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.431816615-1.457407834*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.140623730-2.017411429*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.342840254-1.582353268*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.396610509-1.457407834*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.140623730+.8110156946*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.342840254+1.246073856*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.396610509+1.371019290*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.822713707+1.121988446*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.706838999+1.399437992*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.552635969+1.407451051*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.822713707-1.706438678*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.706838999-1.428989132*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.552635969-1.420976073*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.005713417-1.706438678*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.121588125-1.428989132*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.275791155-1.420976073*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.005713417+1.121988446*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.121588125+1.399437992*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.275791155+1.407451051*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.528876175+1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
-2.067586110+1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.059039933+1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.528876175-1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
-2.067586110-1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.059039933-1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.299550949-1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-4.896013234-1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.769387191-1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.299550949+1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-4.896013234+1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.769387191+1.414213562*I <- {alpha = -2^(1/2)-I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.687803394+2.017411429*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.485586870+1.582353268*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.431816615+1.457407834*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.687803394-.8110156946*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.485586870-1.246073856*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.431816615-1.371019290*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.140623730-.8110156946*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.342840254-1.246073856*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.396610509-1.371019290*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.140623730+2.017411429*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.342840254+1.582353268*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.396610509+1.457407834*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.694351284+1.708399974*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.410467245+1.567366664*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.395747012+1.453167638*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.694351284-1.120027150*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.410467245-1.261060460*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.395747012-1.375259486*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.134075840-1.120027150*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.417959879-1.261060460*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.432680112-1.375259486*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.134075840+1.708399974*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.417959879+1.567366664*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.432680112+1.453167638*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.528876175+1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
-2.067586110+1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.059039933+1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.528876175-1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
-2.067586110-1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.059039933-1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.299550949-1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-4.896013234-1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.769387191-1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.299550949+1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-4.896013234+1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.769387191+1.414213562*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.822713707+1.706438678*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
1.706838999+1.428989132*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.552635969+1.420976073*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.822713707-1.121988446*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
1.706838999-1.399437992*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.552635969-1.407451051*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.005713417-1.121988446*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-1.121588125-1.399437992*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-1.275791155-1.407451051*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.005713417+1.706438678*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-1.121588125+1.428989132*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-1.275791155+1.420976073*I <- {alpha = -2^(1/2)+I*2^(1/2), beta = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
Successful
3.5#Ex20 ${\displaystyle{\displaystyle\gamma_{n}=n!\,\Gamma\left(n+\alpha+1\right)}}$ gamma[n]= factorial(n)*GAMMA(n + alpha + 1) Subscript[\[Gamma], n]= (n)!*Gamma[n + \[Alpha]+ 1] Failure Failure
Fail
1.412834343-.765961897*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
7.571263072-13.47685670*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
146.1272685-169.6607305*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.412834343-3.594389021*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
7.571263072-16.30528382*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
146.1272685-172.4891577*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.415592781-3.594389021*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
4.742835948-16.30528382*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
143.2988413-172.4891577*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.415592781-.765961897*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
4.742835948-13.47685670*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
143.2988413-169.6607305*I <- {alpha = 2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.412834343+3.594389021*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
7.571263072+16.30528382*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
146.1272685+172.4891577*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.412834343+.765961897*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
7.571263072+13.47685670*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
146.1272685+169.6607305*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.415592781+.765961897*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
4.742835948+13.47685670*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
143.2988413+169.6607305*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.415592781+3.594389021*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
4.742835948+16.30528382*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
143.2988413+172.4891577*I <- {alpha = 2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.211930022+1.221345793*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
.6317112234+1.760399168*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
-.839690091+6.381019137*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.211930022-1.607081331*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
.6317112234-1.068027956*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
-.839690091+3.552592013*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.616497102-1.607081331*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-2.196715901-1.068027956*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-3.668117215+3.552592013*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.616497102+1.221345793*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-2.196715901+1.760399168*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-3.668117215+6.381019137*I <- {alpha = -2^(1/2)-I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
1.211930022+1.607081331*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
.6317112234+1.068027956*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
-.839690091-3.552592013*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.211930022-1.221345793*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
