Results of Weierstrass Elliptic and Modular Functions
Jump to navigation
Jump to search
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
23.5#Ex8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = \compellintKk'@{k}} | EllipticK(k)= subs( temp=k, diff( EllipticK(temp), temp$(1) ) ) |
EllipticK[(k)^2]= (D[EllipticK[(temp)^2], {temp, 1}]/.temp-> k) |
Failure | Failure | Error | Fail
Complex[1.3320292471861073, -1.3934110303935494] <- {Rule[k, 2]} Complex[0.7299050661514341, -1.0197357312195425] <- {Rule[k, 3]} |
23.5#Ex8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk'@{k} = \ifrac{\left(\EulerGamma@{\tfrac{1}{4}}\right)^{2}}{\left(4\sqrt{\pi}\right)}} | subs( temp=k, diff( EllipticK(temp), temp$(1) ) )=((GAMMA((1)/(4)))^(2))/(4*sqrt(Pi)) |
(D[EllipticK[(temp)^2], {temp, 1}]/.temp-> k)=Divide[(Gamma[Divide[1,4]])^(2),4*Sqrt[Pi]] |
Failure | Failure | Error | Fail
Complex[-2.343228747081181, 0.3151532066437278] <- {Rule[k, 2]} Complex[-2.044850831577895, 0.1768605538132445] <- {Rule[k, 3]} |
23.5#Ex11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k^{2} = e^{\iunit\pi/3}} | (k)^(2)= exp(I*Pi/ 3) |
(k)^(2)= Exp[I*Pi/ 3] |
Failure | Failure | Fail .5000000000-.8660254040*I <- {k = 1} 3.500000000-.8660254040*I <- {k = 2} 8.500000000-.8660254040*I <- {k = 3} |
Fail
Complex[0.4999999999999999, -0.8660254037844386] <- {Rule[k, 1]} Complex[3.5, -0.8660254037844386] <- {Rule[k, 2]} Complex[8.5, -0.8660254037844386] <- {Rule[k, 3]} |
23.5#Ex12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = e^{\iunit\pi/6}\compellintKk'@{k}} | EllipticK(k)= exp(I*Pi/ 6)*subs( temp=k, diff( EllipticK(temp), temp$(1) ) ) |
EllipticK[(k)^2]= Exp[I*Pi/ 6]*(D[EllipticK[(temp)^2], {temp, 1}]/.temp-> k) |
Failure | Failure | Error | Fail
Complex[1.4240716315220228, -1.1066114718975122] <- {Rule[k, 2]} Complex[0.7927761848213015, -0.9006528327976908] <- {Rule[k, 3]} |
23.5#Ex12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\iunit\pi/6}\compellintKk'@{k} = e^{\iunit\pi/12}\frac{3^{1/4}\left(\EulerGamma@{\frac{1}{3}}\right)^{3}}{2^{7/3}\pi}} | exp(I*Pi/ 6)*subs( temp=k, diff( EllipticK(temp), temp$(1) ) )= exp(I*Pi/ 12)*((3)^(1/ 4)*(GAMMA((1)/(3)))^(3))/((2)^(7/ 3)* Pi) |
Exp[I*Pi/ 6]*(D[EllipticK[(temp)^2], {temp, 1}]/.temp-> k)= Exp[I*Pi/ 12]*Divide[(3)^(1/ 4)*(Gamma[Divide[1,3]])^(3),(2)^(7/ 3)* Pi] |
Failure | Failure | Error | Fail
Complex[-2.1248830880335463, -0.38527593877730804] <- {Rule[k, 2]} Complex[-1.7973339068642127, -0.3558519315336056] <- {Rule[k, 3]} |
23.6.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \eta_{1} = -\frac{\pi^{2}}{12\omega_{1}}\frac{\Jacobithetaq{1}'''@{0}{q}}{\Jacobithetaq{1}'@{0}{q}}} | eta[1]= -((Pi)^(2))/(12*omega[1])*(subs( temp=0, diff( JacobiTheta1(temp, q), temp$(3) ) ))/(subs( temp=0, diff( JacobiTheta1(temp, q), temp$(1) ) )) |
