Results of Parabolic Cylinder Functions

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
12.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{z}-\left(\tfrac{1}{4}z^{2}+a\right)w = 0} diff(w, [z$(2)])-((1)/(4)*(z)^(2)+ a)* w = 0 D[w, {z, 2}]-(Divide[1,4]*(z)^(2)+ a)* w = 0 Failure Failure
Fail
1.414213562-5.414213560*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.414213561-2.585786437*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
1.414213562-5.414213560*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.414213561-2.585786437*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[1.4142135623730945, -5.414213562373096] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730954, -2.5857864376269055] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730945, -5.414213562373096] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730954, -2.5857864376269055] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{z}+\left(\tfrac{1}{4}z^{2}-a\right)w = 0} diff(w, [z$(2)])+((1)/(4)*(z)^(2)- a)* w = 0 D[w, {z, 2}]+(Divide[1,4]*(z)^(2)- a)* w = 0 Failure Failure
Fail
-1.414213561-2.585786437*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
1.414213562-5.414213560*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
-1.414213561-2.585786437*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.414213562-5.414213560*I <- {a = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-1.4142135623730954, -2.5857864376269055] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730945, -5.414213562373096] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730954, -2.5857864376269055] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730945, -5.414213562373096] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{z}+\left(\nu+\tfrac{1}{2}-\tfrac{1}{4}z^{2}\right)w = 0} diff(w, [z$(2)])+(nu +(1)/(2)-(1)/(4)*(z)^(2))* w = 0 D[w, {z, 2}]+(\[Nu]+Divide[1,2]-Divide[1,4]*(z)^(2))* w = 0 Failure Failure
Fail
2.121320342+3.292893218*I <- {nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-.7071067810+6.121320341*I <- {nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
2.121320342+3.292893218*I <- {nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.7071067810+6.121320341*I <- {nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[2.121320343559643, 3.292893218813453] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[6.121320343559643, -0.707106781186547] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.121320343559642, -4.707106781186548] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.8786796564403578, -0.7071067811865477] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerparaD{\nu}@{z} = \paraU@{-\tfrac{1}{2}-\nu}{z}} CylinderD(nu, z)= CylinderU(-(1)/(2)- nu, z) ParabolicCylinderD[\[Nu], z]= ParabolicCylinderD[--Divide[1,2]- \[Nu] - 1/2, z] Successful Failure -
Fail
Complex[0.6373277951223405, 0.24855575768220314] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[5.494742013097394, -8.693674717807955] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.2264312008959464, -0.021546439055701437] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.3291655729814447, 3.7734764780430785] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ν, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{0} = \frac{\sqrt{\pi}}{2^{\frac{1}{2}a+\frac{1}{4}}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}} CylinderU(a, 0)=(sqrt(Pi))/((2)^((1)/(2)*a +(1)/(4))* GAMMA((3)/(4)+(1)/(2)*a)) ParabolicCylinderD[-a - 1/2, 0]=Divide[Sqrt[Pi],(2)^(Divide[1,2]*a +Divide[1,4])* Gamma[Divide[3,4]+Divide[1,2]*a]] Successful Successful - -
12.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU'@{a}{0} = -\frac{\sqrt{\pi}}{2^{\frac{1}{2}a-\frac{1}{4}}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}} subs( temp=0, diff( CylinderU(a, temp), temp$(1) ) )= -(sqrt(Pi))/((2)^((1)/(2)*a -(1)/(4))* GAMMA((1)/(4)+(1)/(2)*a)) (D[ParabolicCylinderD[-a - 1/2, temp], {temp, 1}]/.temp-> 0)= -Divide[Sqrt[Pi],(2)^(Divide[1,2]*a -Divide[1,4])* Gamma[Divide[1,4]+Divide[1,2]*a]] Successful Successful - -
12.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{1}{4}}}{\left(\EulerGamma@{\frac{3}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}} CylinderV(a, 0)=(Pi*(2)^((1)/(2)*a +(1)/(4)))/((GAMMA((3)/(4)-(1)/(2)*a))^(2)* GAMMA((1)/(4)+(1)/(2)*a)) Error Successful Error - -
12.2.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV'@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{3}{4}}}{\left(\EulerGamma@{\frac{1}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}} subs( temp=0, diff( CylinderV(a, temp), temp$(1) ) )=(Pi*(2)^((1)/(2)*a +(3)/(4)))/((GAMMA((1)/(4)-(1)/(2)*a))^(2)* GAMMA((3)/(4)+(1)/(2)*a)) Error Successful Error - -
12.2.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian\left\{\paraU@{a}{z},\paraV@{a}{z}\right\} = \sqrt{2/\pi}} (CylinderU(a, z))*diff(CylinderV(a, z), z)-diff(CylinderU(a, z), z)*(CylinderV(a, z))=sqrt(2/ Pi) Error Failure Error Successful -
12.2.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian\left\{\paraU@{a}{z},\paraU@{a}{-z}\right\} = \frac{\sqrt{2\pi}}{\EulerGamma@{\frac{1}{2}+a}}} (CylinderU(a, z))*diff(CylinderU(a, - z), z)-diff(CylinderU(a, z), z)*(CylinderU(a, - z))=(sqrt(2*Pi))/(GAMMA((1)/(2)+ a)) Wronskian[{ParabolicCylinderD[-a - 1/2, z], ParabolicCylinderD[-a - 1/2, - z]}, z]=Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]] Failure Failure Successful Successful
12.2.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian\left\{\paraU@{a}{z},\paraU@{-a}{+ iz}\right\} = - ie^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}} (CylinderU(a, z))*diff(CylinderU(- a, + I*z), z)-diff(CylinderU(a, z), z)*(CylinderU(- a, + I*z))= - I*exp(+ I*Pi*((1)/(2)*a +(1)/(4))) Wronskian[{ParabolicCylinderD[-a - 1/2, z], ParabolicCylinderD[-- a - 1/2, + I*z]}, z]= - I*Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])] Failure Failure Successful