.6317112234-1.760399168*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
-.839690091-6.381019137*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-1.616497102-1.221345793*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-2.196715901-1.760399168*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-3.668117215-6.381019137*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-1.616497102+1.607081331*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-2.196715901+1.068027956*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-3.668117215-3.552592013*I <- {alpha = -2^(1/2)+I*2^(1/2), gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
Successful
3.5#Ex23 ${\displaystyle{\displaystyle\gamma_{n}=\sqrt{\pi}\,\frac{n!}{2^{n}}}}$ gamma[n]=sqrt(Pi)*(factorial(n))/((2)^(n)) Subscript[\[Gamma], n]=Sqrt[Pi]*Divide[(n)!,(2)^(n)] Failure Failure
Fail
.5279866365+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 1}
.5279866365+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 2}
.84873174e-1+1.414213562*I <- {gamma[n] = 2^(1/2)+I*2^(1/2), n = 3}
.5279866365-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 1}
.5279866365-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 2}
.84873174e-1-1.414213562*I <- {gamma[n] = 2^(1/2)-I*2^(1/2), n = 3}
-2.300440488-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 1}
-2.300440488-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 2}
-2.743553950-1.414213562*I <- {gamma[n] = -2^(1/2)-I*2^(1/2), n = 3}
-2.300440488+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 1}
-2.300440488+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 2}
-2.743553950+1.414213562*I <- {gamma[n] = -2^(1/2)+I*2^(1/2), n = 3}
Successful
3.5#Ex25 ${\displaystyle{\displaystyle w(x)=\ln\left(1/x\right)}}$ w*(x)= ln(1/ x) w*(x)= Log[1/ x] Failure Failure
Fail
1.414213562+1.414213562*I <- {w = 2^(1/2)+I*2^(1/2), x = 1}
3.521574305+2.828427124*I <- {w = 2^(1/2)+I*2^(1/2), x = 2}
5.341252975+4.242640686*I <- {w = 2^(1/2)+I*2^(1/2), x = 3}
1.414213562-1.414213562*I <- {w = 2^(1/2)-I*2^(1/2), x = 1}
3.521574305-2.828427124*I <- {w = 2^(1/2)-I*2^(1/2), x = 2}
5.341252975-4.242640686*I <- {w = 2^(1/2)-I*2^(1/2), x = 3}
-1.414213562-1.414213562*I <- {w = -2^(1/2)-I*2^(1/2), x = 1}
-2.135279943-2.828427124*I <- {w = -2^(1/2)-I*2^(1/2), x = 2}
-3.144028397-4.242640686*I <- {w = -2^(1/2)-I*2^(1/2), x = 3}
-1.414213562+1.414213562*I <- {w = -2^(1/2)+I*2^(1/2), x = 1}
-2.135279943+2.828427124*I <- {w = -2^(1/2)+I*2^(1/2), x = 2}
-3.144028397+4.242640686*I <- {w = -2^(1/2)+I*2^(1/2), x = 3}
Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[3.5215743053061357, 2.8284271247461903] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[5.341252975787396, 4.242640687119286] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[3.5215743053061357, -2.8284271247461903] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[5.341252975787396, -4.242640687119286] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-2.135279944186245, -2.8284271247461903] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-3.1440283984511757, -4.242640687119286] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-2.135279944186245, 2.8284271247461903] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-3.1440283984511757, 4.242640687119286] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
3.5.E37 ${\displaystyle{\displaystyle\int_{c-\mathrm{i}\infty}^{c+\mathrm{i}\infty}e^{% \zeta}\zeta^{-s}p_{k}(1/\zeta)p_{\ell}(1/\zeta)\mathrm{d}\zeta=0}}$ int(exp(zeta)*(zeta)^(- s)* p[k]*(1/ zeta)* p[ell]*(1/ zeta), zeta = c - I*infinity..c + I*infinity)= 0 Integrate[Exp[\[zeta]]*(\[zeta])^(- s)* Subscript[p, k]*(1/ \[zeta])* Subscript[p, \[ScriptL]]*(1/ \[zeta]), {\[zeta], c - I*Infinity, c + I*Infinity}]= 0 Failure Failure Skip Error
3.5.E42 ${\displaystyle{\displaystyle\operatorname{erfc}\lambda=\frac{1}{2\pi\mathrm{i}% }\int_{c-\mathrm{i}\infty}^{c+\mathrm{i}\infty}e^{\zeta-2\lambda\sqrt{\zeta}}% \frac{\mathrm{d}\zeta}{\zeta}}}$ erfc(lambda)=(1)/(2*Pi*I)*int(exp(zeta - 2*lambda*sqrt(zeta))*(1)/(zeta), zeta = c - I*infinity..c + I*infinity) Erfc[\[Lambda]]=Divide[1,2*Pi*I]*Integrate[Exp[\[zeta]- 2*\[Lambda]*Sqrt[\[zeta]]]*Divide[1,\[zeta]], {\[zeta], c - I*Infinity, c + I*Infinity}] Failure Failure Skip Error
3.5.E44 ${\displaystyle{\displaystyle\operatorname{erfc}\lambda=\frac{1}{2\pi\mathrm{i}% }\int_{c-\mathrm{i}\infty}^{c+\mathrm{i}\infty}e^{\lambda^{2}(t-2\sqrt{t})}% \frac{\mathrm{d}t}{t}}}$ erfc(lambda)=(1)/(2*Pi*I)*int(exp((lambda)^(2)*(t - 2*sqrt(t)))*(1)/(t), t = c - I*infinity..c + I*infinity) Erfc[\[Lambda]]=Divide[1,2*Pi*I]*Integrate[Exp[(\[Lambda])^(2)*(t - 2*Sqrt[t])]*Divide[1,t], {t, c - I*Infinity, c + I*Infinity}] Failure Failure Skip Skip
3.5.E45 ${\displaystyle{\displaystyle\operatorname{erfc}\lambda=\frac{e^{-\lambda^{2}}}% {2\pi}\int_{-\pi}^{\pi}e^{-\lambda^{2}{\tan^{2}}\left(\frac{1}{2}\theta\right)% }\mathrm{d}\theta}}$ erfc(lambda)=(exp(- (lambda)^(2)))/(2*Pi)*int(exp(- (lambda)^(2)* (tan((1)/(2)*theta))^(2)), theta = - Pi..Pi) Erfc[\[Lambda]]=Divide[Exp[- (\[Lambda])^(2)],2*Pi]*Integrate[Exp[- (\[Lambda])^(2)* (Tan[Divide[1,2]*\[Theta]])^(2)], {\[Theta], - Pi, Pi}] Failure Failure Skip Error
3.6.E14 ${\displaystyle{\displaystyle w_{n+1}-2nw_{n}+w_{n-1}=-(2/\pi)(1-(-1)^{n})}}$ w[n + 1]- 2*n*w[n]+ w[n - 1]= -(2/ Pi)*(1 -(- 1)^(n)) Subscript[w, n + 1]- 2*n*Subscript[w, n]+ Subscript[w, n - 1]= -(2/ Pi)*(1 -(- 1)^(n)) Failure Failure
Fail
1.273239544+0.*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
-2.828427124-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
-4.383614704-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
1.273239544-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
-2.828427124-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
-4.383614704-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
-1.555187580-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
-5.656854248-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
-7.212041828-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
-1.555187580+0.*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
-5.656854248-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
-7.212041828-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
1.273239544-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
-2.828427124-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
-4.383614704-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
1.273239544-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
-2.828427124-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
-4.383614704-11.31370850*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
-1.555187580-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
-5.656854248-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
-7.212041828-11.31370850*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
-1.555187580-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
-5.656854248-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
-7.212041828-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
-1.555187580-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
-5.656854248-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
-7.212041828-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
-1.555187580-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
-5.656854248-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
-7.212041828-11.31370850*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
-4.383614704-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
-8.485281372-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
-10.04046896-11.31370850*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
-4.383614704-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
-8.485281372-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
-10.04046896-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
-1.555187580+0.*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
-5.656854248-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
-7.212041828-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
-1.555187580-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
-5.656854248-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
-7.212041828-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
-4.383614704-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
-8.485281372-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
-10.04046896-8.485281372*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
-4.383614704+0.*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
-8.485281372-2.828427124*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
-10.04046896-5.656854248*I <- {w[n] = 2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
1.273239544+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
-2.828427124+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
-4.383614704+11.31370850*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
1.273239544+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
-2.828427124+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
-4.383614704+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