Subscript[\[Eta], 1]= -Divide[(Pi)^(2),12*Subscript[\[Omega], 1]]*Divide[D[EllipticTheta[1, temp, q], {temp, 3}]/.temp-> 0,D[EllipticTheta[1, temp, q], {temp, 1}]/.temp-> 0] |
Failure | Failure | Error | Successful |
23.6#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk^{2}@@{k} = (\compellintKk@{k})^{2}} | (EllipticK(k))^(2)=(EllipticK(k))^(2) |
(EllipticK[(k)^2])^(2)=(EllipticK[(k)^2])^(2) |
Successful | Successful | - | - |
23.8.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \eta_{1} = \frac{\pi^{2}}{2\omega_{1}}\left(\frac{1}{6}+\sum_{n=1}^{\infty}\csc^{2}@{\frac{n\pi\omega_{3}}{\omega_{1}}}\right)} | eta[1]=((Pi)^(2))/(2*omega[1])*((1)/(6)+ sum((csc((n*Pi*omega[3])/(omega[1])))^(2), n = 1..infinity)) |
Subscript[\[Eta], 1]=Divide[(Pi)^(2),2*Subscript[\[Omega], 1]]*(Divide[1,6]+ Sum[(Csc[Divide[n*Pi*Subscript[\[Omega], 3],Subscript[\[Omega], 1]]])^(2), {n, 1, Infinity}]) |
Failure | Failure | Skip | Skip |
23.10.E15 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A_{n} = \left(\frac{\pi^{2}G^{2}}{\omega_{1}}\right)^{n^{2}-1}\frac{q^{n(n-1)/2}}{i^{n-1}}\exp@{-\frac{(n-1)\eta_{1}}{3\omega_{1}}\left((2n-1)(\omega_{1}^{2}+\omega_{3}^{2})+3(n-1)\omega_{1}\omega_{3}\right)}} | A[n]=exp(-((n - 1)* eta[1])/(3*omega[1])*((2*n - 1)*(omega(omega[1])^(2)+ omega(omega[3])^(2))+ 3*(n - 1)*omega[1]*omega[3])) |
Subscript[A, n]=Exp[-Divide[(n - 1)* Subscript[\[Eta], 1],3*Subscript[\[Omega], 1]]*((2*n - 1)*(\[Omega](Subscript[\[Omega], 1])^(2)+ \[Omega](Subscript[\[Omega], 3])^(2))+ 3*(n - 1)*Subscript[\[Omega], 1]*Subscript[\[Omega], 3])] |
Failure | Failure | Error | Successful |
23.11#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle f_{1}(s,\tau) = \frac{\cosh^{2}@{\tfrac{1}{2}\tau s}}{1-2e^{-s}\cosh@{\tau s}+e^{-2s}}} | f[1]*(s , tau)=((cosh((1)/(2)*tau*s))^(2))/(1 - 2*exp(- s)*cosh(tau*s)+ exp(- 2*s)) |
Subscript[f, 1]*(s , \[Tau])=Divide[(Cosh[Divide[1,2]*\[Tau]*s])^(2),1 - 2*Exp[- s]*Cosh[\[Tau]*s]+ Exp[- 2*s]] |
Failure | Failure | Error | Error |
23.11#Ex2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle f_{2}(s,\tau) = \frac{\cos^{2}@{\tfrac{1}{2}s}}{1-2e^{i\tau s}\cos@@{s}+e^{2i\tau s}}} | f[2]*(s , tau)=((cos((1)/(2)*s))^(2))/(1 - 2*exp(I*tau*s)*cos(s)+ exp(2*I*tau*s)) |
Subscript[f, 2]*(s , \[Tau])=Divide[(Cos[Divide[1,2]*s])^(2),1 - 2*Exp[I*\[Tau]*s]*Cos[s]+ Exp[2*I*\[Tau]*s]] |
Failure | Failure | Error | Error |
23.15.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q = \exp@{-\pi\frac{\ccompellintKk@{k}}{\compellintKk@{k}}}} | q = exp(- Pi*(EllipticCK(k))/(EllipticK(k))) |
q = Exp[- Pi*Divide[EllipticK[1-(k)^2],EllipticK[(k)^2]]] |
Failure | Failure | Error | Fail
Complex[0.41421356237309515, 1.4142135623730951] <- {Rule[k, 1], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.4948305828127435, 1.61650806185012] <- {Rule[k, 2], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[1.5612675359881547, 1.6042143845245938] <- {Rule[k, 3], Rule[q, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[0.41421356237309515, -1.4142135623730951] <- {Rule[k, 1], Rule[q, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data |
