Results of Zeta and Related Functions

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
25.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \sum_{n=1}^{\infty}\frac{1}{n^{s}}} Zeta(s)= sum((1)/((n)^(s)), n = 1..infinity) Zeta[s]= Sum[Divide[1,(n)^(s)], {n, 1, Infinity}] Failure Successful Skip -
25.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{1-2^{-s}}\sum_{n=0}^{\infty}\frac{1}{(2n+1)^{s}}} Zeta(s)=(1)/(1 - (2)^(- s))*sum((1)/((2*n + 1)^(s)), n = 0..infinity) Zeta[s]=Divide[1,1 - (2)^(- s)]*Sum[Divide[1,(2*n + 1)^(s)], {n, 0, Infinity}] Successful Successful - -
25.2.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{1-2^{1-s}}\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^{s}}} Zeta(s)=(1)/(1 - (2)^(1 - s))*sum(((- 1)^(n - 1))/((n)^(s)), n = 1..infinity) Zeta[s]=Divide[1,1 - (2)^(1 - s)]*Sum[Divide[(- 1)^(n - 1),(n)^(s)], {n, 1, Infinity}] Failure Successful Skip -
25.2.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{s-1}+\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!}\gamma_{n}(s-1)^{n}} Zeta(s)=(1)/(s - 1)+ sum(((- 1)^(n))/(factorial(n))*gamma[n]*(s - 1)^(n), n = 0..infinity) Zeta[s]=Divide[1,s - 1]+ Sum[Divide[(- 1)^(n),(n)!]*Subscript[\[Gamma], n]*(s - 1)^(n), {n, 0, Infinity}] Failure Failure Skip Skip
25.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta'@{s} = -\sum_{n=2}^{\infty}(\ln@@{n})n^{-s}} subs( temp=s, diff( Zeta(temp), temp$(1) ) )= - sum((ln(n))* (n)^(- s), n = 2..infinity) (D[Zeta[temp], {temp, 1}]/.temp-> s)= - Sum[(Log[n])* (n)^(- s), {n, 2, Infinity}] Successful Successful - -
25.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta^{(k)}@{s} = (-1)^{k}\sum_{n=2}^{\infty}(\ln@@{n})^{k}n^{-s}} subs( temp=s, diff( Zeta(temp), temp$(k) ) )=(- 1)^(k)* sum((ln(n))^(k)* (n)^(- s), n = 2..infinity) (D[Zeta[temp], {temp, k}]/.temp-> s)=(- 1)^(k)* Sum[(Log[n])^(k)* (n)^(- s), {n, 2, Infinity}] Failure Failure Skip Successful
25.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \sum_{k=1}^{N}\frac{1}{k^{s}}+\frac{N^{1-s}}{s-1}-s\int_{N}^{\infty}\frac{x-\floor{x}}{x^{s+1}}\diff{x}} Zeta(s)= sum((1)/((k)^(s)), k = 1..N)+((N)^(1 - s))/(s - 1)- s*int((x - floor(x))/((x)^(s + 1)), x = N..infinity) Zeta[s]= Sum[Divide[1,(k)^(s)], {k, 1, N}]+Divide[(N)^(1 - s),s - 1]- s*Integrate[Divide[x - Floor[x],(x)^(s + 1)], {x, N, Infinity}] Failure Failure Skip Successful
25.2.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \prod_{p}(1-p^{-s})^{-1}} Zeta(s)= product((1 - (p)^(- s))^(- 1), p = - infinity..infinity) Zeta[s]= Product[(1 - (p)^(- s))^(- 1), {p, - Infinity, Infinity}] Failure Failure Skip -
25.2.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{(2\pi)^{s}e^{-s-(\EulerConstant s/2)}}{2(s-1)\EulerGamma@{\tfrac{1}{2}s+1}}\prod_{\rho}\left(1-\frac{s}{\rho}\right)e^{s/\rho}} Zeta(s)=((2*Pi)^(s)* exp(- s -(gamma*s/ 2)))/(2*(s - 1)* GAMMA((1)/(2)*s + 1))*product((1 -(s)/(rho))* exp(s/ rho), rho = - infinity..infinity) Zeta[s]=Divide[(2*Pi)^(s)* Exp[- s -(EulerGamma*s/ 2)],2*(s - 1)* Gamma[Divide[1,2]*s + 1]]*Product[(1 -Divide[s,\[Rho]])* Exp[s/ \[Rho]], {\[Rho], - Infinity, Infinity}] Failure Failure Skip Skip
25.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{1-s} = 2(2\pi)^{-s}\cos@{\tfrac{1}{2}\pi s}\EulerGamma@{s}\Riemannzeta@{s}} Zeta(1 - s)= 2*(2*Pi)^(- s)* cos((1)/(2)*Pi*s)*GAMMA(s)*Zeta(s) Zeta[1 - s]= 2*(2*Pi)^(- s)* Cos[Divide[1,2]*Pi*s]*Gamma[s]*Zeta[s] Failure Successful Successful -
25.4.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = 2(2\pi)^{s-1}\sin@{\tfrac{1}{2}\pi s}\EulerGamma@{1-s}\Riemannzeta@{1-s}} Zeta(s)= 2*(2*Pi)^(s - 1)* sin((1)/(2)*Pi*s)*GAMMA(1 - s)*Zeta(1 - s) Zeta[s]= 2*(2*Pi)^(s - 1)* Sin[Divide[1,2]*Pi*s]*Gamma[1 - s]*Zeta[1 - s] Failure Successful Successful -
25.4.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannxi@{s} = \Riemannxi@{1-s}} (s)*(s-1)*GAMMA((s)/2)*Pi^(-(s)/2)*Zeta(s)/2 = (1 - s)*(1 - s-1)*GAMMA((1 - s)/2)*Pi^(-(1 - s)/2)*Zeta(1 - s)/2 Error Failure Error Successful -
25.4.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannxi@{s} = \tfrac{1}{2}s(s-1)\EulerGamma@{\tfrac{1}{2}s}\pi^{-s/2}\Riemannzeta@{s}} (s)*(s-1)*GAMMA((s)/2)*Pi^(-(s)/2)*Zeta(s)/2 =(1)/(2)*s*(s - 1)* GAMMA((1)/(2)*s)*(Pi)^(- s/ 2)* Zeta(s) Error Successful Error - -
25.4.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{k}\Riemannzeta^{(k)}@{1-s} = \frac{2}{(2\pi)^{s}}\sum_{m=0}^{k}\sum_{r=0}^{m}\binom{k}{m}\binom{m}{r}\left(\realpart@@{(c^{k-m})}\cos@{\tfrac{1}{2}\pi s}+\imagpart@@{(c^{k-m})}\sin@{\tfrac{1}{2}\pi s}\right)\EulerGamma^{(r)}@{s}\Riemannzeta^{(m-r)}@{s}} (- 1)^(k)* subs( temp=1 - s, diff( Zeta(temp), temp$(k) ) )=(2)/((2*Pi)^(s))*sum(sum(binomial(k,m)*binomial(m,r)*(Re((c)^(k - m))*cos((1)/(2)*Pi*s)+ Im((c)^(k - m))*sin((1)/(2)*Pi*s))* subs( temp=s, diff( GAMMA(temp), temp$(r) ) )*subs( temp=s, diff( Zeta(temp), temp$(m - r) ) ), r = 0..m), m = 0..k) (- 1)^(k)* (D[Zeta[temp], {temp, k}]/.temp-> 1 - s)=Divide[2,(2*Pi)^(s)]*Sum[Sum[Binomial[k,m]*Binomial[m,r]*(Re[(c)^(k - m)]*Cos[Divide[1,2]*Pi*s]+ Im[(c)^(k - m)]*Sin[Divide[1,2]*Pi*s])* (D[Gamma[temp], {temp, r}]/.temp-> s)*(D[Zeta[temp], {temp, m - r}]/.temp-> s), {r, 0, m}], {m, 0, k}] Failure Failure Skip Skip
25.4.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle c = -\ln@{2\pi}-\tfrac{1}{2}\pi\iunit} c = - ln(2*Pi)-(1)/(2)*Pi*I c = - Log[2*Pi]-Divide[1,2]*Pi*I Failure Failure
Fail
3.252090629+2.985009889*I <- {c = 2^(1/2)+I*2^(1/2)}
3.252090629+.156582765*I <- {c = 2^(1/2)-I*2^(1/2)}
.423663505+.156582765*I <- {c = -2^(1/2)-I*2^(1/2)}
.423663505+2.985009889*I <- {c = -2^(1/2)+I*2^(1/2)}
Fail
Complex[3.2520906287824403, 2.9850098891679915] <- {Rule[c, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.2520906287824403, 0.1565827644218014] <- {Rule[c, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.4236635040362502, 0.1565827644218014] <- {Rule[c, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.4236635040362502, 2.9850098891679915] <- {Rule[c, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
25.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}-1}\diff{x}} Zeta(s)=(1)/(GAMMA(s))*int(((x)^(s - 1))/(exp(x)- 1), x = 0..infinity) Zeta[s]=Divide[1,Gamma[s]]*Integrate[Divide[(x)^(s - 1),Exp[x]- 1], {x, 0, Infinity}] Failure Successful Skip -
25.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{e^{x}x^{s}}{(e^{x}-1)^{2}}\diff{x}} Zeta(s)=(1)/(GAMMA(s + 1))*int((exp(x)*(x)^(s))/((exp(x)- 1)^(2)), x = 0..infinity) Zeta[s]=Divide[1,Gamma[s + 1]]*Integrate[Divide[Exp[x]*(x)^(s),(Exp[x]- 1)^(2)], {x, 0, Infinity}] Failure Failure Skip Skip
25.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{(1-2^{1-s})\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}+1}\diff{x}} Zeta(s)=(1)/((1 - (2)^(1 - s))* GAMMA(s))*int(((x)^(s - 1))/(exp(x)+ 1), x = 0..infinity) Zeta[s]=Divide[1,(1 - (2)^(1 - s))* Gamma[s]]*Integrate[Divide[(x)^(s - 1),Exp[x]+ 1], {x, 0, Infinity}] Failure Successful Skip -
25.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{(1-2^{1-s})\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{e^{x}x^{s}}{(e^{x}+1)^{2}}\diff{x}} Zeta(s)=(1)/((1 - (2)^(1 - s))* GAMMA(s + 1))*int((exp(x)*(x)^(s))/((exp(x)+ 1)^(2)), x = 0..infinity) Zeta[s]=Divide[1,(1 - (2)^(1 - s))* Gamma[s + 1]]*Integrate[Divide[Exp[x]*(x)^(s),(Exp[x]+ 1)^(2)], {x, 0, Infinity}] Failure Failure Skip Skip