Fail
Complex[0.14811550020669734, -0.23555829917293641] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.05275467566832733, -0.08637346425615816] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.393334833694336, -1.5801979189958324] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-124.21447949802922, -41.9141177725009] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian\left\{\paraU@{a}{z},\paraU@{-a}{- iz}\right\} = + ie^{- i\pi(\frac{1}{2}a+\frac{1}{4})}} (CylinderU(a, z))*diff(CylinderU(- a, - I*z), z)-diff(CylinderU(a, z), z)*(CylinderU(- a, - I*z))= + I*exp(- I*Pi*((1)/(2)*a +(1)/(4))) Wronskian[{ParabolicCylinderD[-a - 1/2, z], ParabolicCylinderD[-- a - 1/2, - I*z]}, z]= + I*Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])] Failure Failure Successful
Fail
Complex[1.7828893409022697, 7.309124598403374] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.6470896010983296, 11.133201917893151] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[12.667352367459173, 6.462811262967247] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.2682027250441195, 0.1306629371451986] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{-n-\tfrac{1}{2}}{-z} = (-1)^{n}\paraU@{-n-\tfrac{1}{2}}{z}} CylinderU(- n -(1)/(2), - z)=(- 1)^(n)* CylinderU(- n -(1)/(2), z) ParabolicCylinderD[-- n -Divide[1,2] - 1/2, - z]=(- 1)^(n)* ParabolicCylinderD[-- n -Divide[1,2] - 1/2, z] Failure Failure Successful Successful
12.2.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{n+\tfrac{1}{2}}{-z} = (-1)^{n}\paraV@{n+\tfrac{1}{2}}{z}} CylinderV(n +(1)/(2), - z)=(- 1)^(n)* CylinderV(n +(1)/(2), z) Error Failure Error Successful -
12.2.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{-z} = -\sin@{\pi a}\paraU@{a}{z}+\frac{\pi}{\EulerGamma@{\frac{1}{2}+a}}\paraV@{a}{z}} CylinderU(a, - z)= - sin(Pi*a)*CylinderU(a, z)+(Pi)/(GAMMA((1)/(2)+ a))*CylinderV(a, z) Error Successful Error - -
12.2.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{-z} = \frac{\cos@{\pi a}}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sin@{\pi a}\paraV@{a}{z}} CylinderV(a, - z)=(cos(Pi*a))/(GAMMA((1)/(2)- a))*CylinderU(a, z)+ sin(Pi*a)*CylinderV(a, z) Error Failure Error Successful -
12.2.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2\pi}\paraU@{-a}{+ iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)} sqrt(2*Pi)*CylinderU(- a, + I*z)= GAMMA((1)/(2)+ a)*(exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, z)+ exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, - z)) Sqrt[2*Pi]*ParabolicCylinderD[-- a - 1/2, + I*z]= Gamma[Divide[1,2]+ a]*(Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[-a - 1/2, z]+ Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[-a - 1/2, - z]) Failure Failure Successful
Fail
Complex[-2.155433665722218, -2.0290531891335233] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.3367861286344187, -0.6580032872978093] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-5.914157355854969, -11.153359556689384] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[92.56613149692683, 18.07525013091991] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2\pi}\paraU@{-a}{- iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)} sqrt(2*Pi)*CylinderU(- a, - I*z)= GAMMA((1)/(2)+ a)*(exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, z)+ exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, - z)) Sqrt[2*Pi]*ParabolicCylinderD[-- a - 1/2, - I*z]= Gamma[Divide[1,2]+ a]*(Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[-a - 1/2, z]+ Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[-a - 1/2, - z]) Failure Failure Successful
Fail
Complex[-5.914157355854969, -11.153359556689384] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[92.56613149692683, 18.07525013091991] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.155433665722218, -2.0290531891335233] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.3367861286344187, -0.6580032872978093] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}+e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}\right)} sqrt(2*Pi)*CylinderU(a, z)= GAMMA((1)/(2)- a)*(exp(- I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, + I*z)+ exp(+ I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, - I*z)) Sqrt[2*Pi]*ParabolicCylinderD[-a - 1/2, z]= Gamma[Divide[1,2]- a]*(Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[-- a - 1/2, + I*z]+ Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[-- a - 1/2, - I*z]) Failure Failure Successful
Fail
Complex[0.10912779491905389, 1.6001420083926765] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.5516631154927725, 0.012853611485611899] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.6505649452472415, 6.316478461243763] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-28.79709943083936, -39.22297340462678] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}+e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}\right)} sqrt(2*Pi)*CylinderU(a, z)= GAMMA((1)/(2)- a)*(exp(+ I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, - I*z)+ exp(- I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, + I*z)) Sqrt[2*Pi]*ParabolicCylinderD[-a - 1/2, z]= Gamma[Divide[1,2]- a]*(Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[-- a - 1/2, - I*z]+ Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[-- a - 1/2, + I*z]) Failure Failure Successful
Fail
Complex[0.10912779491905389, 1.6001420083926765] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.5516631154927725, 0.012853611485611899] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.6505649452472415, 6.316478461243763] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-28.79709943083936, -39.22297340462678] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = + ie^{+ i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}} CylinderU(a, z)= + I*exp(+ I*Pi*a)*CylinderU(a, - z)+(sqrt(2*Pi))/(GAMMA((1)/(2)+ a))*exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, + I*z) ParabolicCylinderD[-a - 1/2, z]= + I*Exp[+ I*Pi*a]*ParabolicCylinderD[-a - 1/2, - z]+Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]*Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[-- a - 1/2, + I*z] Failure Failure Successful