-1.555187580+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
-5.656854248+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
-7.212041828+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
-1.555187580+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
-5.656854248+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
-7.212041828+11.31370850*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
1.273239544+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
-2.828427124+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
-4.383614704+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
1.273239544+0.*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
-2.828427124+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
-4.383614704+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
-1.555187580+0.*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
-5.656854248+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
-7.212041828+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
-1.555187580+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
-5.656854248+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
-7.212041828+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
-1.555187580+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
-5.656854248+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
-7.212041828+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
-1.555187580+0.*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
-5.656854248+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
-7.212041828+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
-4.383614704+0.*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
-8.485281372+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
-10.04046896+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
-4.383614704+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
-8.485281372+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
-10.04046896+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
-1.555187580+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
-5.656854248+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
-7.212041828+11.31370850*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
-1.555187580+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
-5.656854248+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
-7.212041828+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
-4.383614704+2.828427124*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
-8.485281372+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
-10.04046896+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
-4.383614704+5.656854248*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
-8.485281372+8.485281372*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
-10.04046896+11.31370850*I <- {w[n] = 2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
6.930093792+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
8.485281372+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
12.58694804+11.31370850*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
6.930093792+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
8.485281372+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
12.58694804+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
4.101666668+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
5.656854248+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
9.758520916+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
4.101666668+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
5.656854248+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
9.758520916+11.31370850*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
6.930093792+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
8.485281372+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
12.58694804+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
6.930093792+0.*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
8.485281372+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
12.58694804+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
4.101666668+0.*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
5.656854248+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
9.758520916+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
4.101666668+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
5.656854248+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
9.758520916+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
4.101666668+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
5.656854248+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
9.758520916+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
4.101666668+0.*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
5.656854248+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
9.758520916+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
1.273239544+0.*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
2.828427124+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
6.930093792+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
1.273239544+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
2.828427124+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
6.930093792+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
4.101666668+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
5.656854248+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
9.758520916+11.31370850*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
4.101666668+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
5.656854248+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
9.758520916+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
1.273239544+2.828427124*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
2.828427124+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
6.930093792+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
1.273239544+5.656854248*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
2.828427124+8.485281372*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
6.930093792+11.31370850*I <- {w[n] = -2^(1/2)-I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
6.930093792+0.*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
8.485281372-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
12.58694804-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
6.930093792-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
8.485281372-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
12.58694804-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
4.101666668-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
5.656854248-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
9.758520916-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
4.101666668+0.*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
5.656854248-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
9.758520916-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
6.930093792-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
8.485281372-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
12.58694804-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
6.930093792-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
8.485281372-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
12.58694804-11.31370850*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
4.101666668-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
5.656854248-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
9.758520916-11.31370850*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
4.101666668-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
5.656854248-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
9.758520916-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = 2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
4.101666668-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
5.656854248-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
9.758520916-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
4.101666668-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
5.656854248-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
9.758520916-11.31370850*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
1.273239544-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
2.828427124-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
6.930093792-11.31370850*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
1.273239544-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
2.828427124-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
6.930093792-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)-I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
4.101666668+0.*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 1}
5.656854248-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 2}
9.758520916-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)+I*2^(1/2), n = 3}
4.101666668-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 1}
5.656854248-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 2}
9.758520916-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = 2^(1/2)-I*2^(1/2), n = 3}