25.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = -s\int_{0}^{\infty}\frac{x-\floor{x}-\frac{1}{2}}{x^{s+1}}\diff{x}} Zeta(s)= - s*int((x - floor(x)-(1)/(2))/((x)^(s + 1)), x = 0..infinity) Zeta[s]= - s*Integrate[Divide[x - Floor[x]-Divide[1,2],(x)^(s + 1)], {x, 0, Infinity}] Failure Failure Skip Successful
25.5.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+\frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}\right)\frac{x^{s-1}}{e^{x}}\diff{x}} Zeta(s)=(1)/(2)+(1)/(s - 1)+(1)/(GAMMA(s))*int(((1)/(exp(x)- 1)-(1)/(x)+(1)/(2))*((x)^(s - 1))/(exp(x)), x = 0..infinity) Zeta[s]=Divide[1,2]+Divide[1,s - 1]+Divide[1,Gamma[s]]*Integrate[(Divide[1,Exp[x]- 1]-Divide[1,x]+Divide[1,2])*Divide[(x)^(s - 1),Exp[x]], {x, 0, Infinity}] Failure Failure Skip Successful
25.5.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+\sum_{m=1}^{n}\frac{\BernoullinumberB{2m}}{(2m)!}\Pochhammersym{s}{2m-1}+\frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}-\sum_{m=1}^{n}\frac{\BernoullinumberB{2m}}{(2m)!}x^{2m-1}\right)\frac{x^{s-1}}{e^{x}}\diff{x}} Zeta(s)=(1)/(2)+(1)/(s - 1)+ sum((bernoulli(2*m))/(factorial(2*m))*pochhammer(s, 2*m - 1)+(1)/(GAMMA(s))*int(((1)/(exp(x)- 1)-(1)/(x)+(1)/(2)- sum((bernoulli(2*m))/(factorial(2*m))*(x)^(2*m - 1), m = 1..n))*((x)^(s - 1))/(exp(x)), x = 0..infinity), m = 1..n) Zeta[s]=Divide[1,2]+Divide[1,s - 1]+ Sum[Divide[BernoulliB[2*m],(2*m)!]*Pochhammer[s, 2*m - 1]+Divide[1,Gamma[s]]*Integrate[(Divide[1,Exp[x]- 1]-Divide[1,x]+Divide[1,2]- Sum[Divide[BernoulliB[2*m],(2*m)!]*(x)^(2*m - 1), {m, 1, n}])*Divide[(x)^(s - 1),Exp[x]], {x, 0, Infinity}], {m, 1, n}] Failure Failure Skip Error
25.5.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{2(1-2^{-s})\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{\sinh@@{x}}\diff{x}} Zeta(s)=(1)/(2*(1 - (2)^(- s))* GAMMA(s))*int(((x)^(s - 1))/(sinh(x)), x = 0..infinity) Zeta[s]=Divide[1,2*(1 - (2)^(- s))* Gamma[s]]*Integrate[Divide[(x)^(s - 1),Sinh[x]], {x, 0, Infinity}] Failure Failure Skip Skip
25.5.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{2^{s-1}}{\EulerGamma@{s+1}}\int_{0}^{\infty}\frac{x^{s}}{(\sinh@@{x})^{2}}\diff{x}} Zeta(s)=((2)^(s - 1))/(GAMMA(s + 1))*int(((x)^(s))/((sinh(x))^(2)), x = 0..infinity) Zeta[s]=Divide[(2)^(s - 1),Gamma[s + 1]]*Integrate[Divide[(x)^(s),(Sinh[x])^(2)], {x, 0, Infinity}] Failure Failure Skip -
25.5.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{2^{s-1}}{1-2^{1-s}}\int_{0}^{\infty}\frac{\cos@{s\atan@@{x}}}{(1+x^{2})^{s/2}\cosh@{\frac{1}{2}\pi x}}\diff{x}} Zeta(s)=((2)^(s - 1))/(1 - (2)^(1 - s))*int((cos(s*arctan(x)))/((1 + (x)^(2))^(s/ 2)* cosh((1)/(2)*Pi*x)), x = 0..infinity) Zeta[s]=Divide[(2)^(s - 1),1 - (2)^(1 - s)]*Integrate[Divide[Cos[s*ArcTan[x]],(1 + (x)^(2))^(s/ 2)* Cosh[Divide[1,2]*Pi*x]], {x, 0, Infinity}] Failure Failure Skip Error
25.5.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{2}+\frac{1}{s-1}+2\int_{0}^{\infty}\frac{\sin@{s\atan@@{x}}}{(1+x^{2})^{s/2}(e^{2\pi x}-1)}\diff{x}} Zeta(s)=(1)/(2)+(1)/(s - 1)+ 2*int((sin(s*arctan(x)))/((1 + (x)^(2))^(s/ 2)*(exp(2*Pi*x)- 1)), x = 0..infinity) Zeta[s]=Divide[1,2]+Divide[1,s - 1]+ 2*Integrate[Divide[Sin[s*ArcTan[x]],(1 + (x)^(2))^(s/ 2)*(Exp[2*Pi*x]- 1)], {x, 0, Infinity}] Failure Successful Skip -
25.5.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{2^{s-1}}{s-1}-2^{s}\int_{0}^{\infty}\frac{\sin@{s\atan@@{x}}}{(1+x^{2})^{s/2}(e^{\pi x}+1)}\diff{x}} Zeta(s)=((2)^(s - 1))/(s - 1)- (2)^(s)* int((sin(s*arctan(x)))/((1 + (x)^(2))^(s/ 2)*(exp(Pi*x)+ 1)), x = 0..infinity) Zeta[s]=Divide[(2)^(s - 1),s - 1]- (2)^(s)* Integrate[Divide[Sin[s*ArcTan[x]],(1 + (x)^(2))^(s/ 2)*(Exp[Pi*x]+ 1)], {x, 0, Infinity}] Failure Successful Skip -
25.5.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{\pi^{s/2}}{s(s-1)\EulerGamma@{\frac{1}{2}s}}+\frac{\pi^{s/2}}{\EulerGamma@{\frac{1}{2}s}}\*\int_{1}^{\infty}\left(x^{s/2}+x^{(1-s)/2}\right)\frac{\omega(x)}{x}\diff{x}} Zeta(s)=((Pi)^(s/ 2))/(s*(s - 1)* GAMMA((1)/(2)*s))+((Pi)^(s/ 2))/(GAMMA((1)/(2)*s))* int(((x)^(s/ 2)+ (x)^((1 - s)/ 2))*(omega*(x))/(x), x = 1..infinity) Zeta[s]=Divide[(Pi)^(s/ 2),s*(s - 1)* Gamma[Divide[1,2]*s]]+Divide[(Pi)^(s/ 2),Gamma[Divide[1,2]*s]]* Integrate[((x)^(s/ 2)+ (x)^((1 - s)/ 2))*Divide[\[Omega]*(x),x], {x, 1, Infinity}] Failure Failure Skip Skip
25.5.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \omega(x) = \sum_{n=1}^{\infty}e^{-n^{2}\pi x}} omega*(x)= sum(exp(- (n)^(2)* Pi*x), n = 1..infinity) \[Omega]*(x)= Sum[Exp[- (n)^(2)* Pi*x], {n, 1, Infinity}] Failure Failure Skip
Fail
Complex[1.370996156766441, 1.4142135623730951] <- {Rule[x, 1], Rule[ω, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.826559682002321, 2.8284271247461903] <- {Rule[x, 2], Rule[ω, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[4.242559987601715, 4.242640687119286] <- {Rule[x, 3], Rule[ω, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.370996156766441, -1.4142135623730951] <- {Rule[x, 1], Rule[ω, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
25.5.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}e^{-n^{2}\pi x} = \frac{1}{2}\left(\Jacobithetatau{3}@{0}{ix}-1\right)} sum(exp(- (n)^(2)* Pi*x), n = 1..infinity)=(1)/(2)*(JacobiTheta3(0,exp(I*Pi*I*x))- 1) Sum[Exp[- (n)^(2)* Pi*x], {n, 1, Infinity}]=Divide[1,2]*(EllipticTheta[3, 0, I*x]- 1) Failure Failure Skip Successful
25.5.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{s-1}+\frac{\sin@{\pi s}}{\pi}\*\int_{0}^{\infty}(\ln@{1+x}-\digamma@{1+x})x^{-s}\diff{x}} Zeta(s)=(1)/(s - 1)+(sin(Pi*s))/(Pi)* int((ln(1 + x)- Psi(1 + x))* (x)^(- s), x = 0..infinity) Zeta[s]=Divide[1,s - 1]+Divide[Sin[Pi*s],Pi]* Integrate[(Log[1 + x]- PolyGamma[1 + x])* (x)^(- s), {x, 0, Infinity}] Failure Failure Skip Error
25.5.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{1}{s-1}+\frac{\sin@{\pi s}}{\pi(s-1)}\*\int_{0}^{\infty}\left(\frac{1}{1+x}-\digamma'@{1+x}\right)x^{1-s}\diff{x}} Zeta(s)=(1)/(s - 1)+(sin(Pi*s))/(Pi*(s - 1))* int(((1)/(1 + x)- subs( temp=1 + x, diff( Psi(temp), temp$(1) ) ))* (x)^(1 - s), x = 0..infinity) Zeta[s]=Divide[1,s - 1]+Divide[Sin[Pi*s],Pi*(s - 1)]* Integrate[(Divide[1,1 + x]- (D[PolyGamma[temp], {temp, 1}]/.temp-> 1 + x))* (x)^(1 - s), {x, 0, Infinity}] Failure Failure Skip -
25.5.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{1+s} = \frac{\sin@{\pi s}}{\pi}\int_{0}^{\infty}\left(\EulerConstant+\digamma@{1+x}\right)x^{-s-1}\diff{x}} Zeta(1 + s)=(sin(Pi*s))/(Pi)*int((gamma + Psi(1 + x))* (x)^(- s - 1), x = 0..infinity) Zeta[1 + s]=Divide[Sin[Pi*s],Pi]*Integrate[(EulerGamma + PolyGamma[1 + x])* (x)^(- s - 1), {x, 0, Infinity}] Failure Failure Skip Error
25.5.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{1+s} = \frac{\sin@{\pi s}}{\pi s}\int_{0}^{\infty}\digamma'@{1+x}x^{-s}\diff{x}} Zeta(1 + s)=(sin(Pi*s))/(Pi*s)*int(subs( temp=1 + x, diff( Psi(temp), temp$(1) ) )*(x)^(- s), x = 0..infinity) Zeta[1 + s]=Divide[Sin[Pi*s],Pi*s]*Integrate[(D[PolyGamma[temp], {temp, 1}]/.temp-> 1 + x)*(x)^(- s), {x, 0, Infinity}] Failure Failure Skip Skip
25.5.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{m+s} = (-1)^{m-1}\frac{\EulerGamma@{s}\sin@{\pi s}}{\pi\EulerGamma@{m+s}}\*\int_{0}^{\infty}\digamma^{(m)}@{1+x}x^{-s}\diff{x}} Zeta(m + s)=(- 1)^(m - 1)*(GAMMA(s)*sin(Pi*s))/(Pi*GAMMA(m + s))* int(subs( temp=1 + x, diff( Psi(temp), temp$(m) ) )*(x)^(- s), x = 0..infinity) Zeta[m + s]=(- 1)^(m - 1)*Divide[Gamma[s]*Sin[Pi*s],Pi*Gamma[m + s]]* Integrate[(D[PolyGamma[temp], {temp, m}]/.temp-> 1 + x)*(x)^(- s), {x, 0, Infinity}] Failure Failure Skip Error