Fail
Complex[0.04310956766516494, 0.6077329076178599] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.040829587948855356, 0.14655410699953625] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.6609728840735412, 2.5128092684920165] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-11.485901419364549, -15.648449818478493] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = - ie^{- i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}} CylinderU(a, z)= - I*exp(- I*Pi*a)*CylinderU(a, - z)+(sqrt(2*Pi))/(GAMMA((1)/(2)+ a))*exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, - I*z) ParabolicCylinderD[-a - 1/2, z]= - I*Exp[- I*Pi*a]*ParabolicCylinderD[-a - 1/2, - z]+Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]*Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[-- a - 1/2, - I*z] Failure Failure Successful
Fail
Complex[111.04952307011636, -190.96406860603162] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[587.0445111625338, 1542.4071633053381] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[10.224359018803703, -50.78000597255555] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[6.66355099948441, -11.085954332579782] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.2.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{z} = \frac{- i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}} CylinderV(a, z)=(- I)/(GAMMA((1)/(2)- a))*CylinderU(a, z)+sqrt((2)/(Pi))*exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, + I*z) Error Failure Error Successful -
12.2.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{z} = \frac{+ i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}} CylinderV(a, z)=(+ I)/(GAMMA((1)/(2)- a))*CylinderU(a, z)+sqrt((2)/(Pi))*exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, - I*z) Error Failure Error Successful -
12.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \paraU@{a}{0}u_{1}(a,z)+\paraU'@{a}{0}u_{2}(a,z)} CylinderU(a, z)= CylinderU(a, 0)*u[1]*(a , z)+ subs( temp=0, diff( CylinderU(a, temp), temp$(1) ) )*u[2]*(a , z) ParabolicCylinderD[-a - 1/2, z]= ParabolicCylinderD[-a - 1/2, 0]*Subscript[u, 1]*(a , z)+ (D[ParabolicCylinderD[-a - 1/2, temp], {temp, 1}]/.temp-> 0)*Subscript[u, 2]*(a , z) Failure Failure Error Error
12.4.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{z} = \paraV@{a}{0}u_{1}(a,z)+\paraV'@{a}{0}u_{2}(a,z)} CylinderV(a, z)= CylinderV(a, 0)*u[1]*(a , z)+ subs( temp=0, diff( CylinderV(a, temp), temp$(1) ) )*u[2]*(a , z) Error Failure Error Error -
12.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{e^{-\frac{1}{4}z^{2}}}{\EulerGamma@{\frac{1}{2}+a}}\int_{0}^{\infty}t^{a-\frac{1}{2}}e^{-\frac{1}{2}t^{2}-zt}\diff{t}} CylinderU(a, z)=(exp(-(1)/(4)*(z)^(2)))/(GAMMA((1)/(2)+ a))*int((t)^(a -(1)/(2))* exp(-(1)/(2)*(t)^(2)- z*t), t = 0..infinity) ParabolicCylinderD[-a - 1/2, z]=Divide[Exp[-Divide[1,4]*(z)^(2)],Gamma[Divide[1,2]+ a]]*Integrate[(t)^(a -Divide[1,2])* Exp[-Divide[1,2]*(t)^(2)- z*t], {t, 0, Infinity}] Successful Successful - -
12.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{ze^{-\frac{1}{4}z^{2}}}{\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}\*\int_{0}^{\infty}t^{\frac{1}{2}a-\frac{3}{4}}e^{-t}\left(z^{2}+2t\right)^{-\frac{1}{2}a-\frac{3}{4}}\diff{t}} CylinderU(a, z)=(z*exp(-(1)/(4)*(z)^(2)))/(GAMMA((1)/(4)+(1)/(2)*a))* int((t)^((1)/(2)*a -(3)/(4))* exp(- t)*((z)^(2)+ 2*t)^(-(1)/(2)*a -(3)/(4)), t = 0..infinity) ParabolicCylinderD[-a - 1/2, z]=Divide[z*Exp[-Divide[1,4]*(z)^(2)],Gamma[Divide[1,4]+Divide[1,2]*a]]* Integrate[(t)^(Divide[1,2]*a -Divide[3,4])* Exp[- t]*((z)^(2)+ 2*t)^(-Divide[1,2]*a -Divide[3,4]), {t, 0, Infinity}] Failure Failure Skip Skip
12.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{e^{-\frac{1}{4}z^{2}}}{\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}\*\int_{0}^{\infty}t^{\frac{1}{2}a-\frac{1}{4}}e^{-t}\left(z^{2}+2t\right)^{-\frac{1}{2}a-\frac{1}{4}}\diff{t}} CylinderU(a, z)=(exp(-(1)/(4)*(z)^(2)))/(GAMMA((3)/(4)+(1)/(2)*a))* int((t)^((1)/(2)*a -(1)/(4))* exp(- t)*((z)^(2)+ 2*t)^(-(1)/(2)*a -(1)/(4)), t = 0..infinity) ParabolicCylinderD[-a - 1/2, z]=Divide[Exp[-Divide[1,4]*(z)^(2)],Gamma[Divide[3,4]+Divide[1,2]*a]]* Integrate[(t)^(Divide[1,2]*a -Divide[1,4])* Exp[- t]*((z)^(2)+ 2*t)^(-Divide[1,2]*a -Divide[1,4]), {t, 0, Infinity}] Failure Failure Skip Skip
12.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \sqrt{\frac{2}{\pi}}e^{\frac{1}{4}z^{2}}\*\int_{0}^{\infty}t^{-a-\frac{1}{2}}e^{-\frac{1}{2}t^{2}}\cos@{zt+\left(\tfrac{1}{2}a+\tfrac{1}{4}\right)\pi}\diff{t}} CylinderU(a, z)=sqrt((2)/(Pi))*exp((1)/(4)*(z)^(2))* int((t)^(- a -(1)/(2))* exp(-(1)/(2)*(t)^(2))*cos(z*t +((1)/(2)*a +(1)/(4))* Pi), t = 0..infinity) ParabolicCylinderD[-a - 1/2, z]=Sqrt[Divide[2,Pi]]*Exp[Divide[1,4]*(z)^(2)]* Integrate[(t)^(- a -Divide[1,2])* Exp[-Divide[1,2]*(t)^(2)]*Cos[z*t +(Divide[1,2]*a +Divide[1,4])* Pi], {t, 0, Infinity}] Successful Failure - Successful
12.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{\EulerGamma@{\frac{1}{2}-a}}{2\pi i}e^{-\frac{1}{4}z^{2}}\int_{-\infty}^{(0+)}e^{zt-\frac{1}{2}t^{2}}t^{a-\frac{1}{2}}\diff{t}} CylinderU(a, z)=(GAMMA((1)/(2)- a))/(2*Pi*I)*exp(-(1)/(4)*(z)^(2))*int(exp(z*t -(1)/(2)*(t)^(2))*(t)^(a -(1)/(2)), t = - infinity..(0 +)) ParabolicCylinderD[-a - 1/2, z]=Divide[Gamma[Divide[1,2]- a],2*Pi*I]*Exp[-Divide[1,4]*(z)^(2)]*Integrate[Exp[z*t -Divide[1,2]*(t)^(2)]*(t)^(a -Divide[1,2]), {t, - Infinity, (0 +)}] Error Failure - Error