23.15#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k = \frac{\Jacobithetaq{2}^{2}@{0}{q}}{\Jacobithetaq{3}^{2}@{0}{q}}} | k =((JacobiTheta2(0, q))^(2))/((JacobiTheta3(0, q))^(2)) |
k =Divide[(EllipticTheta[2, 0, q])^(2),(EllipticTheta[3, 0, q])^(2)] |
Failure | Failure | Error | Successful |
23.15.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(\tfrac{1}{2}\Jacobithetaq{1}'@{0}{q}\right)^{1/3} = e^{i\pi\tau/12}\Jacobithetatau{3}@{\tfrac{1}{2}\pi(1+\tau)}{3\tau}} | ((1)/(2)*subs( temp=0, diff( JacobiTheta1(temp, q), temp$(1) ) ))^(1/ 3)= exp(I*Pi*tau/ 12)*JacobiTheta3((1)/(2)*Pi*(1 + tau),exp(I*Pi*3*tau)) |
((Divide[1,2]*(D[EllipticTheta[1, temp, q], {temp, 1}]/.temp-> 0)))^(1/ 3)= Exp[I*Pi*\[Tau]/ 12]*EllipticTheta[3, Divide[1,2]*Pi*(1 + \[Tau]), 3*\[Tau]] |
Failure | Failure | Error | Successful |
23.18.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \varepsilon(\mathcal{A}) = \exp@{\pi i\left(\frac{a+d}{12c}+s(-d,c)\right)}} | varepsilon*(A)= exp(Pi*I*((a + d)/(12*c)+ s*(- d , c))) |
\[CurlyEpsilon]*(A)= Exp[Pi*I*(Divide[a + d,12*c]+ s*(- d , c))] |
Failure | Failure | Skip | Error |
23.22.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\omega_{1} = -2i\omega_{3}} | 2*omega[1]= - 2*I*omega[3] |
2*Subscript[\[Omega], 1]= - 2*I*Subscript[\[Omega], 3] |
Failure | Failure | Fail 0.+5.656854248*I <- {omega[1] = 2^(1/2)+I*2^(1/2), omega[3] = 2^(1/2)+I*2^(1/2)} 5.656854248+5.656854248*I <- {omega[1] = 2^(1/2)+I*2^(1/2), omega[3] = 2^(1/2)-I*2^(1/2)} 5.656854248+0.*I <- {omega[1] = 2^(1/2)+I*2^(1/2), omega[3] = -2^(1/2)-I*2^(1/2)} 5.656854248+0.*I <- {omega[1] = 2^(1/2)-I*2^(1/2), omega[3] = 2^(1/2)-I*2^(1/2)} ... skip entries to safe data |
Fail
Complex[0.0, 5.656854249492381] <- {Rule[Subscript[ω, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[5.656854249492381, 5.656854249492381] <- {Rule[Subscript[ω, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} 5.656854249492381 <- {Rule[Subscript[ω, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} 5.656854249492381 <- {Rule[Subscript[ω, 1], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data |
23.22.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -2i\omega_{3} = \frac{\left(\EulerGamma@{\frac{1}{4}}\right)^{2}}{2\sqrt{\pi}c^{1/4}}} | - 2*I*omega[3]=((GAMMA((1)/(4)))^(2))/(2*sqrt(Pi)*(c)^(1/ 4)) |
- 2*I*Subscript[\[Omega], 3]=Divide[(Gamma[Divide[1,4]])^(2),2*Sqrt[Pi]*(c)^(1/ 4)] |
Failure | Failure | Fail -.229827625-2.220102432*I <- {c = 2^(1/2)+I*2^(1/2), omega[3] = 2^(1/2)+I*2^(1/2)} -5.886681873-2.220102432*I <- {c = 2^(1/2)+I*2^(1/2), omega[3] = 2^(1/2)-I*2^(1/2)} -5.886681873+3.436751816*I <- {c = 2^(1/2)+I*2^(1/2), omega[3] = -2^(1/2)-I*2^(1/2)} -.229827625+3.436751816*I <- {c = 2^(1/2)+I*2^(1/2), omega[3] = -2^(1/2)+I*2^(1/2)} ... skip entries to safe data |