25.5.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{\EulerGamma@{1-s}}{2\pi i}\int_{-\infty}^{(0+)}\frac{z^{s-1}}{e^{-z}-1}\diff{z}} Zeta(s)=(GAMMA(1 - s))/(2*Pi*I)*int(((z)^(s - 1))/(exp(- z)- 1), z = - infinity..(0 +)) Zeta[s]=Divide[Gamma[1 - s],2*Pi*I]*Integrate[Divide[(z)^(s - 1),Exp[- z]- 1], {z, - Infinity, (0 +)}] Error Failure - Error
25.5.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{s} = \frac{\EulerGamma@{1-s}}{2\pi i(1-2^{1-s})}\*\int_{-\infty}^{(0+)}\frac{z^{s-1}}{e^{-z}+1}\diff{z}} Zeta(s)=(GAMMA(1 - s))/(2*Pi*I*(1 - (2)^(1 - s)))* int(((z)^(s - 1))/(exp(- z)+ 1), z = - infinity..(0 +)) Zeta[s]=Divide[Gamma[1 - s],2*Pi*I*(1 - (2)^(1 - s))]* Integrate[Divide[(z)^(s - 1),Exp[- z]+ 1], {z, - Infinity, (0 +)}] Error Failure - Error
25.6#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{0} = -\frac{1}{2}} Zeta(0)= -(1)/(2) Zeta[0]= -Divide[1,2] Successful Successful - -
25.6#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{2} = \frac{\pi^{2}}{6}} Zeta(2)=((Pi)^(2))/(6) Zeta[2]=Divide[(Pi)^(2),6] Successful Successful - -
25.6#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{4} = \frac{\pi^{4}}{90}} Zeta(4)=((Pi)^(4))/(90) Zeta[4]=Divide[(Pi)^(4),90] Successful Successful - -
25.6#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{6} = \frac{\pi^{6}}{945}} Zeta(6)=((Pi)^(6))/(945) Zeta[6]=Divide[(Pi)^(6),945] Successful Successful - -
25.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{2n} = \frac{(2\pi)^{2n}}{2(2n)!}\left|\BernoullinumberB{2n}\right|} Zeta(2*n)=((2*Pi)^(2*n))/(2*factorial(2*n))*abs(bernoulli(2*n)) Zeta[2*n]=Divide[(2*Pi)^(2*n),2*(2*n)!]*Abs[BernoulliB[2*n]] Failure Failure Successful Successful
25.6.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{-n} = -\frac{\BernoullinumberB{n+1}}{n+1}} Zeta(- n)= -(bernoulli(n + 1))/(n + 1) Zeta[- n]= -Divide[BernoulliB[n + 1],n + 1] Failure Failure Successful Successful
25.6.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{-2n} = 0} Zeta(- 2*n)= 0 Zeta[- 2*n]= 0 Failure Failure Successful Successful
25.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{2k+1} = \frac{(-1)^{k+1}(2\pi)^{2k+1}}{2(2k+1)!}\int_{0}^{1}\BernoullipolyB{2k+1}@{t}\cot@{\pi t}\diff{t}} Zeta(2*k + 1)=((- 1)^(k + 1)*(2*Pi)^(2*k + 1))/(2*factorial(2*k + 1))*int(bernoulli(2*k + 1, t)*cot(Pi*t), t = 0..1) Zeta[2*k + 1]=Divide[(- 1)^(k + 1)*(2*Pi)^(2*k + 1),2*(2*k + 1)!]*Integrate[BernoulliB[2*k + 1, t]*Cot[Pi*t], {t, 0, 1}] Failure Failure Skip Successful
25.6.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{2} = \int_{0}^{1}\int_{0}^{1}\frac{1}{1-xy}\diff{x}\diff{y}} Zeta(2)= int(int((1)/(1 - x*y), x = 0..1), y = 0..1) Zeta[2]= Integrate[Integrate[Divide[1,1 - x*y], {x, 0, 1}], {y, 0, 1}] Successful Successful - -
25.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{2} = 3\sum_{k=1}^{\infty}\frac{1}{k^{2}\binom{2k}{k}}} Zeta(2)= 3*sum((1)/((k)^(2)*binomial(2*k,k)), k = 1..infinity) Zeta[2]= 3*Sum[Divide[1,(k)^(2)*Binomial[2*k,k]], {k, 1, Infinity}] Successful Successful - -
25.6.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{3} = \frac{5}{2}\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k^{3}\binom{2k}{k}}} Zeta(3)=(5)/(2)*sum(((- 1)^(k - 1))/((k)^(3)*binomial(2*k,k)), k = 1..infinity) Zeta[3]=Divide[5,2]*Sum[Divide[(- 1)^(k - 1),(k)^(3)*Binomial[2*k,k]], {k, 1, Infinity}] Failure Successful Skip -
25.6.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta@{4} = \frac{36}{17}\sum_{k=1}^{\infty}\frac{1}{k^{4}\binom{2k}{k}}} Zeta(4)=(36)/(17)*sum((1)/((k)^(4)*binomial(2*k,k)), k = 1..infinity) Zeta[4]=Divide[36,17]*Sum[Divide[1,(k)^(4)*Binomial[2*k,k]], {k, 1, Infinity}] Failure Successful Skip -
25.6.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta'@{0} = -\tfrac{1}{2}\ln@{2\pi}} subs( temp=0, diff( Zeta(temp), temp$(1) ) )= -(1)/(2)*ln(2*Pi) (D[Zeta[temp], {temp, 1}]/.temp-> 0)= -Divide[1,2]*Log[2*Pi] Successful Successful - -
25.6.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta''@{0} = -\tfrac{1}{2}(\ln@{2\pi})^{2}+\tfrac{1}{2}\EulerConstant^{2}-\tfrac{1}{24}\pi^{2}+\gamma_{1}} subs( temp=0, diff( Zeta(temp), temp$(2) ) )= -(1)/(2)*(ln(2*Pi))^(2)+(1)/(2)*(gamma)^(2)-(1)/(24)*(Pi)^(2)+ gamma[1] (D[Zeta[temp], {temp, 2}]/.temp-> 0)= -Divide[1,2]*(Log[2*Pi])^(2)+Divide[1,2]*(EulerGamma)^(2)-Divide[1,24]*(Pi)^(2)+ Subscript[\[Gamma], 1] Failure Failure
Fail
-1.487029407-1.414213562*I <- {gamma[1] = 2^(1/2)+I*2^(1/2)}
-1.487029407+1.414213562*I <- {gamma[1] = 2^(1/2)-I*2^(1/2)}
1.341397717+1.414213562*I <- {gamma[1] = -2^(1/2)-I*2^(1/2)}
1.341397717-1.414213562*I <- {gamma[1] = -2^(1/2)+I*2^(1/2)}
Fail
Complex[-1.487029407856772, -1.4142135623730951] <- {Rule[Subscript[γ, 1], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-1.487029407856772, 1.4142135623730951] <- {Rule[Subscript[γ, 1], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.3413977168894184, 1.4142135623730951] <- {Rule[Subscript[γ, 1], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.3413977168894184, -1.4142135623730951] <- {Rule[Subscript[γ, 1], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
25.6.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{k}\Riemannzeta^{(k)}@{-2n} = \frac{2(-1)^{n}}{(2\pi)^{2n+1}}\sum_{m=0}^{k}\sum_{r=0}^{m}\binom{k}{m}\binom{m}{r}\imagpart@@{(c^{k-m})}\*\EulerGamma^{(r)}@{2n+1}\Riemannzeta^{(m-r)}@{2n+1}} (- 1)^(k)* subs( temp=- 2*n, diff( Zeta(temp), temp$(k) ) )=(2*(- 1)^(n))/((2*Pi)^(2*n + 1))*sum(sum(binomial(k,m)*binomial(m,r)*Im((c)^(k - m))* subs( temp=2*n + 1, diff( GAMMA(temp), temp$(r) ) )*subs( temp=2*n + 1, diff( Zeta(temp), temp$(m - r) ) ), r = 0..m), m = 0..k) (- 1)^(k)* (D[Zeta[temp], {temp, k}]/.temp-> - 2*n)=Divide[2*(- 1)^(n),(2*Pi)^(2*n + 1)]*Sum[Sum[Binomial[k,m]*Binomial[m,r]*Im[(c)^(k - m)]* (D[Gamma[temp], {temp, r}]/.temp-> 2*n + 1)*(D[Zeta[temp], {temp, m - r}]/.temp-> 2*n + 1), {r, 0, m}], {m, 0, k}] Failure Failure Skip Skip
25.6.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{k}\Riemannzeta^{(k)}@{1-2n} = \frac{2(-1)^{n}}{(2\pi)^{2n}}\sum_{m=0}^{k}\sum_{r=0}^{m}\binom{k}{m}\binom{m}{r}\realpart@@{(c^{k-m})}\*\EulerGamma^{(r)}@{2n}\Riemannzeta^{(m-r)}@{2n}} (- 1)^(k)* subs( temp=1 - 2*n, diff( Zeta(temp), temp$(k) ) )=(2*(- 1)^(n))/((2*Pi)^(2*n))*sum(sum(binomial(k,m)*binomial(m,r)*Re((c)^(k - m))* subs( temp=2*n, diff( GAMMA(temp), temp$(r) ) )*subs( temp=2*n, diff( Zeta(temp), temp$(m - r) ) ), r = 0..m), m = 0..k) (- 1)^(k)* (D[Zeta[temp], {temp, k}]/.temp-> 1 - 2*n)=Divide[2*(- 1)^(n),(2*Pi)^(2*n)]*Sum[Sum[Binomial[k,m]*Binomial[m,r]*Re[(c)^(k - m)]* (D[Gamma[temp], {temp, r}]/.temp-> 2*n)*(D[Zeta[temp], {temp, m - r}]/.temp-> 2*n), {r, 0, m}], {m, 0, k}] Failure Failure Skip Skip
25.6.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemannzeta'@{2n} = \frac{(-1)^{n+1}(2\pi)^{2n}}{2(2n)!}\left(2n\Riemannzeta'@{1-2n}-(\digamma@{2n}-\ln@{2\pi})\BernoullinumberB{2n}\right)} subs( temp=2*n, diff( Zeta(temp), temp$(1) ) )=((- 1)^(n + 1)*(2*Pi)^(2*n))/(2*factorial(2*n))*(2*n*subs( temp=1 - 2*n, diff( Zeta(temp), temp$(1) ) )-(Psi(2*n)- ln(2*Pi))*bernoulli(2*n)) (D[Zeta[temp], {temp, 1}]/.temp-> 2*n)=Divide[(- 1)^(n + 1)*(2*Pi)^(2*n),2*(2*n)!]*(2*n*(D[Zeta[temp], {temp, 1}]/.temp-> 1 - 2*n)-(PolyGamma[2*n]- Log[2*Pi])*BernoulliB[2*n]) Failure Failure Successful Successful