12.5.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{e^{\frac{1}{4}z^{2}}}{i\sqrt{2\pi}}\int_{c-i\infty}^{c+i\infty}e^{-zt+\frac{1}{2}t^{2}}t^{-a-\frac{1}{2}}\diff{t}} CylinderU(a, z)=(exp((1)/(4)*(z)^(2)))/(I*sqrt(2*Pi))*int(exp(- z*t +(1)/(2)*(t)^(2))*(t)^(- a -(1)/(2)), t = c - I*infinity..c + I*infinity) ParabolicCylinderD[-a - 1/2, z]=Divide[Exp[Divide[1,4]*(z)^(2)],I*Sqrt[2*Pi]]*Integrate[Exp[- z*t +Divide[1,2]*(t)^(2)]*(t)^(- a -Divide[1,2]), {t, c - I*Infinity, c + I*Infinity}] Failure Failure Skip Error
12.5.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{e^{-\frac{1}{4}z^{2}}z^{-a-\frac{1}{2}}}{2\pi i\EulerGamma@{\frac{1}{2}+a}}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}+a-2t}2^{t}z^{2t}\diff{t}} CylinderU(a, z)=(exp(-(1)/(4)*(z)^(2))*(z)^(- a -(1)/(2)))/(2*Pi*I*GAMMA((1)/(2)+ a))* int(GAMMA(t)*GAMMA((1)/(2)+ a - 2*t)*(2)^(t)* (z)^(2*t), t = - I*infinity..I*infinity) ParabolicCylinderD[-a - 1/2, z]=Divide[Exp[-Divide[1,4]*(z)^(2)]*(z)^(- a -Divide[1,2]),2*Pi*I*Gamma[Divide[1,2]+ a]]* Integrate[Gamma[t]*Gamma[Divide[1,2]+ a - 2*t]*(2)^(t)* (z)^(2*t), {t, - I*Infinity, I*Infinity}] Failure Failure Skip Error
12.5.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{z} = \sqrt{\frac{2}{\pi}}\frac{e^{\frac{1}{4}z^{2}}z^{a-\frac{1}{2}}}{2\pi i\EulerGamma@{\frac{1}{2}-a}}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}-a-2t}2^{t}z^{2t}\cos@{\pi t}\diff{t}} CylinderV(a, z)=sqrt((2)/(Pi))*(exp((1)/(4)*(z)^(2))*(z)^(a -(1)/(2)))/(2*Pi*I*GAMMA((1)/(2)- a))* int(GAMMA(t)*GAMMA((1)/(2)- a - 2*t)*(2)^(t)* (z)^(2*t)* cos(Pi*t), t = - I*infinity..I*infinity) Error Failure Error Skip -
12.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{-\tfrac{1}{2}}{z} = \WhittakerparaD{0}@{z}} CylinderU(-(1)/(2), z)= CylinderD(0, z) ParabolicCylinderD[--Divide[1,2] - 1/2, z]= ParabolicCylinderD[0, z] Successful Failure -
Fail
Complex[-0.5535325382896138, 0.3790800612672758] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.5535325382896137, -0.3790800612672758] <- {Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.8272649632907405, 3.413116871149585] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.8272649632907406, -3.413116871149585] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
12.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerparaD{0}@{z} = e^{-\frac{1}{4}z^{2}}} CylinderD(0, z)= exp(-(1)/(4)*(z)^(2)) ParabolicCylinderD[0, z]= Exp[-Divide[1,4]*(z)^(2)] Successful Successful - -
12.7.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{-n-\tfrac{1}{2}}{z} = \WhittakerparaD{n}@{z}} CylinderU(- n -(1)/(2), z)= CylinderD(n, z) ParabolicCylinderD[-- n -Divide[1,2] - 1/2, z]= ParabolicCylinderD[n, z] Successful Failure - Successful
12.7.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{-\tfrac{1}{2}}{z} = (\ifrac{2}{\sqrt{\pi}}\,)e^{\frac{1}{4}z^{2}}\DawsonsintF@{z/\sqrt{2}}} CylinderV(-(1)/(2), z)=((2)/(sqrt(Pi)))* exp((1)/(4)*(z)^(2))*dawson(z/sqrt(2)) Error Successful Error - -
12.7.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{\tfrac{1}{2}}{z} = \WhittakerparaD{-1}@{z}} CylinderU((1)/(2), z)= CylinderD(- 1, z) ParabolicCylinderD[-Divide[1,2] - 1/2, z]= ParabolicCylinderD[- 1, z] Successful Successful - -
12.7.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerparaD{-1}@{z} = \sqrt{\tfrac{1}{2}\pi}\,e^{\frac{1}{4}z^{2}}\erfc@{z/\sqrt{2}}} CylinderD(- 1, z)=sqrt((1)/(2)*Pi)*exp((1)/(4)*(z)^(2))*erfc(z/sqrt(2)) ParabolicCylinderD[- 1, z]=Sqrt[Divide[1,2]*Pi]*Exp[Divide[1,4]*(z)^(2)]*Erfc[z/Sqrt[2]] Successful Successful - -
12.7.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{n+\tfrac{1}{2}}{z} = \WhittakerparaD{-n-1}@{z}} CylinderU(n +(1)/(2), z)= CylinderD(- n - 1, z) ParabolicCylinderD[-n +Divide[1,2] - 1/2, z]= ParabolicCylinderD[- n - 1, z] Successful Failure -
Fail
Complex[-0.033951461448720965, -0.03725090437629219] <- {Rule[n, 3], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.033951461448720965, 0.03725090437629219] <- {Rule[n, 3], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.34180963565085953, 2.078059729615049] <- {Rule[n, 3], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.34180963565085953, -2.078059729615049] <- {Rule[n, 3], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
12.7.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerparaD{-n-1}@{z} = \sqrt{\frac{\pi}{2}}\frac{(-1)^{n}}{n!}e^{-\frac{1}{4}z^{2}}\deriv[n]{\left(e^{\frac{1}{2}z^{2}}\erfc@{z/\sqrt{2}}\right)}{z}} CylinderD(- n - 1, z)=sqrt((Pi)/(2))*((- 1)^(n))/(factorial(n))*exp(-(1)/(4)*(z)^(2))*diff(exp((1)/(2)*(z)^(2))*erfc(z/sqrt(2)), [z$(n)]) ParabolicCylinderD[- n - 1, z]=Sqrt[Divide[Pi,2]]*Divide[(- 1)^(n),(n)!]*Exp[-Divide[1,4]*(z)^(2)]*D[Exp[Divide[1,2]*(z)^(2)]*Erfc[z/Sqrt[2]], {z, n}] Failure Failure Successful Successful
12.7.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{-2}{z} = \frac{z^{5/2}}{4\sqrt{2\pi}}\left(2\!\modBesselK{\frac{1}{4}}@{\tfrac{1}{4}z^{2}}+3\!\modBesselK{\frac{3}{4}}@{\tfrac{1}{4}z^{2}}-\modBesselK{\frac{5}{4}}@{\tfrac{1}{4}z^{2}}\right)} CylinderU(- 2, z)=((z)^(5/ 2))/(4*sqrt(2*Pi))*(2*BesselK((1)/(4), (1)/(4)*(z)^(2))+ 3*BesselK((3)/(4), (1)/(4)*(z)^(2))- BesselK((5)/(4), (1)/(4)*(z)^(2))) ParabolicCylinderD[-- 2 - 1/2, z]=Divide[(z)^(5/ 2),4*Sqrt[2*Pi]]*(2*BesselK[Divide[1,4], Divide[1,4]*(z)^(2)]+ 3*BesselK[Divide[3,4], Divide[1,4]*(z)^(2)]- BesselK[Divide[5,4], Divide[1,4]*(z)^(2)]) Failure Failure
Fail
-1.522148495+5.325348960*I <- {z = -2^(1/2)-I*2^(1/2)}