1.273239544-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 1}
2.828427124-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 2}
6.930093792-8.485281372*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)-I*2^(1/2), n = 3}
1.273239544+0.*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 1}
2.828427124-2.828427124*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 2}
6.930093792-5.656854248*I <- {w[n] = -2^(1/2)+I*2^(1/2), w[n-1] = -2^(1/2)+I*2^(1/2), w[n+1] = -2^(1/2)+I*2^(1/2), n = 3}
Successful
3.8.E3 ${\displaystyle{\displaystyle\left|z_{n+1}-\zeta\right| abs(z[n + 1]- zeta)< A*(abs(z[n]- zeta))^(p) Abs[Subscript[z, n + 1]- \[zeta]]< A*(Abs[Subscript[z, n]- \[zeta]])^(p) Failure Failure Skip Error
3.8#Ex2 ${\displaystyle{\displaystyle\phi(x)=x+x{\cot^{2}}x-\cot x}}$ phi*(x)= x + x*(cot(x))^(2)- cot(x) \[Phi]*(x)= x + x*(Cot[x])^(2)- Cot[x] Failure Failure
Fail
.6440232505+1.414213562*I <- {phi = 2^(1/2)+I*2^(1/2), x = 1}
-.481313046e-1+2.828427124*I <- {phi = 2^(1/2)+I*2^(1/2), x = 2}
-153.4139169+4.242640686*I <- {phi = 2^(1/2)+I*2^(1/2), x = 3}
.6440232505-1.414213562*I <- {phi = 2^(1/2)-I*2^(1/2), x = 1}
-.481313046e-1-2.828427124*I <- {phi = 2^(1/2)-I*2^(1/2), x = 2}
-153.4139169-4.242640686*I <- {phi = 2^(1/2)-I*2^(1/2), x = 3}
-2.184403873-1.414213562*I <- {phi = -2^(1/2)-I*2^(1/2), x = 1}
-5.704985552-2.828427124*I <- {phi = -2^(1/2)-I*2^(1/2), x = 2}
-161.8991983-4.242640686*I <- {phi = -2^(1/2)-I*2^(1/2), x = 3}
-2.184403873+1.414213562*I <- {phi = -2^(1/2)+I*2^(1/2), x = 1}
-5.704985552+2.828427124*I <- {phi = -2^(1/2)+I*2^(1/2), x = 2}
-161.8991983+4.242640686*I <- {phi = -2^(1/2)+I*2^(1/2), x = 3}
Fail
Complex[0.6440232508700339, 1.4142135623730951] <- {Rule[x, 1], Rule[Ο, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.04813130374017138, 2.8284271247461903] <- {Rule[x, 2], Rule[Ο, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-153.41391694554147, 4.242640687119286] <- {Rule[x, 3], Rule[Ο, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.6440232508700339, -1.4142135623730951] <- {Rule[x, 1], Rule[Ο, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.04813130374017138, -2.8284271247461903] <- {Rule[x, 2], Rule[Ο, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-153.41391694554147, -4.242640687119286] <- {Rule[x, 3], Rule[Ο, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.184403873876156, -1.4142135623730951] <- {Rule[x, 1], Rule[Ο, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.704985553232552, -2.8284271247461903] <- {Rule[x, 2], Rule[Ο, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-161.89919831978006, -4.242640687119286] <- {Rule[x, 3], Rule[Ο, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.184403873876156, 1.4142135623730951] <- {Rule[x, 1], Rule[Ο, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-5.704985553232552, 2.8284271247461903] <- {Rule[x, 2], Rule[Ο, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-161.89919831978006, 4.242640687119286] <- {Rule[x, 3], Rule[Ο, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
3.8.E13 ${\displaystyle{\displaystyle\frac{\mathrm{d}z}{\mathrm{d}\alpha}=-\ifrac{\frac% {\partial f}{\partial\alpha}}{\frac{\partial f}{\partial z}}}}$ diff(z, alpha)= -(diff(f, alpha))/(diff(f, z)) D[z, \[Alpha]]= -Divide[D[f, \[Alpha]],D[f, z]] Error Failure -
Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[Indeterminate, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[Indeterminate, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[Indeterminate, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[Indeterminate, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
3.8.E16 ${\displaystyle{\displaystyle\frac{\mathrm{d}x}{\mathrm{d}a_{19}}=-\frac{20^{19% }}{19!}}}$ diff(x, a[19])= -((20)^(19))/(factorial(19)) D[x, Subscript[a, 19]]= -Divide[(20)^(19),(19)!] Failure Failure -
Fail
4.309980412182177*^7 <- {}
3.9.E16 ${\displaystyle{\displaystyle c_{j,k,n}=\frac{{\left(\beta+n+j\right)_{k-1}}}{{% \left(\beta+n+k\right)_{k-1}}}}}$ c[j , k , n]=(pochhammer(beta + n + j, k - 1))/(pochhammer(beta + n + k, k - 1)) Subscript[c, j , k , n]=Divide[Pochhammer[\[Beta]+ n + j, k - 1],Pochhammer[\[Beta]+ n + k, k - 1]] Failure Failure
Fail
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
.4414781079+1.085101381*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.4516276191+1.143236990*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.4549477373+1.184751233*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
.8570095371+.9508656039*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
.8010420964+1.015789618*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
.7580126529+1.064620824*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
.4414781079-1.743325743*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.4516276191-1.685190134*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.4549477373-1.643675891*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
.8570095371-1.877561520*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
.8010420964-1.812637506*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
.7580126529-1.763806300*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-2.386949016-1.743325743*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.376799505-1.685190134*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.373479387-1.643675891*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.971417587-1.877561520*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-2.027385028-1.812637506*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-2.070414471-1.763806300*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-2.386949016+1.085101381*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.376799505+1.143236990*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.373479387+1.184751233*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.971417587+.9508656039*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-2.027385028+1.015789618*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-2.070414471+1.064620824*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
.6276520718+1.666209962*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.5793672000+1.632278667*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.5476645197+1.605271343*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
.9663885424+1.643106249*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
.8925940654+1.638133459*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
.8347533131+1.629020817*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
.6276520718-1.162217162*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.5793672000-1.196148457*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.5476645197-1.223155781*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
.9663885424-1.185320875*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
.8925940654-1.190293665*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
.8347533131-1.199406307*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-2.200775052-1.162217162*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.249059924-1.196148457*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.280762604-1.223155781*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.862038582-1.185320875*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.935833059-1.190293665*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.993673811-1.199406307*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-2.200775052+1.666209962*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.249059924+1.632278667*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.280762604+1.605271343*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.862038582+1.643106249*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.935833059+1.638133459*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.993673811+1.629020817*I <- {beta = 2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.208760653+1.480035998*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
1.068408876+1.504539086*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.9681846297+1.512554560*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.365761498+1.438978420*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.303002493+1.461954053*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.239497495+1.478981212*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.208760653-1.348391126*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