25.6.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(n+\tfrac{1}{2}\right)\Riemannzeta@{2n} = \sum_{k=1}^{n-1}\Riemannzeta@{2k}\Riemannzeta@{2n-2k}} (n +(1)/(2))* Zeta(2*n)= sum(Zeta(2*k)*Zeta(2*n - 2*k), k = 1..n - 1) (n +Divide[1,2])* Zeta[2*n]= Sum[Zeta[2*k]*Zeta[2*n - 2*k], {k, 1, n - 1}] Failure Failure Skip Successful
25.6.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(n+\tfrac{3}{4}\right)\Riemannzeta@{4n+2} = \sum_{k=1}^{n}\Riemannzeta@{2k}\Riemannzeta@{4n+2-2k}} (n +(3)/(4))* Zeta(4*n + 2)= sum(Zeta(2*k)*Zeta(4*n + 2 - 2*k), k = 1..n) (n +Divide[3,4])* Zeta[4*n + 2]= Sum[Zeta[2*k]*Zeta[4*n + 2 - 2*k], {k, 1, n}] Failure Failure Skip Successful
25.6.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tfrac{1}{2}(2^{2n}-1)\Riemannzeta@{2n} = \sum_{k=1}^{n-1}(2^{2n-2k}-1)\Riemannzeta@{2n-2k}\Riemannzeta@{2k}} (1)/(2)*((2)^(2*n)- 1)* Zeta(2*n)= sum(((2)^(2*n - 2*k)- 1)* Zeta(2*n - 2*k)*Zeta(2*k), k = 1..n - 1) Divide[1,2]*((2)^(2*n)- 1)* Zeta[2*n]= Sum[((2)^(2*n - 2*k)- 1)* Zeta[2*n - 2*k]*Zeta[2*k], {k, 1, n - 1}] Failure Failure Skip Successful
25.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=2}^{\infty}\left(\Riemannzeta@{k}-1\right) = 1} sum(Zeta(k)- 1, k = 2..infinity)= 1 Sum[Zeta[k]- 1, {k, 2, Infinity}]= 1 Failure Successful Skip -
25.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{\infty}\frac{\EulerGamma@{s+k}}{(k+1)!}\left(\Riemannzeta@{s+k}-1\right) = \EulerGamma@{s-1}} sum((GAMMA(s + k))/(factorial(k + 1))*(Zeta(s + k)- 1), k = 0..infinity)= GAMMA(s - 1) Sum[Divide[Gamma[s + k],(k + 1)!]*(Zeta[s + k]- 1), {k, 0, Infinity}]= Gamma[s - 1] Failure Failure Skip Error
25.8.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{\infty}\frac{\Pochhammersym{s}{k}\Riemannzeta@{s+k}}{k!2^{s+k}} = (1-2^{-s})\Riemannzeta@{s}} sum((pochhammer(s, k)*Zeta(s + k))/(factorial(k)*(2)^(s + k)), k = 0..infinity)=(1 - (2)^(- s))* Zeta(s) Sum[Divide[Pochhammer[s, k]*Zeta[s + k],(k)!*(2)^(s + k)], {k, 0, Infinity}]=(1 - (2)^(- s))* Zeta[s] Failure Failure Skip Successful
25.8.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=1}^{\infty}\frac{(-1)^{k}}{k}(\Riemannzeta@{nk}-1) = \ln@{\prod_{j=0}^{n-1}\EulerGamma@{2-e^{(2j+1)\pi i/n}}}} sum(((- 1)^(k))/(k)*(Zeta(n*k)- 1), k = 1..infinity)= ln(product(GAMMA(2 - exp((2*j + 1)* Pi*I/ n)), j = 0..n - 1)) Sum[Divide[(- 1)^(k),k]*(Zeta[n*k]- 1), {k, 1, Infinity}]= Log[Product[Gamma[2 - Exp[(2*j + 1)* Pi*I/ n]], {j, 0, n - 1}]] Failure Failure Skip
Fail
Complex[0.7210663818131499, 0.6288153989756469] <- {Rule[Product[Gamma[Plus[2, Times[-1, Power[E, Times[Complex[0, 1], Plus[1, Times[2, j]], Power[n, -1], Pi]]]]], {j, 0, Plus[-1, n]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, k], Power[k, -1], Plus[-1, Zeta[Times[k, n]]]], {k, 1, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.7210663818131499, -2.199611725770543] <- {Rule[Product[Gamma[Plus[2, Times[-1, Power[E, Times[Complex[0, 1], Plus[1, Times[2, j]], Power[n, -1], Pi]]]]], {j, 0, Plus[-1, n]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, k], Power[k, -1], Plus[-1, Zeta[Times[k, n]]]], {k, 1, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.1073607429330403, -2.199611725770543] <- {Rule[Product[Gamma[Plus[2, Times[-1, Power[E, Times[Complex[0, 1], Plus[1, Times[2, j]], Power[n, -1], Pi]]]]], {j, 0, Plus[-1, n]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, k], Power[k, -1], Plus[-1, Zeta[Times[k, n]]]], {k, 1, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.1073607429330403, 0.6288153989756469] <- {Rule[Product[Gamma[Plus[2, Times[-1, Power[E, Times[Complex[0, 1], Plus[1, Times[2, j]], Power[n, -1], Pi]]]]], {j, 0, Plus[-1, n]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, k], Power[k, -1], Plus[-1, Zeta[Times[k, n]]]], {k, 1, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
25.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=2}^{\infty}\Riemannzeta@{k}z^{k} = -\EulerConstant z-z\digamma@{1-z}} sum(Zeta(k)*(z)^(k), k = 2..infinity)= - gamma*z - z*Psi(1 - z) Sum[Zeta[k]*(z)^(k), {k, 2, Infinity}]= - EulerGamma*z - z*PolyGamma[1 - z] Failure Successful Skip -
25.8.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{\infty}\Riemannzeta@{2k}z^{2k} = -\tfrac{1}{2}\pi z\cot@{\pi z}} sum(Zeta(2*k)*(z)^(2*k), k = 0..infinity)= -(1)/(2)*Pi*z*cot(Pi*z) Sum[Zeta[2*k]*(z)^(2*k), {k, 0, Infinity}]= -Divide[1,2]*Pi*z*Cot[Pi*z] Failure Failure Skip Skip
25.8.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=2}^{\infty}\frac{\Riemannzeta@{k}}{k}z^{k} = -\EulerConstant z+\ln@@{\EulerGamma@{1-z}}} sum((Zeta(k))/(k)*(z)^(k), k = 2..infinity)= - gamma*z + ln(GAMMA(1 - z)) Sum[Divide[Zeta[k],k]*(z)^(k), {k, 2, Infinity}]= - EulerGamma*z + Log[Gamma[1 - z]] Failure Successful Skip -
25.8.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=1}^{\infty}\frac{\Riemannzeta@{2k}}{k}z^{2k} = \ln@{\frac{\pi z}{\sin@{\pi z}}}} sum((Zeta(2*k))/(k)*(z)^(2*k), k = 1..infinity)= ln((Pi*z)/(sin(Pi*z))) Sum[Divide[Zeta[2*k],k]*(z)^(2*k), {k, 1, Infinity}]= Log[Divide[Pi*z,Sin[Pi*z]]] Failure Successful Skip -
25.8.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=1}^{\infty}\frac{\Riemannzeta@{2k}}{(2k+1)2^{2k}} = \frac{1}{2}-\frac{1}{2}\ln@@{2}} sum((Zeta(2*k))/((2*k + 1)* (2)^(2*k)), k = 1..infinity)=(1)/(2)-(1)/(2)*ln(2) Sum[Divide[Zeta[2*k],(2*k + 1)* (2)^(2*k)], {k, 1, Infinity}]=Divide[1,2]-Divide[1,2]*Log[2] Failure Successful Skip -
25.8.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=1}^{\infty}\frac{\Riemannzeta@{2k}}{(2k+1)(2k+2)2^{2k}} = \frac{1}{4}-\frac{7}{4\pi^{2}}\Riemannzeta@{3}} sum((Zeta(2*k))/((2*k + 1)*(2*k + 2)* (2)^(2*k)), k = 1..infinity)=(1)/(4)-(7)/(4*(Pi)^(2))*Zeta(3) Sum[Divide[Zeta[2*k],(2*k + 1)*(2*k + 2)* (2)^(2*k)], {k, 1, Infinity}]=Divide[1,4]-Divide[7,4*(Pi)^(2)]*Zeta[3] Failure Successful Skip -
25.9.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \chi(s) = \pi^{s-\frac{1}{2}}\EulerGamma@{\tfrac{1}{2}-\tfrac{1}{2}s}/\EulerGamma@{\tfrac{1}{2}s}} chi*(s)= (Pi)^(s -(1)/(2))* GAMMA((1)/(2)-(1)/(2)*s)/ GAMMA((1)/(2)*s) \[Chi]*(s)= (Pi)^(s -Divide[1,2])* Gamma[Divide[1,2]-Divide[1,2]*s]/ Gamma[Divide[1,2]*s] Failure Failure
Fail
.5066144201+7.721862512*I <- {chi = 2^(1/2)+I*2^(1/2), s = 2^(1/2)+I*2^(1/2)}
4.506614418-3.721862514*I <- {chi = 2^(1/2)+I*2^(1/2), s = 2^(1/2)-I*2^(1/2)}
-.5006270982e-1-4.069033292*I <- {chi = 2^(1/2)+I*2^(1/2), s = -2^(1/2)-I*2^(1/2)}
-4.050062708+.6903329420e-1*I <- {chi = 2^(1/2)+I*2^(1/2), s = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[0.5066144187413095, 7.721862514810475] <- {Rule[s, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[4.506614418741309, 3.721862514810475] <- {Rule[s, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.5066144187413095, -0.2781374851895251] <- {Rule[s, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-3.4933855812586905, 3.721862514810475] <- {Rule[s, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[χ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
25.10.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Z(t) = \exp@{i\vartheta(t)}\Riemannzeta@{\tfrac{1}{2}+it}} Z*(t)= exp(I*vartheta*(t))*Zeta((1)/(2)+ I*t) Z*(t)= Exp[I*\[CurlyTheta]*(t)]*Zeta[Divide[1,2]+ I*t] Failure Failure
