lim q â 1 â¡ 1 - q α 1 - q = α subscript â ð 1 1 superscript ð ð¼ 1 ð ð¼ {\displaystyle{\displaystyle{\displaystyle\lim\limits_{q\rightarrow 1}\frac{1-% q^{\alpha}}{1-q}=\alpha}}} {\displaystyle \lim\limits_{q\rightarrow 1}\frac{1-q^{\alpha}}{1-q}=\alpha } [ α ] := 1 - q α 1 - q assign delimited-[] ð¼ 1 superscript ð ð¼ 1 ð {\displaystyle{\displaystyle{\displaystyle[\alpha]:=\frac{1-q^{\alpha}}{1-q}}}} {\displaystyle [\alpha]:=\frac{1-q^{\alpha}}{1-q} } [ 0 ] = 0 , [ n ] = 1 - q n 1 - q = â k = 0 n - 1 q k formulae-sequence delimited-[] 0 0 delimited-[] ð 1 superscript ð ð 1 ð superscript subscript ð 0 ð 1 superscript ð ð {\displaystyle{\displaystyle{\displaystyle[0]=0,\quad[n]=\frac{1-q^{n}}{1-q}=% \sum_{k=0}^{n-1}q^{k}}}} {\displaystyle [0]=0,\quad [n]=\frac{1-q^n}{1-q}=\sum_{k=0}^{n-1}q^k }
\qPochhammer ⢠a ⢠q ⢠0 := 1 â and â \qPochhammer ⢠a ⢠q ⢠k := â n = 1 k ( 1 - a ⢠q n - 1 ) , k = 1 , 2 , 3 , ⦠formulae-sequence assign \qPochhammer ð ð 0 1 and formulae-sequence assign \qPochhammer ð ð ð superscript subscript product ð 1 ð 1 ð superscript ð ð 1 ð 1 2 3 ⦠{\displaystyle{\displaystyle{\displaystyle{}\qPochhammer{a}{q}{0}:=1\quad% \textrm{and}\quad\qPochhammer{a}{q}{k}:=\prod_{n=1}^{k}(1-aq^{n-1}),\quad k=1,% 2,3,\ldots}}} {\displaystyle \index{q-Shifted factorial@$q$-Shifted factorial} \qPochhammer{a}{q}{0}:=1\quad\textrm{and}\quad \qPochhammer{a}{q}{k}:=\prod_{n=1}^k(1-aq^{n-1}),\quad k=1,2,3,\ldots } lim q â 1 â¡ \qPochhammer ⢠q α ⢠q ⢠k ( 1 - q ) k = \pochhammer ⢠α ⢠k subscript â ð 1 \qPochhammer superscript ð ð¼ ð ð superscript 1 ð ð \pochhammer ð¼ ð {\displaystyle{\displaystyle{\displaystyle\lim\limits_{q\rightarrow 1}\frac{% \qPochhammer{q^{\alpha}}{q}{k}}{(1-q)^{k}}=\pochhammer{\alpha}{k}}}} {\displaystyle \lim\limits_{q\rightarrow 1}\frac{\qPochhammer{q^{\alpha}}{q}{k}}{(1-q)^k}=\pochhammer{\alpha}{k} } \qPochhammer ⢠a ⢠q - k := 1 â n = 1 k ( 1 - a ⢠q - n ) , a â q , q 2 , q 3 , ⦠, q k formulae-sequence assign \qPochhammer ð ð ð 1 superscript subscript product ð 1 ð 1 ð superscript ð ð ð ð superscript ð 2 superscript ð 3 ⦠superscript ð ð {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{-k}:=\frac{1}{% \displaystyle\prod_{n=1}^{k}(1-aq^{-n})},\quad a\neq q,q^{2},q^{3},\ldots,q^{k% }}}} {\displaystyle \qPochhammer{a}{q}{-k}:=\frac{1}{\displaystyle\prod_{n=1}^{k}(1-aq^{-n})},\quad a\neq q,q^2,q^3,\ldots,q^k }
\qPochhammer ⢠a ⢠q - n = 1 \qPochhammer ⢠a ⢠q - n ⢠q ⢠n = ( - q ⢠a - 1 ) n \qPochhammer ⢠q ⢠a - 1 ⢠q ⢠n ⢠q \binomial ⢠n ⢠2 \qPochhammer ð ð ð 1 \qPochhammer ð superscript ð ð ð ð superscript ð superscript ð 1 ð \qPochhammer ð superscript ð 1 ð ð superscript ð \binomial ð 2 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{-n}=\frac{1}{% \qPochhammer{aq^{-n}}{q}{n}}=\frac{(-qa^{-1})^{n}}{\qPochhammer{qa^{-1}}{q}{n}% }q^{\binomial{n}{2}}}}} {\displaystyle \qPochhammer{a}{q}{-n}=\frac{1}{\qPochhammer{aq^{-n}}{q}{n}}=\frac{(-qa^{-1})^n}{\qPochhammer{qa^{-1}}{q}{n}} q^{\binomial{n}{2}} }