1.068408876-1.323888038*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.9681846297-1.315872564*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.365761498-1.389448704*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.303002493-1.366473071*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.239497495-1.349445912*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.619666471-1.348391126*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-1.760018248-1.323888038*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.860242494-1.315872564*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.462665626-1.389448704*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.525424631-1.366473071*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.588929629-1.349445912*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.619666471+1.480035998*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-1.760018248+1.504539086*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.860242494+1.512554560*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.462665626+1.438978420*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.525424631+1.461954053*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.588929629+1.478981212*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.022586689+.8989274172*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.9406692954+1.015497410*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.8754678474+1.092034450*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.454501359+1.134354288*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.338758501+1.136173062*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.249113702+1.147535975*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.022586689-1.929499707*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.9406692954-1.812929714*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.8754678474-1.736392674*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.454501359-1.694072836*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.338758501-1.692254062*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.249113702-1.680891149*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.805840435-1.929499707*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-1.887757829-1.812929714*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.952959277-1.736392674*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.373925765-1.694072836*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.489668623-1.692254062*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.579313422-1.680891149*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.805840435+.8989274172*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-1.887757829+1.015497410*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.952959277+1.092034450*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.373925765+1.134354288*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.489668623+1.136173062*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.579313422+1.147535975*I <- {beta = 2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
.6276520718+1.162217162*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.5793672000+1.196148457*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.5476645197+1.223155781*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
.9663885424+1.185320875*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
.8925940654+1.190293665*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
.8347533131+1.199406307*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
.6276520718-1.666209962*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.5793672000-1.632278667*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.5476645197-1.605271343*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
.9663885424-1.643106249*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
.8925940654-1.638133459*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
.8347533131-1.629020817*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-2.200775052-1.666209962*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.249059924-1.632278667*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.280762604-1.605271343*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.862038582-1.643106249*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.935833059-1.638133459*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.993673811-1.629020817*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-2.200775052+1.162217162*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.249059924+1.196148457*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.280762604+1.223155781*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.862038582+1.185320875*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.935833059+1.190293665*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.993673811+1.199406307*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
.4414781079+1.743325743*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.4516276191+1.685190134*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.4549477373+1.643675891*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
.8570095371+1.877561520*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
.8010420964+1.812637506*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
.7580126529+1.763806300*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
.4414781079-1.085101381*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.4516276191-1.143236990*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.4549477373-1.184751233*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
.8570095371-.9508656039*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
.8010420964-1.015789618*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
.7580126529-1.064620824*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-2.386949016-1.085101381*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.376799505-1.143236990*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.373479387-1.184751233*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.971417587-.9508656039*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-2.027385028-1.015789618*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-2.070414471-1.064620824*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-2.386949016+1.743325743*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.376799505+1.685190134*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.373479387+1.643675891*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.971417587+1.877561520*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-2.027385028+1.812637506*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-2.070414471+1.763806300*I <- {beta = 2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.022586689+1.929499707*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.9406692954+1.812929714*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.8754678474+1.736392674*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.454501359+1.694072836*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.338758501+1.692254062*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.249113702+1.680891149*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.022586689-.8989274172*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.9406692954-1.015497410*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.8754678474-1.092034450*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.454501359-1.134354288*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.338758501-1.136173062*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.249113702-1.147535975*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.805840435-.8989274172*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-1.887757829-1.015497410*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.952959277-1.092034450*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.373925765-1.134354288*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.489668623-1.136173062*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.579313422-1.147535975*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.805840435+1.929499707*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-1.887757829+1.812929714*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.952959277+1.736392674*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.373925765+1.694072836*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.489668623+1.692254062*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.579313422+1.680891149*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.208760653+1.348391126*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
1.068408876+1.323888038*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.9681846297+1.315872564*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.365761498+1.389448704*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.303002493+1.366473071*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.239497495+1.349445912*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.208760653-1.480035998*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