Fail
-.1598353599e-2+4.002319388*I <- {Z = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), vartheta = 2^(1/2)+I*2^(1/2)}
.1528788606+3.983270213*I <- {Z = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), vartheta = 2^(1/2)-I*2^(1/2)}
-4.764624907+10.91400505*I <- {Z = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), vartheta = -2^(1/2)-I*2^(1/2)}
-.3879562929e-1+3.851182221*I <- {Z = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), vartheta = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[-0.0015983535965552907, 4.002319390307897] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ϑ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.15287886062247902, 3.9832702156526483] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ϑ, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.764624919768366, 10.914005063393518] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ϑ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.03879562949747604, 3.8511822226969143] <- {Rule[t, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Z, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[ϑ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
25.10.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Z(t) = 2\sum_{n=1}^{m}\frac{\cos@{\vartheta(t)-t\ln@@{n}}}{n^{1/2}}+R(t)} Z*(t)= 2*sum((cos(vartheta*(t)- t*ln(n)))/((n)^(1/ 2)), n = 1..m)+ R*(t) Z*(t)= 2*Sum[Divide[Cos[\[CurlyTheta]*(t)- t*Log[n]],(n)^(1/ 2)], {n, 1, m}]+ R*(t) Failure Failure Skip Skip
25.11.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = \sum_{n=0}^{\infty}\frac{1}{(n+a)^{s}}} Zeta(0, s, a)= sum((1)/((n + a)^(s)), n = 0..infinity) HurwitzZeta[s, a]= Sum[Divide[1,(n + a)^(s)], {n, 0, Infinity}] Failure Successful Skip -
25.11.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{1} = \Riemannzeta@{s}} Zeta(0, s, 1)= Zeta(s) HurwitzZeta[s, 1]= Zeta[s] Successful Successful - -
25.11.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = \Hurwitzzeta@{s}{a+1}+a^{-s}} Zeta(0, s, a)= Zeta(0, s, a + 1)+ (a)^(- s) HurwitzZeta[s, a]= HurwitzZeta[s, a + 1]+ (a)^(- s) Failure Successful Successful -
25.11.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = \Hurwitzzeta@{s}{a+m}+\sum_{n=0}^{m-1}\frac{1}{(n+a)^{s}}} Zeta(0, s, a)= Zeta(0, s, a + m)+ sum((1)/((n + a)^(s)), n = 0..m - 1) HurwitzZeta[s, a]= HurwitzZeta[s, a + m]+ Sum[Divide[1,(n + a)^(s)], {n, 0, m - 1}] Failure Successful Skip -
25.11.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = \sum_{n=0}^{N}\frac{1}{(n+a)^{s}}+\frac{(N+a)^{1-s}}{s-1}-s\int_{N}^{\infty}\frac{x-\floor{x}}{(x+a)^{s+1}}\diff{x}} Zeta(0, s, a)= sum((1)/((n + a)^(s)), n = 0..N)+((N + a)^(1 - s))/(s - 1)- s*int((x - floor(x))/((x + a)^(s + 1)), x = N..infinity) HurwitzZeta[s, a]= Sum[Divide[1,(n + a)^(s)], {n, 0, N}]+Divide[(N + a)^(1 - s),s - 1]- s*Integrate[Divide[x - Floor[x],(x + a)^(s + 1)], {x, N, Infinity}] Failure Failure Skip Error
25.11.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{\tfrac{1}{2}a} = \Hurwitzzeta@{s}{\tfrac{1}{2}a+\tfrac{1}{2}}+2^{s}\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(n+a)^{s}}} Zeta(0, s, (1)/(2)*a)= Zeta(0, s, (1)/(2)*a +(1)/(2))+ (2)^(s)* sum(((- 1)^(n))/((n + a)^(s)), n = 0..infinity) HurwitzZeta[s, Divide[1,2]*a]= HurwitzZeta[s, Divide[1,2]*a +Divide[1,2]]+ (2)^(s)* Sum[Divide[(- 1)^(n),(n + a)^(s)], {n, 0, Infinity}] Failure Failure Skip Successful
25.11.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{1-s}{a} = \frac{2\EulerGamma@{s}}{(2\pi)^{s}}\*\sum_{n=1}^{\infty}\frac{1}{n^{s}}\cos@{\tfrac{1}{2}\pi s-2n\pi a}} Zeta(0, 1 - s, a)=(2*GAMMA(s))/((2*Pi)^(s))* sum((1)/((n)^(s))*cos((1)/(2)*Pi*s - 2*n*Pi*a), n = 1..infinity) HurwitzZeta[1 - s, a]=Divide[2*Gamma[s],(2*Pi)^(s)]* Sum[Divide[1,(n)^(s)]*Cos[Divide[1,2]*Pi*s - 2*n*Pi*a], {n, 1, Infinity}] Failure Failure Skip Error
25.11.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = \sum_{n=0}^{\infty}\frac{\Pochhammersym{s}{n}}{n!}\Riemannzeta@{n+s}(1-a)^{n}} Zeta(0, s, a)= sum((pochhammer(s, n))/(factorial(n))*Zeta(n + s)*(1 - a)^(n), n = 0..infinity) HurwitzZeta[s, a]= Sum[Divide[Pochhammer[s, n],(n)!]*Zeta[n + s]*(1 - a)^(n), {n, 0, Infinity}] Failure Failure Skip Error
25.11.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{\tfrac{1}{2}} = (2^{s}-1)\Riemannzeta@{s}} Zeta(0, s, (1)/(2))=((2)^(s)- 1)* Zeta(s) HurwitzZeta[s, Divide[1,2]]=((2)^(s)- 1)* Zeta[s] Successful Failure - Successful
25.11.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{n+1}{a} = \frac{(-1)^{n+1}\digamma^{(n)}@{a}}{n!}} Zeta(0, n + 1, a)=((- 1)^(n + 1)* subs( temp=a, diff( Psi(temp), temp$(n) ) ))/(factorial(n)) HurwitzZeta[n + 1, a]=Divide[(- 1)^(n + 1)* (D[PolyGamma[temp], {temp, n}]/.temp-> a),(n)!] Failure Failure Successful Successful
25.11.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{0}{a} = \tfrac{1}{2}-a} Zeta(0, 0, a)=(1)/(2)- a HurwitzZeta[0, a]=Divide[1,2]- a Successful Successful - -
25.11.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{-n}{a} = -\frac{\BernoullipolyB{n+1}@{a}}{n+1}} Zeta(0, - n, a)= -(bernoulli(n + 1, a))/(n + 1) HurwitzZeta[- n, a]= -Divide[BernoulliB[n + 1, a],n + 1] Failure Failure Successful Successful
25.11.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{ka} = k^{-s}\*\sum_{n=0}^{k-1}\Hurwitzzeta@{s}{a+\frac{n}{k}}} Zeta(0, s, k*a)= (k)^(- s)* sum(Zeta(0, s, a +(n)/(k)), n = 0..k - 1) HurwitzZeta[s, k*a]= (k)^(- s)* Sum[HurwitzZeta[s, a +Divide[n,k]], {n, 0, k - 1}] Failure Failure Skip Error
25.11.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{1-s}{\frac{h}{k}} = \frac{2\EulerGamma@{s}}{(2\pi k)^{s}}\*\sum_{r=1}^{k}\cos@{\frac{\pi s}{2}-\frac{2\pi rh}{k}}\Hurwitzzeta@{s}{\frac{r}{k}}} Zeta(0, 1 - s, (h)/(k))=(2*GAMMA(s))/((2*Pi*k)^(s))* sum(cos((Pi*s)/(2)-(2*Pi*r*h)/(k))*Zeta(0, s, (r)/(k)), r = 1..k) HurwitzZeta[1 - s, Divide[h,k]]=Divide[2*Gamma[s],(2*Pi*k)^(s)]* Sum[Cos[Divide[Pi*s,2]-Divide[2*Pi*r*h,k]]*HurwitzZeta[s, Divide[r,k]], {r, 1, k}] Failure Failure Skip Error
25.11.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{}{a}\Hurwitzzeta@{s}{a} = -s\Hurwitzzeta@{s+1}{a}} diff(Zeta(0, s, a), a)= - s*Zeta(0, s + 1, a) D[HurwitzZeta[s, a], a]= - s*HurwitzZeta[s + 1, a] Successful Successful - -
25.11.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta'@{0}{a} = \ln@@{\EulerGamma@{a}}-\tfrac{1}{2}\ln@{2\pi}} subs( temp=0, diff( Zeta(0, temp, a), temp$(1) ) )= ln(GAMMA(a))-(1)/(2)*ln(2*Pi) (D[HurwitzZeta[temp, a], {temp, 1}]/.temp-> 0)= Log[Gamma[a]]-Divide[1,2]*Log[2*Pi] Failure Failure Successful Successful