-1.522148495-5.325348960*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-2.176847672351804, -0.5824405608621696] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[PreDecrement[2], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.9645562602658246, -7.19064614909563] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[PreDecrement[2], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.138711633327063, -0.6435109071691986] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[PreDecrement[2], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.642441416717864, -0.8480286890415233] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[PreDecrement[2], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.7.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{-1}{z} = \frac{z^{3/2}}{2\sqrt{2\pi}}\left(\modBesselK{\frac{1}{4}}@{\tfrac{1}{4}z^{2}}+\modBesselK{\frac{3}{4}}@{\tfrac{1}{4}z^{2}}\right)} CylinderU(- 1, z)=((z)^(3/ 2))/(2*sqrt(2*Pi))*(BesselK((1)/(4), (1)/(4)*(z)^(2))+ BesselK((3)/(4), (1)/(4)*(z)^(2))) ParabolicCylinderD[-- 1 - 1/2, z]=Divide[(z)^(3/ 2),2*Sqrt[2*Pi]]*(BesselK[Divide[1,4], Divide[1,4]*(z)^(2)]+ BesselK[Divide[3,4], Divide[1,4]*(z)^(2)]) Failure Failure
Fail
-1.876943385-2.185260402*I <- {z = -2^(1/2)-I*2^(1/2)}
-1.876943385+2.185260402*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-0.5944827156757435, 1.0193657184065432] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[PreDecrement[1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.38219130358976394, -5.588839869826917] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[PreDecrement[1], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5563466766510021, 0.9582953720995141] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[PreDecrement[1], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.0600764600418031, 0.7537775902271894] <- {Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[PreDecrement[1], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.7.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{0}{z} = \sqrt{\frac{z}{2\pi}}\modBesselK{\frac{1}{4}}@{\tfrac{1}{4}z^{2}}} CylinderU(0, z)=sqrt((z)/(2*Pi))*BesselK((1)/(4), (1)/(4)*(z)^(2)) ParabolicCylinderD[-0 - 1/2, z]=Sqrt[Divide[z,2*Pi]]*BesselK[Divide[1,4], Divide[1,4]*(z)^(2)] Failure Failure
Fail
2.172244779+.8389494551*I <- {z = -2^(1/2)-I*2^(1/2)}
2.172244779-.8389494551*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[2.172244778329958, 0.8389494547782839] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.172244778329958, -0.8389494547782839] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
12.7.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{1}{z} = \frac{z^{3/2}}{\sqrt{2\pi}}\left(\modBesselK{\frac{3}{4}}@{\tfrac{1}{4}z^{2}}-\modBesselK{\frac{1}{4}}@{\tfrac{1}{4}z^{2}}\right)} CylinderU(1, z)=((z)^(3/ 2))/(sqrt(2*Pi))*(BesselK((3)/(4), (1)/(4)*(z)^(2))- BesselK((1)/(4), (1)/(4)*(z)^(2))) ParabolicCylinderD[-1 - 1/2, z]=Divide[(z)^(3/ 2),Sqrt[2*Pi]]*(BesselK[Divide[3,4], Divide[1,4]*(z)^(2)]- BesselK[Divide[1,4], Divide[1,4]*(z)^(2)]) Failure Failure
Fail
.172418861e-1+4.146422642*I <- {z = -2^(1/2)-I*2^(1/2)}
.172418861e-1-4.146422642*I <- {z = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.017241884225636828, 4.146422642593135] <- {Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.017241884225636828, -4.146422642593135] <- {Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
12.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = 2^{-\frac{1}{4}-\frac{1}{2}a}e^{-\frac{1}{4}z^{2}}\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}}} CylinderU(a, z)= (2)^(-(1)/(4)-(1)/(2)*a)* exp(-(1)/(4)*(z)^(2))*KummerU((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2)) ParabolicCylinderD[-a - 1/2, z]= (2)^(-Divide[1,4]-Divide[1,2]*a)* Exp[-Divide[1,4]*(z)^(2)]*HypergeometricU[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)] Failure Failure
Fail
-1.552891817+2.595743470*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.468308225-15.26302300*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
-1.468308225+15.26302300*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-1.552891817-2.595743470*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-1.5528918212023513, 2.595743468355251] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4683082379662649, -15.263023009398044] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.4683082379662649, 15.263023009398044] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.5528918212023513, -2.595743468355251] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2^{-\frac{1}{4}-\frac{1}{2}a}e^{-\frac{1}{4}z^{2}}\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = 2^{-\frac{3}{4}-\frac{1}{2}a}ze^{-\frac{1}{4}z^{2}}\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}}} (2)^(-(1)/(4)-(1)/(2)*a)* exp(-(1)/(4)*(z)^(2))*KummerU((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2))= (2)^(-(3)/(4)-(1)/(2)*a)* z*exp(-(1)/(4)*(z)^(2))*KummerU((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2)) (2)^(-Divide[1,4]-Divide[1,2]*a)* Exp[-Divide[1,4]*(z)^(2)]*HypergeometricU[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)]= (2)^(-Divide[3,4]-Divide[1,2]*a)* z*Exp[-Divide[1,4]*(z)^(2)]*HypergeometricU[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)] Failure Failure
Fail
-.8240048131+.2272943481*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
.1685356209+.1817412146*I <- {a = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
.1685356209-.1817412146*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
-.8240048131-.2272943481*I <- {a = 2^(1/2)-I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.8240048125018726, 0.22729434917761066] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.1685356207165261, 0.1817412145670384] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.1685356207165261, -0.1817412145670384] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.8240048125018726, -0.22729434917761066] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2^{-\frac{3}{4}-\frac{1}{2}a}ze^{-\frac{1}{4}z^{2}}\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = 2^{-\frac{1}{2}a}z^{-\frac{1}{2}}\WhittakerconfhyperW{-\frac{1}{2}a}{+\frac{1}{4}}@{\tfrac{1}{2}z^{2}}} (2)^(-(3)/(4)-(1)/(2)*a)* z*exp(-(1)/(4)*(z)^(2))*KummerU((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2))= (2)^(-(1)/(2)*a)* (z)^(-(1)/(2))* WhittakerW(-(1)/(2)*a, +(1)/(4), (1)/(2)*(z)^(2)) (2)^(-Divide[3,4]-Divide[1,2]*a)* z*Exp[-Divide[1,4]*(z)^(2)]*HypergeometricU[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)]= (2)^(-Divide[1,2]*a)* (z)^(-Divide[1,2])* WhittakerW[-Divide[1,2]*a, +Divide[1,4], Divide[1,2]*(z)^(2)] Failure Failure Skip