1.068408876-1.504539086*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.9681846297-1.512554560*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.365761498-1.438978420*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.303002493-1.461954053*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.239497495-1.478981212*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.619666471-1.480035998*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-1.760018248-1.504539086*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.860242494-1.512554560*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.462665626-1.438978420*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.525424631-1.461954053*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.588929629-1.478981212*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.619666471+1.348391126*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-1.760018248+1.323888038*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.860242494+1.315872564*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.462665626+1.389448704*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.525424631+1.366473071*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.588929629+1.349445912*I <- {beta = 2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.062965440+1.100968446*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.8188417771+1.088593921*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.6901956924+1.128665076*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.301520357+1.278959578*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.160940783+1.211570289*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.043585169+1.188452138*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.062965440-1.727458678*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.8188417771-1.739833203*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.6901956924-1.699762048*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.301520357-1.549467546*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.160940783-1.616856835*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.043585169-1.639974986*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.765461684-1.727458678*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.009585347-1.739833203*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.138231432-1.699762048*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.526906767-1.549467546*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.667486341-1.616856835*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.784841955-1.639974986*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.765461684+1.100968446*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.009585347+1.088593921*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.138231432+1.128665076*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.526906767+1.278959578*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.667486341+1.211570289*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.784841955+1.188452138*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
.176974456+2.094448161*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.358346064+1.930576773*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.4209779976+1.811275669*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.178459123+2.298092290*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.021003047+2.078730984*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
.9181834183+1.950465404*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
.176974456-.7339789634*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.358346064-.8978503507*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.4209779976-1.017151455*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.178459123-.5303348337*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.021003047-.7496961397*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
.9181834183-.8779617197*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-2.651452668-.7339789634*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.470081060-.8978503507*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.407449126-1.017151455*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.649968001-.5303348337*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.807424077-.7496961397*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.910243706-.8779617197*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-2.651452668+2.094448161*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.470081060+1.930576773*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.407449126+1.811275669*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.649968001+2.298092290*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.807424077+2.078730984*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.910243706+1.950465404*I <- {beta = -2^(1/2)-I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.170454171+2.980439145*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
1.200328917+2.391072486*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
1.103588591+2.080493364*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
2.287834949+1.429364769*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.820657734+1.610780651*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.583618705+1.678273943*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.170454171+.152012021*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
1.200328917-.4373546378*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
1.103588591-.7479337601*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
2.287834949-1.399062355*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.820657734-1.217646473*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.583618705-1.150153181*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.657972953+.152012021*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-1.628098207-.4373546378*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.724838533-.7479337601*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-.5405921748-1.399062355*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.007769390-1.217646473*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.244808419-1.150153181*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.657972953+2.980439145*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-1.628098207+2.391072486*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.724838533+2.080493364*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-.5405921748+1.429364769*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.007769390+1.610780651*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.244808419+1.678273943*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
2.056445155+1.986959430*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
1.660824630+1.549089634*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
1.372806286+1.397882770*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.328864314+1.311777698*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.420213409+1.419014033*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.408005224+1.410431868*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
2.056445155-.8414676945*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
1.660824630-1.279337490*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
1.372806286-1.430544354*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.328864314-1.516649426*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.420213409-1.409413091*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.408005224-1.417995256*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-.7719819688-.8414676945*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-1.167602494-1.279337490*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.455620838-1.430544354*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.499562810-1.516649426*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.408213715-1.409413091*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.420421900-1.417995256*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-.7719819688+1.986959430*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-1.167602494+1.549089634*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.455620838+1.397882770*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.499562810+1.311777698*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.408213715+1.419014033*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.420421900+1.410431868*I <- {beta = -2^(1/2)-I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
.176974456+.7339789634*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.358346064+.8978503507*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.4209779976+1.017151455*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.178459123+.5303348337*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.021003047+.7496961397*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
.9181834183+.8779617197*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
.176974456-2.094448161*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.358346064-1.930576773*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.4209779976-1.811275669*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.178459123-2.298092290*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.021003047-2.078730984*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