25.11.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta'@{1-2n}{\frac{h}{k}} = \frac{(\digamma@{2n}-\ln@{2\pi k})\BernoullipolyB{2n}@{h/k}}{2n}-\frac{(\digamma@{2n}-\ln@{2\pi})\BernoullinumberB{2n}}{2nk^{2n}}+\frac{(-1)^{n+1}\pi}{(2\pi k)^{2n}}\sum_{r=1}^{k-1}\sin@{\frac{2\pi rh}{k}}\digamma^{(2n-1)}@{\frac{r}{k}}+\frac{(-1)^{n+1}2\cdot(2n-1)!}{(2\pi k)^{2n}}\sum_{r=1}^{k-1}\cos@{\frac{2\pi rh}{k}}\Hurwitzzeta'@{2n}{\frac{r}{k}}+\frac{\Riemannzeta'@{1-2n}}{k^{2n}}} subs( temp=1 - 2*n, diff( Zeta(0, temp, (h)/(k)), temp$(1) ) )=((Psi(2*n)- ln(2*Pi*k))* bernoulli(2*n, h/ k))/(2*n)-((Psi(2*n)- ln(2*Pi))* bernoulli(2*n))/(2*n*(k)^(2*n))+((- 1)^(n + 1)* Pi)/((2*Pi*k)^(2*n))*sum(sin((2*Pi*r*h)/(k))*subs( temp=(r)/(k), diff( Psi(temp), temp$(2*n - 1) ) ), r = 1..k - 1)+((- 1)^(n + 1)* 2 *factorial(2*n - 1))/((2*Pi*k)^(2*n))*sum(cos((2*Pi*r*h)/(k))*subs( temp=2*n, diff( Zeta(0, temp, (r)/(k)), temp$(1) ) ), r = 1..k - 1)+(subs( temp=1 - 2*n, diff( Zeta(temp), temp$(1) ) ))/((k)^(2*n)) (D[HurwitzZeta[temp, Divide[h,k]], {temp, 1}]/.temp-> 1 - 2*n)=Divide[(PolyGamma[2*n]- Log[2*Pi*k])* BernoulliB[2*n, h/ k],2*n]-Divide[(PolyGamma[2*n]- Log[2*Pi])* BernoulliB[2*n],2*n*(k)^(2*n)]+Divide[(- 1)^(n + 1)* Pi,(2*Pi*k)^(2*n)]*Sum[Sin[Divide[2*Pi*r*h,k]]*(D[PolyGamma[temp], {temp, 2*n - 1}]/.temp-> Divide[r,k]), {r, 1, k - 1}]+Divide[(- 1)^(n + 1)* 2 *(2*n - 1)!,(2*Pi*k)^(2*n)]*Sum[Cos[Divide[2*Pi*r*h,k]]*(D[HurwitzZeta[temp, Divide[r,k]], {temp, 1}]/.temp-> 2*n), {r, 1, k - 1}]+Divide[D[Zeta[temp], {temp, 1}]/.temp-> 1 - 2*n,(k)^(2*n)] Failure Failure Skip Error
25.11.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta'@{1-2n}{\tfrac{1}{2}} = -\frac{\BernoullinumberB{2n}\ln@@{2}}{n\cdot 4^{n}}-\frac{(2^{2n-1}-1)\Riemannzeta'@{1-2n}}{2^{2n-1}}} subs( temp=1 - 2*n, diff( Zeta(0, temp, (1)/(2)), temp$(1) ) )= -(bernoulli(2*n)*ln(2))/(n * (4)^(n))-(((2)^(2*n - 1)- 1)* subs( temp=1 - 2*n, diff( Zeta(temp), temp$(1) ) ))/((2)^(2*n - 1)) (D[HurwitzZeta[temp, Divide[1,2]], {temp, 1}]/.temp-> 1 - 2*n)= -Divide[BernoulliB[2*n]*Log[2],n * (4)^(n)]-Divide[((2)^(2*n - 1)- 1)* (D[Zeta[temp], {temp, 1}]/.temp-> 1 - 2*n),(2)^(2*n - 1)] Failure Failure Successful Successful
25.11.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta'@{1-2n}{\tfrac{1}{3}} = -\frac{\pi(9^{n}-1)\BernoullinumberB{2n}}{8n\sqrt{3}(3^{2n-1}-1)}-\frac{\BernoullinumberB{2n}\ln@@{3}}{4n\cdot 3^{2n-1}}-\frac{(-1)^{n}\digamma^{(2n-1)}@{\frac{1}{3}}}{2\sqrt{3}(6\pi)^{2n-1}}-\frac{\left(3^{2n-1}-1\right)\Riemannzeta'@{1-2n}}{2\cdot 3^{2n-1}}} subs( temp=1 - 2*n, diff( Zeta(0, temp, (1)/(3)), temp$(1) ) )= -(Pi*((9)^(n)- 1)* bernoulli(2*n))/(8*n*sqrt(3)*((3)^(2*n - 1)- 1))-(bernoulli(2*n)*ln(3))/(4*n * (3)^(2*n - 1))-((- 1)^(n)* subs( temp=(1)/(3), diff( Psi(temp), temp$(2*n - 1) ) ))/(2*sqrt(3)*(6*Pi)^(2*n - 1))-(((3)^(2*n - 1)- 1)* subs( temp=1 - 2*n, diff( Zeta(temp), temp$(1) ) ))/(2 * (3)^(2*n - 1)) (D[HurwitzZeta[temp, Divide[1,3]], {temp, 1}]/.temp-> 1 - 2*n)= -Divide[Pi*((9)^(n)- 1)* BernoulliB[2*n],8*n*Sqrt[3]*((3)^(2*n - 1)- 1)]-Divide[BernoulliB[2*n]*Log[3],4*n * (3)^(2*n - 1)]-Divide[(- 1)^(n)* (D[PolyGamma[temp], {temp, 2*n - 1}]/.temp-> Divide[1,3]),2*Sqrt[3]*(6*Pi)^(2*n - 1)]-Divide[((3)^(2*n - 1)- 1)* (D[Zeta[temp], {temp, 1}]/.temp-> 1 - 2*n),2 * (3)^(2*n - 1)] Failure Failure Successful Successful
25.11.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{r=1}^{k-1}\Hurwitzzeta'@{s}{\frac{r}{k}} = (k^{s}-1)\Riemannzeta'@{s}+k^{s}\Riemannzeta@{s}\ln@@{k}} sum(subs( temp=s, diff( Zeta(0, temp, (r)/(k)), temp$(1) ) ), r = 1..k - 1)=((k)^(s)- 1)* subs( temp=s, diff( Zeta(temp), temp$(1) ) )+ (k)^(s)* Zeta(s)*ln(k) Sum[D[HurwitzZeta[temp, Divide[r,k]], {temp, 1}]/.temp-> s, {r, 1, k - 1}]=((k)^(s)- 1)* (D[Zeta[temp], {temp, 1}]/.temp-> s)+ (k)^(s)* Zeta[s]*Log[k] Failure Failure Skip Successful
25.11.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = \frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}e^{-ax}}{1-e^{-x}}\diff{x}} Zeta(0, s, a)=(1)/(GAMMA(s))*int(((x)^(s - 1)* exp(- a*x))/(1 - exp(- x)), x = 0..infinity) HurwitzZeta[s, a]=Divide[1,Gamma[s]]*Integrate[Divide[(x)^(s - 1)* Exp[- a*x],1 - Exp[- x]], {x, 0, Infinity}] Failure Failure Skip Skip
25.11.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = -s\int_{-a}^{\infty}\frac{x-\floor{x}-\frac{1}{2}}{(x+a)^{s+1}}\diff{x}} Zeta(0, s, a)= - s*int((x - floor(x)-(1)/(2))/((x + a)^(s + 1)), x = - a..infinity) HurwitzZeta[s, a]= - s*Integrate[Divide[x - Floor[x]-Divide[1,2],(x + a)^(s + 1)], {x, - a, Infinity}] Failure Failure Skip Error
25.11.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = \frac{1}{2}a^{-s}+\frac{a^{1-s}}{s-1}+\frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}\right)\frac{x^{s-1}}{e^{ax}}\diff{x}} Zeta(0, s, a)=(1)/(2)*(a)^(- s)+((a)^(1 - s))/(s - 1)+(1)/(GAMMA(s))*int(((1)/(exp(x)- 1)-(1)/(x)+(1)/(2))*((x)^(s - 1))/(exp(a*x)), x = 0..infinity) HurwitzZeta[s, a]=Divide[1,2]*(a)^(- s)+Divide[(a)^(1 - s),s - 1]+Divide[1,Gamma[s]]*Integrate[(Divide[1,Exp[x]- 1]-Divide[1,x]+Divide[1,2])*Divide[(x)^(s - 1),Exp[a*x]], {x, 0, Infinity}] Failure Failure Skip Error
25.11.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = \frac{1}{2}a^{-s}+\frac{a^{1-s}}{s-1}+\sum_{k=1}^{n}\frac{\BernoullinumberB{2k}}{(2k)!}\Pochhammersym{s}{2k-1}a^{1-s-2k}+\frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\left(\frac{1}{e^{x}-1}-\frac{1}{x}+\frac{1}{2}-\sum_{k=1}^{n}\frac{\BernoullinumberB{2k}}{(2k)!}x^{2k-1}\right)x^{s-1}e^{-ax}\diff{x}} Zeta(0, s, a)=(1)/(2)*(a)^(- s)+((a)^(1 - s))/(s - 1)+ sum((bernoulli(2*k))/(factorial(2*k))*pochhammer(s, 2*k - 1)*(a)^(1 - s - 2*k)+(1)/(GAMMA(s))*int(((1)/(exp(x)- 1)-(1)/(x)+(1)/(2)- sum((bernoulli(2*k))/(factorial(2*k))*(x)^(2*k - 1), k = 1..n))* (x)^(s - 1)* exp(- a*x), x = 0..infinity), k = 1..n) HurwitzZeta[s, a]=Divide[1,2]*(a)^(- s)+Divide[(a)^(1 - s),s - 1]+ Sum[Divide[BernoulliB[2*k],(2*k)!]*Pochhammer[s, 2*k - 1]*(a)^(1 - s - 2*k)+Divide[1,Gamma[s]]*Integrate[(Divide[1,Exp[x]- 1]-Divide[1,x]+Divide[1,2]- Sum[Divide[BernoulliB[2*k],(2*k)!]*(x)^(2*k - 1), {k, 1, n}])* (x)^(s - 1)* Exp[- a*x], {x, 0, Infinity}], {k, 1, n}] Failure Failure Skip Error
25.11.E29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = \frac{1}{2}a^{-s}+\frac{a^{1-s}}{s-1}+2\int_{0}^{\infty}\frac{\sin@{s\atan@{x/a}}}{(a^{2}+x^{2})^{s/2}(e^{2\pi x}-1)}\diff{x}} Zeta(0, s, a)=(1)/(2)*(a)^(- s)+((a)^(1 - s))/(s - 1)+ 2*int((sin(s*arctan(x/ a)))/(((a)^(2)+ (x)^(2))^(s/ 2)*(exp(2*Pi*x)- 1)), x = 0..infinity) HurwitzZeta[s, a]=Divide[1,2]*(a)^(- s)+Divide[(a)^(1 - s),s - 1]+ 2*Integrate[Divide[Sin[s*ArcTan[x/ a]],((a)^(2)+ (x)^(2))^(s/ 2)*(Exp[2*Pi*x]- 1)], {x, 0, Infinity}] Failure Failure Skip Error
25.11.E30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = \frac{\EulerGamma@{1-s}}{2\pi i}\int_{-\infty}^{(0+)}\frac{e^{az}z^{s-1}}{1-e^{z}}\diff{z}} Zeta(0, s, a)=(GAMMA(1 - s))/(2*Pi*I)*int((exp(a*z)*(z)^(s - 1))/(1 - exp(z)), z = - infinity..(0 +)) HurwitzZeta[s, a]=Divide[Gamma[1 - s],2*Pi*I]*Integrate[Divide[Exp[a*z]*(z)^(s - 1),1 - Exp[z]], {z, - Infinity, (0 +)}] Error Failure - Error
25.11.E31 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}e^{-ax}}{2\cosh@@{x}}\diff{x} = 4^{-s}\left(\Hurwitzzeta@{s}{\tfrac{1}{4}+\tfrac{1}{4}a}-\Hurwitzzeta@{s}{\tfrac{3}{4}+\tfrac{1}{4}a}\right)} (1)/(GAMMA(s))*int(((x)^(s - 1)* exp(- a*x))/(2*cosh(x)), x = 0..infinity)= (4)^(- s)*(Zeta(0, s, (1)/(4)+(1)/(4)*a)- Zeta(0, s, (3)/(4)+(1)/(4)*a)) Divide[1,Gamma[s]]*Integrate[Divide[(x)^(s - 1)* Exp[- a*x],2*Cosh[x]], {x, 0, Infinity}]= (4)^(- s)*(HurwitzZeta[s, Divide[1,4]+Divide[1,4]*a]- HurwitzZeta[s, Divide[3,4]+Divide[1,4]*a]) Failure Failure Skip Successful