Fail
Complex[0.5256495808397417, 0.2983552316621309] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.17513841764178226, -0.006602796925256171] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.17513841764178226, 0.006602796925256171] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.5256495808397417, -0.2983552316621309] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2^{-\frac{3}{4}-\frac{1}{2}a}ze^{-\frac{1}{4}z^{2}}\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = 2^{-\frac{1}{2}a}z^{-\frac{1}{2}}\WhittakerconfhyperW{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}}} (2)^(-(3)/(4)-(1)/(2)*a)* z*exp(-(1)/(4)*(z)^(2))*KummerU((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2))= (2)^(-(1)/(2)*a)* (z)^(-(1)/(2))* WhittakerW(-(1)/(2)*a, -(1)/(4), (1)/(2)*(z)^(2)) (2)^(-Divide[3,4]-Divide[1,2]*a)* z*Exp[-Divide[1,4]*(z)^(2)]*HypergeometricU[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)]= (2)^(-Divide[1,2]*a)* (z)^(-Divide[1,2])* WhittakerW[-Divide[1,2]*a, -Divide[1,4], Divide[1,2]*(z)^(2)] Failure Failure Skip
Fail
Complex[0.5256495808397417, 0.2983552316621309] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.17513841764178226, -0.0066027969252561575] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.17513841764178226, 0.0066027969252561575] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.5256495808397417, -0.2983552316621309] <- {Rule[a, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z\paraU@{a}{z}-\paraU@{a-1}{z}+(a+\tfrac{1}{2})\paraU@{a+1}{z} = 0} z*CylinderU(a, z)- CylinderU(a - 1, z)+(a +(1)/(2))* CylinderU(a + 1, z)= 0 z*ParabolicCylinderD[-a - 1/2, z]- ParabolicCylinderD[-a - 1 - 1/2, z]+(a +Divide[1,2])* ParabolicCylinderD[-a + 1 - 1/2, z]= 0 Successful Failure -
Fail
Complex[-2.212392415520596, -2.7835289048360865] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.47884522381711175, 0.5350814275558994] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.550805211617881, -3.493113886500579] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[73.63864596732188, 31.232726056290662] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU'@{a}{z}+\tfrac{1}{2}z\paraU@{a}{z}+(a+\tfrac{1}{2})\paraU@{a+1}{z} = 0} subs( temp=z, diff( CylinderU(a, temp), temp$(1) ) )+(1)/(2)*z*CylinderU(a, z)+(a +(1)/(2))* CylinderU(a + 1, z)= 0 (D[ParabolicCylinderD[-a - 1/2, temp], {temp, 1}]/.temp-> z)+Divide[1,2]*z*ParabolicCylinderD[-a - 1/2, z]+(a +Divide[1,2])* ParabolicCylinderD[-a + 1 - 1/2, z]= 0 Successful Failure -
Fail
Complex[-1.2227570491036914, -2.308624400336341] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.2737322573556834, 0.45100801175309346] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[3.0354158227028893, -2.0443578293881037] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[48.97674308818175, 32.48331095383318] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.8.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU'@{a}{z}-\tfrac{1}{2}z\paraU@{a}{z}+\paraU@{a-1}{z} = 0} subs( temp=z, diff( CylinderU(a, temp), temp$(1) ) )-(1)/(2)*z*CylinderU(a, z)+ CylinderU(a - 1, z)= 0 (D[ParabolicCylinderD[-a - 1/2, temp], {temp, 1}]/.temp-> z)-Divide[1,2]*z*ParabolicCylinderD[-a - 1/2, z]+ ParabolicCylinderD[-a - 1 - 1/2, z]= 0 Successful Failure -
Fail
Complex[0.9896353664169044, 0.4749045044997455] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-0.20511296646142838, -0.0840734158028059] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.5153893889149921, 1.4487560571124753] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-24.66190287914013, 1.250584897542514] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.8.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\paraU'@{a}{z}+\paraU@{a-1}{z}+(a+\tfrac{1}{2})\paraU@{a+1}{z} = 0} 2*subs( temp=z, diff( CylinderU(a, temp), temp$(1) ) )+ CylinderU(a - 1, z)+(a +(1)/(2))* CylinderU(a + 1, z)= 0 2*(D[ParabolicCylinderD[-a - 1/2, temp], {temp, 1}]/.temp-> z)+ ParabolicCylinderD[-a - 1 - 1/2, z]+(a +Divide[1,2])* ParabolicCylinderD[-a + 1 - 1/2, z]= 0 Successful Failure -
Fail
Complex[-0.233121682686787, -1.8337198958365952] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.06861929089425498, 0.36693459595028755] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.520026433787896, -0.5956017722756277] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[24.314840209041613, 33.733895851375685] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[z, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z\paraV@{a}{z}-\paraV@{a+1}{z}+(a-\tfrac{1}{2})\paraV@{a-1}{z} = 0} z*CylinderV(a, z)- CylinderV(a + 1, z)+(a -(1)/(2))* CylinderV(a - 1, z)= 0 Error Successful Error - -
12.8.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV'@{a}{z}-\tfrac{1}{2}z\paraV@{a}{z}-(a-\tfrac{1}{2})\paraV@{a-1}{z} = 0} subs( temp=z, diff( CylinderV(a, temp), temp$(1) ) )-(1)/(2)*z*CylinderV(a, z)-(a -(1)/(2))* CylinderV(a - 1, z)= 0 Error Successful Error - -
12.8.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV'@{a}{z}+\tfrac{1}{2}z\paraV@{a}{z}-\paraV@{a+1}{z} = 0} subs( temp=z, diff( CylinderV(a, temp), temp$(1) ) )+(1)/(2)*z*CylinderV(a, z)- CylinderV(a + 1, z)= 0 Error Successful Error - -
12.8.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\paraV'@{a}{z}-\paraV@{a+1}{z}-(a-\tfrac{1}{2})\paraV@{a-1}{z} = 0} 2*subs( temp=z, diff( CylinderV(a, temp), temp$(1) ) )- CylinderV(a + 1, z)-(a -(1)/(2))* CylinderV(a - 1, z)= 0 Error Successful Error - -