.9181834183-1.950465404*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-2.651452668-2.094448161*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.470081060-1.930576773*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.407449126-1.811275669*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.649968001-2.298092290*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.807424077-2.078730984*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.910243706-1.950465404*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-2.651452668+.7339789634*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.470081060+.8978503507*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.407449126+1.017151455*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.649968001+.5303348337*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.807424077+.7496961397*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.910243706+.8779617197*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.062965440+1.727458678*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.8188417771+1.739833203*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.6901956924+1.699762048*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.301520357+1.549467546*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.160940783+1.616856835*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.043585169+1.639974986*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.062965440-1.100968446*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.8188417771-1.088593921*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.6901956924-1.128665076*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.301520357-1.278959578*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.160940783-1.211570289*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.043585169-1.188452138*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.765461684-1.100968446*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.009585347-1.088593921*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.138231432-1.128665076*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.526906767-1.278959578*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.667486341-1.211570289*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.784841955-1.188452138*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.765461684+1.727458678*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.009585347+1.739833203*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.138231432+1.699762048*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.526906767+1.549467546*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.667486341+1.616856835*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.784841955+1.639974986*I <- {beta = -2^(1/2)+I*2^(1/2), j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
2.056445155+.8414676945*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
1.660824630+1.279337490*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
1.372806286+1.430544354*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.328864314+1.516649426*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.420213409+1.409413091*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.408005224+1.417995256*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
2.056445155-1.986959430*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
1.660824630-1.549089634*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
1.372806286-1.397882770*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.328864314-1.311777698*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.420213409-1.419014033*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.408005224-1.410431868*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-.7719819688-1.986959430*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-1.167602494-1.549089634*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.455620838-1.397882770*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.499562810-1.311777698*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.408213715-1.419014033*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.420421900-1.410431868*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-.7719819688+.8414676945*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-1.167602494+1.279337490*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.455620838+1.430544354*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.499562810+1.516649426*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.408213715+1.409413091*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.420421900+1.417995256*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.170454171-.152012021*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
1.200328917+.4373546378*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
1.103588591+.7479337601*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
2.287834949+1.399062355*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.820657734+1.217646473*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.583618705+1.150153181*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.170454171-2.980439145*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
1.200328917-2.391072486*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
1.103588591-2.080493364*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
2.287834949-1.429364769*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.820657734-1.610780651*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.583618705-1.678273943*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.657972953-2.980439145*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-1.628098207-2.391072486*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.724838533-2.080493364*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-.5405921748-1.429364769*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.007769390-1.610780651*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.244808419-1.678273943*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.657972953-.152012021*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-1.628098207+.4373546378*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.724838533+.7479337601*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-.5405921748+1.399062355*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.007769390+1.217646473*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.244808419+1.150153181*I <- {beta = -2^(1/2)+I*2^(1/2), j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
Successful
3.9.E17 ${\displaystyle{\displaystyle c_{j,k,n}=\frac{{\left(-\gamma-n-j\right)_{k-1}}}% {{\left(-\gamma-n-k\right)_{k-1}}}}}$ c[j , k , n]=(pochhammer(- gamma - n - j, k - 1))/(pochhammer(- gamma - n - k, k - 1)) Subscript[c, j , k , n]=Divide[Pochhammer[- \[Gamma]- n - j, k - 1],Pochhammer[- \[Gamma]- n - k, k - 1]] Failure Failure
Fail
.414213562+1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
.5779684184+1.018874367*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.5421923338+1.105245476*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.5192456196+1.160643744*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.172531926+.9838385492*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.024835947+1.027375301*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
.9256178569+1.067899574*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
.5779684184-1.809552757*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.5421923338-1.723181648*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.5192456196-1.667783380*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.172531926-1.844588575*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.024835947-1.801051823*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
.9256178569-1.760527550*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-2.250458706-1.809552757*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.286234790-1.723181648*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.309181504-1.667783380*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.655895198-1.844588575*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.803591177-1.801051823*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.902809267-1.760527550*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-2.250458706+1.018874367*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.286234790+1.105245476*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.309181504+1.160643744*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.655895198+.9838385492*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.803591177+1.027375301*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.902809267+1.067899574*I <- {j = 2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
.5779684184+1.809552757*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
.5421923338+1.723181648*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
.5192456196+1.667783380*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.172531926+1.844588575*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.024835947+1.801051823*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
.9256178569+1.760527550*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
.5779684184-1.018874367*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
.5421923338-1.105245476*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