25.11.E32 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{a}x^{n}\digamma@{x}\diff{x} = (-1)^{n-1}\Riemannzeta'@{-n}+(-1)^{n}h(n)\frac{\BernoullinumberB{n+1}}{n+1}-\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}h(k)\frac{\BernoullinumberB{k+1}(a)}{k+1}a^{n-k}+\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\Hurwitzzeta'@{-k}{a}a^{n-k}} int((x)^(n)* Psi(x), x = 0..a)=(- 1)^(n - 1)* subs( temp=- n, diff( Zeta(temp), temp$(1) ) )+(- 1)^(n)* h*(n)*(bernoulli(n + 1))/(n + 1)- sum((- 1)^(k)*binomial(n,k)*h*(k)*(bernoulli(k + 1)*(a))/(k + 1)*(a)^(n - k), k = 0..n)+ sum((- 1)^(k)*binomial(n,k)*subs( temp=- k, diff( Zeta(0, temp, a), temp$(1) ) )*(a)^(n - k), k = 0..n) Integrate[(x)^(n)* PolyGamma[x], {x, 0, a}]=(- 1)^(n - 1)* (D[Zeta[temp], {temp, 1}]/.temp-> - n)+(- 1)^(n)* h*(n)*Divide[BernoulliB[n + 1],n + 1]- Sum[(- 1)^(k)*Binomial[n,k]*h*(k)*Divide[BernoulliB[k + 1]*(a),k + 1]*(a)^(n - k), {k, 0, n}]+ Sum[(- 1)^(k)*Binomial[n,k]*(D[HurwitzZeta[temp, a], {temp, 1}]/.temp-> - k)*(a)^(n - k), {k, 0, n}] Failure Failure Skip Error
25.11.E34 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n\int_{0}^{a}\Hurwitzzeta'@{1-n}{x}\diff{x} = \Hurwitzzeta'@{-n}{a}-\Riemannzeta'@{-n}+\frac{\BernoullinumberB{n+1}-\BernoullipolyB{n+1}@{a}}{n(n+1)}} n*int(subs( temp=1 - n, diff( Zeta(0, temp, x), temp$(1) ) ), x = 0..a)= subs( temp=- n, diff( Zeta(0, temp, a), temp$(1) ) )- subs( temp=- n, diff( Zeta(temp), temp$(1) ) )+(bernoulli(n + 1)- bernoulli(n + 1, a))/(n*(n + 1)) n*Integrate[D[HurwitzZeta[temp, x], {temp, 1}]/.temp-> 1 - n, {x, 0, a}]= (D[HurwitzZeta[temp, a], {temp, 1}]/.temp-> - n)- (D[Zeta[temp], {temp, 1}]/.temp-> - n)+Divide[BernoulliB[n + 1]- BernoulliB[n + 1, a],n*(n + 1)] Failure Failure Skip Successful
25.11.E35 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}}{(n+a)^{s}} = \frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}e^{-ax}}{1+e^{-x}}\diff{x}} sum(((- 1)^(n))/((n + a)^(s)), n = 0..infinity)=(1)/(GAMMA(s))*int(((x)^(s - 1)* exp(- a*x))/(1 + exp(- x)), x = 0..infinity) Sum[Divide[(- 1)^(n),(n + a)^(s)], {n, 0, Infinity}]=Divide[1,Gamma[s]]*Integrate[Divide[(x)^(s - 1)* Exp[- a*x],1 + Exp[- x]], {x, 0, Infinity}] Error Failure - Skip
25.11.E35 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}e^{-ax}}{1+e^{-x}}\diff{x} = 2^{-s}\left(\Hurwitzzeta@{s}{\tfrac{1}{2}a}-\Hurwitzzeta@{s}{\tfrac{1}{2}(1+a)}\right)} (1)/(GAMMA(s))*int(((x)^(s - 1)* exp(- a*x))/(1 + exp(- x)), x = 0..infinity)= (2)^(- s)*(Zeta(0, s, (1)/(2)*a)- Zeta(0, s, (1)/(2)*(1 + a))) Divide[1,Gamma[s]]*Integrate[Divide[(x)^(s - 1)* Exp[- a*x],1 + Exp[- x]], {x, 0, Infinity}]= (2)^(- s)*(HurwitzZeta[s, Divide[1,2]*a]- HurwitzZeta[s, Divide[1,2]*(1 + a)]) Error Failure - Skip
25.11.E36 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\frac{\chi(n)}{n^{s}} = k^{-s}\sum_{r=1}^{k}\chi(r)\Hurwitzzeta@{s}{\frac{r}{k}}} sum((chi*(n))/((n)^(s)), n = 1..infinity)= (k)^(- s)* sum(chi*(r)* Zeta(0, s, (r)/(k)), r = 1..k) Sum[Divide[\[Chi]*(n),(n)^(s)], {n, 1, Infinity}]= (k)^(- s)* Sum[\[Chi]*(r)* HurwitzZeta[s, Divide[r,k]], {r, 1, k}] Failure Failure Skip Successful
25.11.E37 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=1}^{\infty}\frac{(-1)^{k}}{k}\Hurwitzzeta@{nk}{a} = -n\ln@@{\EulerGamma@{a}}+\ln@{\prod_{j=0}^{n-1}\EulerGamma@{a-e^{(2j+1)\pi i/n}}}} sum(((- 1)^(k))/(k)*Zeta(0, n*k, a), k = 1..infinity)= - n*ln(GAMMA(a))+ ln(product(GAMMA(a - exp((2*j + 1)* Pi*I/ n)), j = 0..n - 1)) Sum[Divide[(- 1)^(k),k]*HurwitzZeta[n*k, a], {k, 1, Infinity}]= - n*Log[Gamma[a]]+ Log[Product[Gamma[a - Exp[(2*j + 1)* Pi*I/ n]], {j, 0, n - 1}]] Failure Failure Skip Skip
25.11.E38 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=1}^{\infty}\binom{n+k}{k}\Hurwitzzeta@{n+k+1}{a}z^{k} = \frac{(-1)^{n}}{n!}\left(\digamma^{(n)}@{a}-\digamma^{(n)}@{a-z}\right)} sum(binomial(n + k,k)*Zeta(0, n + k + 1, a)*(z)^(k), k = 1..infinity)=((- 1)^(n))/(factorial(n))*(subs( temp=a, diff( Psi(temp), temp$(n) ) )- subs( temp=a - z, diff( Psi(temp), temp$(n) ) )) Sum[Binomial[n + k,k]*HurwitzZeta[n + k + 1, a]*(z)^(k), {k, 1, Infinity}]=Divide[(- 1)^(n),(n)!]*((D[PolyGamma[temp], {temp, n}]/.temp-> a)- (D[PolyGamma[temp], {temp, n}]/.temp-> a - z)) Failure Failure Skip Successful
25.11.E39 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=2}^{\infty}\frac{k}{2^{k}}\Hurwitzzeta@{k+1}{\tfrac{3}{4}} = 8G} sum((k)/((2)^(k))*Zeta(0, k + 1, (3)/(4)), k = 2..infinity)= 8*G Sum[Divide[k,(2)^(k)]*HurwitzZeta[k + 1, Divide[3,4]], {k, 2, Infinity}]= 8*G Failure Failure Skip
Fail
Complex[-3.985983745567009, -11.313708498984761] <- {Rule[G, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-3.985983745567009, 11.313708498984761] <- {Rule[G, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[18.641433252402514, 11.313708498984761] <- {Rule[G, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[18.641433252402514, -11.313708498984761] <- {Rule[G, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
25.12.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \dilog@{z} = \sum_{n=1}^{\infty}\frac{z^{n}}{n^{2}}} dilog(z)= sum(((z)^(n))/((n)^(2)), n = 1..infinity) PolyLog[2, z]= Sum[Divide[(z)^(n),(n)^(2)], {n, 1, Infinity}] Failure Successful Skip -
25.12.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \dilog@{z} = -\int_{0}^{z}t^{-1}\ln@{1-t}\diff{t}} dilog(z)= - int((t)^(- 1)* ln(1 - t), t = 0..z) PolyLog[2, z]= - Integrate[(t)^(- 1)* Log[1 - t], {t, 0, z}] Failure Failure Skip Error
25.12.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \dilog@{z}+\dilog@{\frac{z}{z-1}} = -\frac{1}{2}(\ln@{1-z})^{2}} dilog(z)+ dilog((z)/(z - 1))= -(1)/(2)*(ln(1 - z))^(2) PolyLog[2, z]+ PolyLog[2, Divide[z,z - 1]]= -Divide[1,2]*(Log[1 - z])^(2) Failure Failure
Fail
3.289868134-2.177586090*I <- {z = 1/2}
Successful
25.12.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \dilog@{z}+\dilog@{\frac{1}{z}} = -\frac{1}{6}\pi^{2}-\frac{1}{2}(\ln@{-z})^{2}} dilog(z)+ dilog((1)/(z))= -(1)/(6)*(Pi)^(2)-(1)/(2)*(ln(- z))^(2) PolyLog[2, z]+ PolyLog[2, Divide[1,z]]= -Divide[1,6]*(Pi)^(2)-Divide[1,2]*(Log[- z])^(2) Failure Failure
Fail
6.579736268-4.725198502*I <- {z = -1/2}
Successful
25.12.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \dilog@{z^{m}} = m\sum_{k=0}^{m-1}\dilog@{ze^{2\pi ik/m}}} dilog((z)^(m))= m*sum(dilog(z*exp(2*Pi*I*k/ m)), k = 0..m - 1) PolyLog[2, (z)^(m)]= m*Sum[PolyLog[2, z*Exp[2*Pi*I*k/ m]], {k, 0, m - 1}] Failure Failure Skip Successful
25.12.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \dilog@{x}+\dilog@{1-x} = \frac{1}{6}\pi^{2}-(\ln@@{x})\ln@{1-x}} dilog(x)+ dilog(1 - x)=(1)/(6)*(Pi)^(2)-(ln(x))* ln(1 - x) PolyLog[2, x]+ PolyLog[2, 1 - x]=Divide[1,6]*(Pi)^(2)-(Log[x])* Log[1 - x] Successful Successful - -
25.12.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \dilog@{e^{i\theta}} = \sum_{n=1}^{\infty}\frac{\cos@{n\theta}}{n^{2}}+i\sum_{n=1}^{\infty}\frac{\sin@{n\theta}}{n^{2}}} dilog(exp(I*theta))= sum((cos(n*theta))/((n)^(2)), n = 1..infinity)+ I*sum((sin(n*theta))/((n)^(2)), n = 1..infinity) PolyLog[2, Exp[I*\[Theta]]]= Sum[Divide[Cos[n*\[Theta]],(n)^(2)], {n, 1, Infinity}]+ I*Sum[Divide[Sin[n*\[Theta]],(n)^(2)], {n, 1, Infinity}] Failure Successful Skip -
25.12.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\frac{\cos@{n\theta}}{n^{2}} = \frac{\pi^{2}}{6}-\frac{\pi\theta}{2}+\frac{\theta^{2}}{4}} sum((cos(n*theta))/((n)^(2)), n = 1..infinity)=((Pi)^(2))/(6)-(Pi*theta)/(2)+((theta)^(2))/(4) Sum[Divide[Cos[n*\[Theta]],(n)^(2)], {n, 1, Infinity}]=Divide[(Pi)^(2),6]-Divide[Pi*\[Theta],2]+Divide[(\[Theta])^(2),4] Failure Failure Skip
Fail
Complex[-4.442882938158366, -4.442882938158366] <- {Rule[θ, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-4.442882938158366, 4.442882938158366] <- {Rule[θ, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