12.8.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[m]{}{z}\left(e^{\frac{1}{4}z^{2}}\paraU@{a}{z}\right) = (-1)^{m}\Pochhammersym{\tfrac{1}{2}+a}{m}e^{\frac{1}{4}z^{2}}\paraU@{a+m}{z}} diff(exp((1)/(4)*(z)^(2))*CylinderU(a, z), [z$(m)])=(- 1)^(m)* pochhammer((1)/(2)+ a, m)*exp((1)/(4)*(z)^(2))*CylinderU(a + m, z) D[Exp[Divide[1,4]*(z)^(2)]*ParabolicCylinderD[-a - 1/2, z], {z, m}]=(- 1)^(m)* Pochhammer[Divide[1,2]+ a, m]*Exp[Divide[1,4]*(z)^(2)]*ParabolicCylinderD[-a + m - 1/2, z] Failure Failure Skip Skip
12.8.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[m]{}{z}\left(e^{-\frac{1}{4}z^{2}}\paraU@{a}{z}\right) = (-1)^{m}e^{-\frac{1}{4}z^{2}}\paraU@{a-m}{z}} diff(exp(-(1)/(4)*(z)^(2))*CylinderU(a, z), [z$(m)])=(- 1)^(m)* exp(-(1)/(4)*(z)^(2))*CylinderU(a - m, z) D[Exp[-Divide[1,4]*(z)^(2)]*ParabolicCylinderD[-a - 1/2, z], {z, m}]=(- 1)^(m)* Exp[-Divide[1,4]*(z)^(2)]*ParabolicCylinderD[-a - m - 1/2, z] Failure Failure Skip Skip
12.8.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[m]{}{z}\left(e^{\frac{1}{4}z^{2}}\paraV@{a}{z}\right) = e^{\frac{1}{4}z^{2}}\paraV@{a+m}{z}} diff(exp((1)/(4)*(z)^(2))*CylinderV(a, z), [z$(m)])= exp((1)/(4)*(z)^(2))*CylinderV(a + m, z) Error Failure Error Skip -
12.8.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[m]{}{z}\left(e^{-\frac{1}{4}z^{2}}\paraV@{a}{z}\right) = (-1)^{m}\Pochhammersym{\tfrac{1}{2}-a}{m}e^{-\frac{1}{4}z^{2}}\paraV@{a-m}{z}} diff(exp(-(1)/(4)*(z)^(2))*CylinderV(a, z), [z$(m)])=(- 1)^(m)* pochhammer((1)/(2)- a, m)*exp(-(1)/(4)*(z)^(2))*CylinderV(a - m, z) Error Failure Error Skip -
12.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{t} = \mu^{4}(t^{2}+ 1)w} diff(w, [t$(2)])= (mu)^(4)*((t)^(2)+ 1)* w D[w, {t, 2}]= (\[Mu])^(4)*((t)^(2)+ 1)* w Failure Failure
Fail
-67.88225086+113.1370848*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
113.1370848+67.88225084*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
67.88225084-113.1370848*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
-113.1370848-67.88225084*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-67.88225099390857, 113.13708498984761] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-67.88225099390857, 113.13708498984761] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-67.88225099390857, 113.13708498984761] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-67.88225099390857, 113.13708498984761] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{t} = \mu^{4}(t^{2}- 1)w} diff(w, [t$(2)])= (mu)^(4)*((t)^(2)- 1)* w D[w, {t, 2}]= (\[Mu])^(4)*((t)^(2)- 1)* w Failure Failure
Fail
-113.1370848+67.88225086*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
67.88225084+113.1370848*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
113.1370848-67.88225084*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
-67.88225084-113.1370848*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-113.13708498984761, 67.88225099390857] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-113.13708498984761, 67.88225099390857] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-113.13708498984761, 67.88225099390857] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-113.13708498984761, 67.88225099390857] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.12.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-\frac{1}{4}t^{2}}t^{\mu-1}\paraU@{a}{t}\diff{t} = \frac{\sqrt{\pi}2^{-\frac{1}{2}(\mu+a+\frac{1}{2})}\EulerGamma@{\mu}}{\EulerGamma@{\frac{1}{2}(\mu+a+\frac{3}{2})}}} int(exp(-(1)/(4)*(t)^(2))*(t)^(mu - 1)* CylinderU(a, t), t = 0..infinity)=(sqrt(Pi)*(2)^(-(1)/(2)*(mu + a +(1)/(2)))* GAMMA(mu))/(GAMMA((1)/(2)*(mu + a +(3)/(2)))) Integrate[Exp[-Divide[1,4]*(t)^(2)]*(t)^(\[Mu]- 1)* ParabolicCylinderD[-a - 1/2, t], {t, 0, Infinity}]=Divide[Sqrt[Pi]*(2)^(-Divide[1,2]*(\[Mu]+ a +Divide[1,2]))* Gamma[\[Mu]],Gamma[Divide[1,2]*(\[Mu]+ a +Divide[3,2])]] Failure Failure Skip Error
12.12.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-\frac{3}{4}t^{2}}t^{-a-\frac{3}{2}}\paraU@{a}{t}\diff{t} = 2^{\frac{1}{4}+\frac{1}{2}a}\EulerGamma@{-a-\tfrac{1}{2}}\cos@{(\tfrac{1}{4}a+\tfrac{1}{8})\pi}} int(exp(-(3)/(4)*(t)^(2))*(t)^(- a -(3)/(2))* CylinderU(a, t), t = 0..infinity)= (2)^((1)/(4)+(1)/(2)*a)* GAMMA(- a -(1)/(2))*cos(((1)/(4)*a +(1)/(8))* Pi) Integrate[Exp[-Divide[3,4]*(t)^(2)]*(t)^(- a -Divide[3,2])* ParabolicCylinderD[-a - 1/2, t], {t, 0, Infinity}]= (2)^(Divide[1,4]+Divide[1,2]*a)* Gamma[- a -Divide[1,2]]*Cos[(Divide[1,4]*a +Divide[1,8])* Pi] Failure Failure Skip Successful
12.12.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-\frac{1}{4}t^{2}}t^{-a-\frac{1}{2}}(x^{2}+t^{2})^{-1}\paraU@{a}{t}\diff{t} = \sqrt{\pi/2}\EulerGamma@{\tfrac{1}{2}-a}x^{-a-\frac{3}{2}}e^{\frac{1}{4}x^{2}}\paraU@{-a}{x}} int(exp(-(1)/(4)*(t)^(2))*(t)^(- a -(1)/(2))*((x)^(2)+ (t)^(2))^(- 1)* CylinderU(a, t), t = 0..infinity)=sqrt(Pi/ 2)*GAMMA((1)/(2)- a)*(x)^(- a -(3)/(2))* exp((1)/(4)*(x)^(2))*CylinderU(- a, x) Integrate[Exp[-Divide[1,4]*(t)^(2)]*(t)^(- a -Divide[1,2])*((x)^(2)+ (t)^(2))^(- 1)* ParabolicCylinderD[-a - 1/2, t], {t, 0, Infinity}]=Sqrt[Pi/ 2]*Gamma[Divide[1,2]- a]*(x)^(- a -Divide[3,2])* Exp[Divide[1,4]*(x)^(2)]*ParabolicCylinderD[-- a - 1/2, x] Failure Failure Skip Error
12.13.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{x+y} = e^{\frac{1}{2}xy+\frac{1}{4}y^{2}}\sum_{m=0}^{\infty}\frac{(-y)^{m}}{m!}\paraU@{a-m}{x}} CylinderU(a, x + y)= exp((1)/(2)*x*y +(1)/(4)*(y)^(2))*sum(((- y)^(m))/(factorial(m))*CylinderU(a - m, x), m = 0..infinity) ParabolicCylinderD[-a - 1/2, x + y]= Exp[Divide[1,2]*x*y +Divide[1,4]*(y)^(2)]*Sum[Divide[(- y)^(m),(m)!]*ParabolicCylinderD[-a - m - 1/2, x], {m, 0, Infinity}] Failure Failure Skip Skip