.5192456196-1.160643744*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.172531926-.9838385492*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.024835947-1.027375301*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
.9256178569-1.067899574*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-2.250458706-1.018874367*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-2.286234790-1.105245476*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-2.309181504-1.160643744*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.655895198-.9838385492*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.803591177-1.027375301*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.902809267-1.067899574*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-2.250458706+1.809552757*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-2.286234790+1.723181648*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-2.309181504+1.667783380*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.655895198+1.844588575*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.803591177+1.801051823*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.902809267+1.760527550*I <- {j = 2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.368646809+1.809552757*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
1.160128505+1.723181648*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
1.026385256+1.667783380*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.544693175+1.355999798*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.485132544+1.487671898*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.400158487+1.542440204*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.368646809-1.018874367*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
1.160128505-1.105245476*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
1.026385256-1.160643744*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.544693175-1.472427326*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.485132544-1.340755226*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.400158487-1.285986920*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.459780315-1.018874367*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-1.668298619-1.105245476*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.802041868-1.160643744*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.283733949-1.472427326*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.343294580-1.340755226*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.428268637-1.285986920*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.459780315+1.809552757*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-1.668298619+1.723181648*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.802041868+1.667783380*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.283733949+1.355999798*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.343294580+1.487671898*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.428268637+1.542440204*I <- {j = -2^(1/2)-I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562+1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 1}
.414213562+1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 2}
.414213562+1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 1, n = 3}
1.368646809+1.018874367*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 1}
1.160128505+1.105245476*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 2}
1.026385256+1.160643744*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 2, n = 3}
1.544693175+1.472427326*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 1}
1.485132544+1.340755226*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 2}
1.400158487+1.285986920*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)+I*2^(1/2), k = 3, n = 3}
.414213562-1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 1}
.414213562-1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 2}
.414213562-1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 1, n = 3}
1.368646809-1.809552757*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 1}
1.160128505-1.723181648*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 2}
1.026385256-1.667783380*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 2, n = 3}
1.544693175-1.355999798*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 1}
1.485132544-1.487671898*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 2}
1.400158487-1.542440204*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = 2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562-1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 1}
-2.414213562-1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 2}
-2.414213562-1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 1, n = 3}
-1.459780315-1.809552757*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 1}
-1.668298619-1.723181648*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 2}
-1.802041868-1.667783380*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 2, n = 3}
-1.283733949-1.355999798*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 1}
-1.343294580-1.487671898*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 2}
-1.428268637-1.542440204*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)-I*2^(1/2), k = 3, n = 3}
-2.414213562+1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 1}
-2.414213562+1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 2}
-2.414213562+1.414213562*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 1, n = 3}
-1.459780315+1.018874367*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 1}
-1.668298619+1.105245476*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 2}
-1.802041868+1.160643744*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 2, n = 3}
-1.283733949+1.472427326*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 1}
-1.343294580+1.340755226*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 2}
-1.428268637+1.285986920*I <- {j = -2^(1/2)+I*2^(1/2), c[j,k,n] = -2^(1/2)+I*2^(1/2), k = 3, n = 3}
Successful
3.11.E6 ${\displaystyle{\displaystyle T_{n}\left(x\right)=\cos\left(n\operatorname{% arccos}x\right)}}$ ChebyshevT(n, x)= cos(n*arccos(x)) ChebyshevT[n, x]= Cos[n*ArcCos[x]] Failure Successful Skip -
3.11.E7 ${\displaystyle{\displaystyle T_{n+1}\left(x\right)-2xT_{n}\left(x\right)+T_{n-% 1}\left(x\right)=0}}$ ChebyshevT(n + 1, x)- 2*x*ChebyshevT(n, x)+ ChebyshevT(n - 1, x)= 0 ChebyshevT[n + 1, x]- 2*x*ChebyshevT[n, x]+ ChebyshevT[n - 1, x]= 0 Successful Successful - -
3.11.E8 ${\displaystyle{\displaystyle\int_{-1}^{1}\frac{T_{j}\left(x\right)T_{k}\left(x% \right)}{\sqrt{1-x^{2}}}\mathrm{d}x=\begin{cases}\pi,&j}}\)% \@add@PDF@RDFa@triples\end{document}\end{cases}$ int((ChebyshevT(j, x)*ChebyshevT(k, x))/(sqrt(1 - (x)^(2))), x = - 1..1)= Integrate[Divide[ChebyshevT[j, x]*ChebyshevT[k, x],Sqrt[1 - (x)^(2)]], {x, - 1, 1}]= Error Failure - Error
3.11.E8 ${\displaystyle{\displaystyle\begin{cases}\pi,&j=k}}\)\@add@PDF@RDFa@triples% \end{document}\end{cases}$ Error Failure - Error
3.11.E8 ${\displaystyle{\displaystyle k=0,\\ \frac{1}{2}\pi,&j}}$ k = 0 ,(1)/(2)*Pi , k = 0 ,Divide[1,2]*Pi , Error Failure - -
3.11.E9 ${\displaystyle{\displaystyle\begin{cases}n,&j=k}}\)\@add@PDF@RDFa@triples% \end{document}\end{cases}$ Error Error - -
3.11.E13 ${\displaystyle{\displaystyle\epsilon_{n}(x)=d_{n+1}T_{n+1}\left(\frac{2x-a-b}{% b-a}\right)}}$ epsilon[n]*(x)= d[n + 1]*ChebyshevT(n + 1, (2*x - a - b)/(b - a)) Subscript[\[Epsilon], n]*(x)= Subscript[d, n + 1]*ChebyshevT[n + 1, Divide[2*x - a - b,b - a]] Failure Failure Skip Skip
3.11.E37 ${\displaystyle{\displaystyle\sum_{j=0}^{n-1}\phi_{k}(x_{j})\overline{\phi_{% \ell}(x_{j})}=n\delta_{k,\ell}}}$ sum(phi[k]*(x[j])* conjugate(phi[ell]*(x[j])), j = 0..n - 1)= n*KroneckerDelta[k, ell] Sum[Subscript[\[Phi], k]*(Subscript[x, j])* Conjugate[Subscript[\[Phi], \[ScriptL]]*(Subscript[x, j])], {j, 0, n - 1}]= n*KroneckerDelta[k, \[ScriptL]] Failure Failure Skip Skip
3.11.E39 ${\displaystyle{\displaystyle a_{k}=\frac{1}{n}\sum_{j=0}^{n-1}f_{j}\overline{% \phi_{k}(x_{j})}}}$ a[k]=(1)/(n)*sum(f[j]*conjugate(phi[k]*(x[j])), j = 0..n - 1) Subscript[a, k]=Divide[1,n]*Sum[Subscript[f, j]*Conjugate[Subscript[\[Phi], k]*(Subscript[x, j])], {j, 0, n - 1}] Failure Failure Skip Error
3.11#Ex6 ${\displaystyle{\displaystyle\omega_{n}=e^{2\pi i/n}}}$ omega[n]= exp(2*Pi*I/ n) Subscript[\[Omega], n]= Exp[2*Pi*I/ n] Failure Failure
Fail
.414213562+1.414213561*I <- {omega[n] = 2^(1/2)+I*2^(1/2), n = 1}
2.414213562+1.414213562*I <- {omega[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.914213562+.5481881580*I <- {omega[n] = 2^(1/2)+I*2^(1/2), n = 3}
.414213562-1.414213563*I <- {omega[n] = 2^(1/2)-I*2^(1/2), n = 1}
2.414213562-1.414213562*I <- {omega[n] = 2^(1/2)-I*2^(1/2), n = 2}
1.914213562-2.280238966*I <- {omega[n] = 2^(1/2)-I*2^(1/2), n = 3}
-2.414213562-1.414213563*I <- {omega[n] = -2^(1/2)-I*2^(1/2), n = 1}
-.414213562-1.414213562*I <- {omega[n] = -2^(1/2)-I*2^(1/2), n = 2}
-.9142135623-2.280238966*I <- {omega[n] = -2^(1/2)-I*2^(1/2), n = 3}
-2.414213562+1.414213561*I <- {omega[n] = -2^(1/2)+I*2^(1/2), n = 1}
-.414213562+1.414213562*I <- {omega[n] = -2^(1/2)+I*2^(1/2), n = 2}
-.9142135623+.5481881580*I <- {omega[n] = -2^(1/2)+I*2^(1/2), n = 3}
Successful