Fail
Complex[-0.22982762217633157, -2.2201024329857546] <- {Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-5.886681871668712, -2.2201024329857546] <- {Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-5.886681871668712, 3.436751816506626] <- {Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-0.22982762217633157, 3.436751816506626] <- {Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data |
23.22.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\omega_{1} = 2e^{-\pi i/3}\omega_{3}} | 2*omega[1]= 2*exp(- Pi*I/ 3)*omega[3] |
2*Subscript[\[Omega], 1]= 2*Exp[- Pi*I/ 3]*Subscript[\[Omega], 3] |
Failure | Failure | Fail -1.035276181+3.863703305*I <- {omega[1] = 2^(1/2)+I*2^(1/2), omega[3] = 2^(1/2)+I*2^(1/2)} 3.863703305+6.692130429*I <- {omega[1] = 2^(1/2)+I*2^(1/2), omega[3] = 2^(1/2)-I*2^(1/2)} 6.692130429+1.793150943*I <- {omega[1] = 2^(1/2)+I*2^(1/2), omega[3] = -2^(1/2)-I*2^(1/2)} 1.793150943-1.035276181*I <- {omega[1] = 2^(1/2)+I*2^(1/2), omega[3] = -2^(1/2)+I*2^(1/2)} ... skip entries to safe data |
Fail
Complex[-1.0352761804100834, 3.8637033051562732] <- {Rule[Subscript[ω, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[3.8637033051562732, 6.692130429902464] <- {Rule[Subscript[ω, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[6.692130429902464, 1.7931509443361073] <- {Rule[Subscript[ω, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[1.7931509443361073, -1.0352761804100834] <- {Rule[Subscript[ω, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data |
23.22.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2e^{-\pi i/3}\omega_{3} = \frac{\left(\EulerGamma@{\frac{1}{3}}\right)^{3}}{2\pi d^{1/6}}} | 2*exp(- Pi*I/ 3)*omega[3]=((GAMMA((1)/(3)))^(3))/(2*Pi*(d)^(1/ 6)) |
2*Exp[- Pi*I/ 3]*Subscript[\[Omega], 3]=Divide[(Gamma[Divide[1,3]])^(3),2*Pi*(d)^(1/ 6)] |
Failure | Failure | Fail 1.160957012-.6794528810*I <- {d = 2^(1/2)+I*2^(1/2), omega[3] = 2^(1/2)+I*2^(1/2)} -3.738022474-3.507880005*I <- {d = 2^(1/2)+I*2^(1/2), omega[3] = 2^(1/2)-I*2^(1/2)} -6.566449598+1.391099481*I <- {d = 2^(1/2)+I*2^(1/2), omega[3] = -2^(1/2)-I*2^(1/2)} -1.667470112+4.219526605*I <- {d = 2^(1/2)+I*2^(1/2), omega[3] = -2^(1/2)+I*2^(1/2)} ... skip entries to safe data |
Fail
Complex[1.160957015492158, -0.6794528810307349] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]} Complex[-3.7380224700741986, -3.5078800057769257] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]} Complex[-6.566449594820389, 1.391099479789431] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]} Complex[-1.6674701092540327, 4.219526604535622] <- {Rule[d, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[ω, 3], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]} ... skip entries to safe data |