25.12.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\frac{\sin@{n\theta}}{n^{2}} = -\int_{0}^{\theta}\ln@{2\sin@{\tfrac{1}{2}x}}\diff{x}} sum((sin(n*theta))/((n)^(2)), n = 1..infinity)= - int(ln(2*sin((1)/(2)*x)), x = 0..theta) Sum[Divide[Sin[n*\[Theta]],(n)^(2)], {n, 1, Infinity}]= - Integrate[Log[2*Sin[Divide[1,2]*x]], {x, 0, \[Theta]}] Failure Failure Skip Error
25.12.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \polylog{s}@{z} = \sum_{n=1}^{\infty}\frac{z^{n}}{n^{s}}} polylog(s, z)= sum(((z)^(n))/((n)^(s)), n = 1..infinity) PolyLog[s, z]= Sum[Divide[(z)^(n),(n)^(s)], {n, 1, Infinity}] Failure Successful Skip -
25.12.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \polylog{s}@{z} = \frac{z}{\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}}{e^{x}-z}\diff{x}} polylog(s, z)=(z)/(GAMMA(s))*int(((x)^(s - 1))/(exp(x)- z), x = 0..infinity) PolyLog[s, z]=Divide[z,Gamma[s]]*Integrate[Divide[(x)^(s - 1),Exp[x]- z], {x, 0, Infinity}] Failure Failure Skip Successful
25.12.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \polylog{s}@{z} = \EulerGamma@{1-s}\left(\ln@@{\frac{1}{z}}\right)^{s-1}+\sum_{n=0}^{\infty}\Riemannzeta@{s-n}\frac{(\ln@@{z})^{n}}{n!}} polylog(s, z)= GAMMA(1 - s)*(ln((1)/(z)))^(s - 1)+ sum(Zeta(s - n)*((ln(z))^(n))/(factorial(n)), n = 0..infinity) PolyLog[s, z]= Gamma[1 - s]*(Log[Divide[1,z]])^(s - 1)+ Sum[Zeta[s - n]*Divide[(Log[z])^(n),(n)!], {n, 0, Infinity}] Failure Failure Skip Skip
25.12.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \polylog{s}@{e^{2\pi ia}}+e^{\pi is}\polylog{s}@{e^{-2\pi ia}} = \frac{(2\pi)^{s}e^{\pi is/2}}{\EulerGamma@{s}}\Hurwitzzeta@{1-s}{a}} polylog(s, exp(2*Pi*I*a))+ exp(Pi*I*s)*polylog(s, exp(- 2*Pi*I*a))=((2*Pi)^(s)* exp(Pi*I*s/ 2))/(GAMMA(s))*Zeta(0, 1 - s, a) PolyLog[s, Exp[2*Pi*I*a]]+ Exp[Pi*I*s]*PolyLog[s, Exp[- 2*Pi*I*a]]=Divide[(2*Pi)^(s)* Exp[Pi*I*s/ 2],Gamma[s]]*HurwitzZeta[1 - s, a] Failure Failure
Fail
.5737863933-.4240983936*I <- {a = 2^(1/2)+I*2^(1/2), s = 2^(1/2)+I*2^(1/2)}
2281.720763-318.166068*I <- {a = 2^(1/2)+I*2^(1/2), s = 2^(1/2)-I*2^(1/2)}
11.12441999-13.46800186*I <- {a = 2^(1/2)+I*2^(1/2), s = -2^(1/2)-I*2^(1/2)}
-.5088647019e-2+.1836981228e-2*I <- {a = 2^(1/2)+I*2^(1/2), s = -2^(1/2)+I*2^(1/2)}
... skip entries to safe data
Fail
Complex[0.5737863944300513, -0.4240983930049895] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[s, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2281.720765767148, -318.1660682691354] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[s, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[11.124419974397522, -13.468001871634662] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[s, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-0.00508864702414036, 0.0018369812232921614] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[s, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
25.12#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle F_{s}(x) = -\polylog{s+1}@{-e^{x}}} F[s]*(x)= - polylog(s + 1, - exp(x)) Subscript[F, s]*(x)= - PolyLog[s + 1, - Exp[x]] Failure Failure
Fail
-.701287556+.9004371571*I <- {s = 2^(1/2)+I*2^(1/2), F[s] = 2^(1/2)+I*2^(1/2), x = 1}
-1.490772176+.967006968*I <- {s = 2^(1/2)+I*2^(1/2), F[s] = 2^(1/2)+I*2^(1/2), x = 2}
-3.225675211-.894244793*I <- {s = 2^(1/2)+I*2^(1/2), F[s] = 2^(1/2)+I*2^(1/2), x = 3}
-.701287556-1.927989967*I <- {s = 2^(1/2)+I*2^(1/2), F[s] = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Successful
25.12#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle G_{s}(x) = \polylog{s+1}@{e^{x}}} G[s]*(x)= polylog(s + 1, exp(x)) Subscript[G, s]*(x)= PolyLog[s + 1, Exp[x]] Failure Failure
Fail
-.592976910+2.518819642*I <- {s = 2^(1/2)+I*2^(1/2), G[s] = 2^(1/2)+I*2^(1/2), x = 1}
-.593582812+5.469840344*I <- {s = 2^(1/2)+I*2^(1/2), G[s] = 2^(1/2)+I*2^(1/2), x = 2}
-1.275024344+9.341921066*I <- {s = 2^(1/2)+I*2^(1/2), G[s] = 2^(1/2)+I*2^(1/2), x = 3}
-.592976910-.309607482*I <- {s = 2^(1/2)+I*2^(1/2), G[s] = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Successful
25.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta@{s}{a} = \LerchPhi@{1}{s}{a}} Zeta(0, s, a)= LerchPhi(1, s, a) HurwitzZeta[s, a]= LerchPhi[1, s, a] Successful Failure - Successful
25.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \polylog{s}@{z} = z\LerchPhi@{z}{s}{1}} polylog(s, z)= z*LerchPhi(z, s, 1) PolyLog[s, z]= z*LerchPhi[z, s, 1] Successful Successful - -
25.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \LerchPhi@{z}{s}{a} = z^{m}\LerchPhi@{z}{s}{a+m}+\sum_{n=0}^{m-1}\frac{z^{n}}{(a+n)^{s}}} LerchPhi(z, s, a)= (z)^(m)* LerchPhi(z, s, a + m)+ sum(((z)^(n))/((a + n)^(s)), n = 0..m - 1) LerchPhi[z, s, a]= (z)^(m)* LerchPhi[z, s, a + m]+ Sum[Divide[(z)^(n),(a + n)^(s)], {n, 0, m - 1}] Failure Successful Skip -
25.14.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \LerchPhi@{z}{s}{a} = \frac{1}{\EulerGamma@{s}}\int_{0}^{\infty}\frac{x^{s-1}e^{-ax}}{1-ze^{-x}}\diff{x}} LerchPhi(z, s, a)=(1)/(GAMMA(s))*int(((x)^(s - 1)* exp(- a*x))/(1 - z*exp(- x)), x = 0..infinity) LerchPhi[z, s, a]=Divide[1,Gamma[s]]*Integrate[Divide[(x)^(s - 1)* Exp[- a*x],1 - z*Exp[- x]], {x, 0, Infinity}] Failure Failure Skip Error
25.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \LerchPhi@{z}{s}{a} = \frac{1}{2}a^{-s}+\int_{0}^{\infty}\frac{z^{x}}{(a+x)^{s}}\diff{x}-2\int_{0}^{\infty}\frac{\sin@{x\ln@@{z}-s\atan@{x/a}}}{(a^{2}+x^{2})^{s/2}(e^{2\pi x}-1)}\diff{x}} LerchPhi(z, s, a)=(1)/(2)*(a)^(- s)+ int(((z)^(x))/((a + x)^(s)), x = 0..infinity)- 2*int((sin(x*ln(z)- s*arctan(x/ a)))/(((a)^(2)+ (x)^(2))^(s/ 2)*(exp(2*Pi*x)- 1)), x = 0..infinity) LerchPhi[z, s, a]=Divide[1,2]*(a)^(- s)+ Integrate[Divide[(z)^(x),(a + x)^(s)], {x, 0, Infinity}]- 2*Integrate[Divide[Sin[x*Log[z]- s*ArcTan[x/ a]],((a)^(2)+ (x)^(2))^(s/ 2)*(Exp[2*Pi*x]- 1)], {x, 0, Infinity}] Failure Failure Skip Error
25.16.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2}\Riemannzeta@{1-2a} = -\frac{\BernoullinumberB{2a}}{4a}} (1)/(2)*Zeta(1 - 2*a)= -(bernoulli(2*a))/(4*a) Divide[1,2]*Zeta[1 - 2*a]= -Divide[BernoulliB[2*a],4*a] Failure Failure Successful Successful
25.16.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\left(\frac{h(n)}{n}\right)^{2} = \frac{17}{4}\Riemannzeta@{4}} sum(((h*(n))/(n))^(2), n = 1..infinity)=(17)/(4)*Zeta(4) Sum[(Divide[h*(n),n])^(2), {n, 1, Infinity}]=Divide[17,4]*Zeta[4] Failure Failure Skip
Fail
Complex[-3.1856601808992417, 1.4142135623730951] <- {Rule[Sum[Power[h, 2], {n, 1, DirectedInfinity[1]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-3.1856601808992417, -1.4142135623730951] <- {Rule[Sum[Power[h, 2], {n, 1, DirectedInfinity[1]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-6.014087305645432, -1.4142135623730951] <- {Rule[Sum[Power[h, 2], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-6.014087305645432, 1.4142135623730951] <- {Rule[Sum[Power[h, 2], {n, 1, DirectedInfinity[1]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
25.16.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{r=1}^{\infty}\sum_{k=1}^{r}\frac{1}{r^{2}(r+k)} = \frac{3}{4}\Riemannzeta@{3}} sum(sum((1)/((r)^(2)*(r + k)), k = 1..r), r = 1..infinity)=(3)/(4)*Zeta(3) Sum[Sum[Divide[1,(r)^(2)*(r + k)], {k, 1, r}], {r, 1, Infinity}]=Divide[3,4]*Zeta[3] Failure Failure Skip Error