12.13.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{x\cos@@{t}+y\sin@@{t}}\\ = e^{\frac{1}{4}(x\sin@@{t}-y\cos@@{t})^{2}}\*\sum_{m=0}^{\infty}\binom{-a-\tfrac{1}{2}}{m}(\tan@@{t})^{m}\paraU@{m+a}{x}\paraU@{-m-\tfrac{1}{2}}{y}} CylinderU(a, x*cos(t)+ y*sin(t))= exp((1)/(4)*(x*sin(t)- y*cos(t))^(2))* sum(binomial(- a -(1)/(2),m)*(tan(t))^(m)* CylinderU(m + a, x)*CylinderU(- m -(1)/(2), y), m = 0..infinity) ParabolicCylinderD[-a - 1/2, x*Cos[t]+ y*Sin[t]]= Exp[Divide[1,4]*(x*Sin[t]- y*Cos[t])^(2)]* Sum[Binomial[- a -Divide[1,2],m]*(Tan[t])^(m)* ParabolicCylinderD[-m + a - 1/2, x]*ParabolicCylinderD[-- m -Divide[1,2] - 1/2, y], {m, 0, Infinity}] Error Error - -
12.14.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w_{1}(a,x) = e^{-\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{1}{4}-\tfrac{1}{2}ia}{\tfrac{1}{2}}{\tfrac{1}{2}ix^{2}}} w[1]*(a , x)= exp(-(1)/(4)*I*(x)^(2))*KummerM((1)/(4)-(1)/(2)*I*a, (1)/(2), (1)/(2)*I*(x)^(2)) Subscript[w, 1]*(a , x)= Exp[-Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[1,4]-Divide[1,2]*I*a, Divide[1,2], Divide[1,2]*I*(x)^(2)] Failure Failure Error Error
12.14.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{1}{4}-\tfrac{1}{2}ia}{\tfrac{1}{2}}{\tfrac{1}{2}ix^{2}} = e^{\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{1}{4}+\tfrac{1}{2}ia}{\tfrac{1}{2}}{-\tfrac{1}{2}ix^{2}}} exp(-(1)/(4)*I*(x)^(2))*KummerM((1)/(4)-(1)/(2)*I*a, (1)/(2), (1)/(2)*I*(x)^(2))= exp((1)/(4)*I*(x)^(2))*KummerM((1)/(4)+(1)/(2)*I*a, (1)/(2), -(1)/(2)*I*(x)^(2)) Exp[-Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[1,4]-Divide[1,2]*I*a, Divide[1,2], Divide[1,2]*I*(x)^(2)]= Exp[Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[1,4]+Divide[1,2]*I*a, Divide[1,2], -Divide[1,2]*I*(x)^(2)] Failure Successful Successful -
12.14.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w_{2}(a,x) = xe^{-\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{3}{4}-\tfrac{1}{2}ia}{\tfrac{3}{2}}{\tfrac{1}{2}ix^{2}}} w[2]*(a , x)= x*exp(-(1)/(4)*I*(x)^(2))*KummerM((3)/(4)-(1)/(2)*I*a, (3)/(2), (1)/(2)*I*(x)^(2)) Subscript[w, 2]*(a , x)= x*Exp[-Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[3,4]-Divide[1,2]*I*a, Divide[3,2], Divide[1,2]*I*(x)^(2)] Failure Failure Error Error
12.14.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle xe^{-\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{3}{4}-\tfrac{1}{2}ia}{\tfrac{3}{2}}{\tfrac{1}{2}ix^{2}} = xe^{\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{3}{4}+\tfrac{1}{2}ia}{\tfrac{3}{2}}{-\tfrac{1}{2}ix^{2}}} x*exp(-(1)/(4)*I*(x)^(2))*KummerM((3)/(4)-(1)/(2)*I*a, (3)/(2), (1)/(2)*I*(x)^(2))= x*exp((1)/(4)*I*(x)^(2))*KummerM((3)/(4)+(1)/(2)*I*a, (3)/(2), -(1)/(2)*I*(x)^(2)) x*Exp[-Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[3,4]-Divide[1,2]*I*a, Divide[3,2], Divide[1,2]*I*(x)^(2)]= x*Exp[Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[3,4]+Divide[1,2]*I*a, Divide[3,2], -Divide[1,2]*I*(x)^(2)] Failure Successful Successful -
12.14.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{t} = \mu^{4}(1-t^{2})w} diff(w, [t$(2)])= (mu)^(4)*(1 - (t)^(2))* w D[w, {t, 2}]= (\[Mu])^(4)*(1 - (t)^(2))* w Failure Failure
Fail
113.1370848-67.88225086*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2)}
-67.88225084-113.1370848*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = 2^(1/2)-I*2^(1/2)}
-113.1370848+67.88225084*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)-I*2^(1/2)}
67.88225084+113.1370848*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), w = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[113.13708498984761, -67.88225099390857] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[113.13708498984761, -67.88225099390857] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[113.13708498984761, -67.88225099390857] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[113.13708498984761, -67.88225099390857] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[μ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
12.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{z}+\left(\nu+\lambda^{-1}-\lambda^{-2}z^{\lambda}\right)w = 0} diff(w, [z$(2)])+(nu + (lambda)^(- 1)- (lambda)^(- 2)* (z)^(lambda))* w = 0 D[w, {z, 2}]+(\[Nu]+ (\[Lambda])^(- 1)- (\[Lambda])^(- 2)* (z)^(\[Lambda]))* w = 0 Failure Failure
Fail
.8849712009+3.576499096*I <- {lambda = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)+I*2^(1/2)}
-1.464705312+7.209161093*I <- {lambda = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = 2^(1/2)-I*2^(1/2)}
38.31009603+4.160077343*I <- {lambda = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)-I*2^(1/2)}
1.044102247+4.017893257*I <- {lambda = 2^(1/2)+I*2^(1/2), nu = 2^(1/2)+I*2^(1/2), w = 2^(1/2)+I*2^(1/2), z = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Skip
12.17.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\xi^{2}+\eta^{2}}\left(\pderiv[2]{w}{\xi}+\pderiv[2]{w}{\eta}\right)+\pderiv[2]{w}{\zeta}+k^{2}w = 0} (1)/((xi)^(2)+ (eta)^(2))*(diff(w, [xi$(2)])+ diff(w, [eta$(2)]))+ diff(w, [zeta$(2)])+ (k)^(2)* w = 0 Divide[1,(\[Xi])^(2)+ (\[Eta])^(2)]*(D[w, {\[Xi], 2}]+ D[w, {\[Eta], 2}])+ D[w, {\[zeta], 2}]+ (k)^(2)* w = 0 Failure Failure
Fail
1.414213562+1.414213562*I <- {w = 2^(1/2)+I*2^(1/2), k = 1}
5.656854248+5.656854248*I <- {w = 2^(1/2)+I*2^(1/2), k = 2}
12.72792206+12.72792206*I <- {w = 2^(1/2)+I*2^(1/2), k = 3}
1.414213562-1.414213562*I <- {w = 2^(1/2)-I*2^(1/2), k = 1}
... skip entries to safe data
Error
12.17#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{\paraU}{\xi}+\left(\sigma\xi^{2}+\lambda\right)\paraU = 0} diff(CylinderU(xi, +), [(sigma*(xi)^(2)+ lambda)*$(2)])*CylinderU(=, 0) D[ParabolicCylinderD[-\[Xi] - 1/2, +], {(\[Sigma]*(\[Xi])^(2)+ \[Lambda])*, 2}]*ParabolicCylinderD[-= - 1/2, 0] Error Error - -
12.17#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{\paraV}{\eta}+\left(\sigma\eta^{2}-\lambda\right)\paraV = 0} diff(CylinderV(eta, +), [(sigma*(eta)^(2)- lambda)*$(2)])*CylinderV(=, 0) Error Error Error - -