\qPochhammer ⢠a ⢠q - 1 ⢠n = \qPochhammer ⢠a - 1 ⢠q ⢠n ⢠( - a ) n ⢠q - \binomial ⢠n ⢠2 \qPochhammer ð superscript ð 1 ð \qPochhammer superscript ð 1 ð ð superscript ð ð superscript ð \binomial ð 2 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q^{-1}}{n}=% \qPochhammer{a^{-1}}{q}{n}(-a)^{n}q^{-\binomial{n}{2}}}}} {\displaystyle \qPochhammer{a}{q^{-1}}{n}=\qPochhammer{a^{-1}}{q}{n}(-a)^nq^{-\binomial{n}{2}} }
\qPochhammer ⢠a ⢠q ⢠λ = \qPochhammer ⢠a ⢠q ⢠â \qPochhammer ⢠a ⢠q λ ⢠q ⢠â \qPochhammer ð ð ð \qPochhammer ð ð \qPochhammer ð superscript ð ð ð {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{\lambda}=\frac{% \qPochhammer{a}{q}{\infty}}{\qPochhammer{aq^{\lambda}}{q}{\infty}}}}} {\displaystyle \qPochhammer{a}{q}{\lambda}=\frac{\qPochhammer{a}{q}{\infty}}{\qPochhammer{aq^{\lambda}}{q}{\infty}} }
\qPochhammer ⢠a ⢠q ⢠n + k = \qPochhammer ⢠a ⢠q ⢠n ⢠\qPochhammer ⢠a ⢠q n ⢠q ⢠k \qPochhammer ð ð ð ð \qPochhammer ð ð ð \qPochhammer ð superscript ð ð ð ð {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{n+k}=\qPochhammer% {a}{q}{n}\qPochhammer{aq^{n}}{q}{k}}}} {\displaystyle \qPochhammer{a}{q}{n+k}=\qPochhammer{a}{q}{n}\qPochhammer{aq^n}{q}{k} }
\qPochhammer ⢠a ⢠q n ⢠q ⢠k \qPochhammer ⢠a ⢠q k ⢠q ⢠n = \qPochhammer ⢠a ⢠q ⢠k \qPochhammer ⢠a ⢠q ⢠n \qPochhammer ð superscript ð ð ð ð \qPochhammer ð superscript ð ð ð ð \qPochhammer ð ð ð \qPochhammer ð ð ð {\displaystyle{\displaystyle{\displaystyle\frac{\qPochhammer{aq^{n}}{q}{k}}{% \qPochhammer{aq^{k}}{q}{n}}=\frac{\qPochhammer{a}{q}{k}}{\qPochhammer{a}{q}{n}% }}}} {\displaystyle \frac{\qPochhammer{aq^n}{q}{k}}{\qPochhammer{aq^k}{q}{n}}=\frac{\qPochhammer{a}{q}{k}}{\qPochhammer{a}{q}{n}} }
\qPochhammer ⢠a ⢠q k ⢠q ⢠n - k = \qPochhammer ⢠a ⢠q ⢠n \qPochhammer ⢠a ⢠q ⢠k \qPochhammer ð superscript ð ð ð ð ð \qPochhammer ð ð ð \qPochhammer ð ð ð {\displaystyle{\displaystyle{\displaystyle\qPochhammer{aq^{k}}{q}{n-k}=\frac{% \qPochhammer{a}{q}{n}}{\qPochhammer{a}{q}{k}}}}} {\displaystyle \qPochhammer{aq^k}{q}{n-k}=\frac{\qPochhammer{a}{q}{n}}{\qPochhammer{a}{q}{k}} }
0 < | q | < 1 0 ð 1 {\displaystyle{\displaystyle{\displaystyle 0<|q|<1}}} & a â 0 ð 0 {\displaystyle{\displaystyle{\displaystyle a\neq 0}}} &
\qPochhammer ⢠a ⢠q - n ⢠q ⢠n \qPochhammer ⢠b ⢠q - n ⢠q ⢠n = \qPochhammer ⢠a - 1 ⢠q ⢠q ⢠n \qPochhammer ⢠b - 1 ⢠q ⢠q ⢠n ⢠( a b ) n , a â 0 formulae-sequence \qPochhammer ð superscript ð ð ð ð \qPochhammer ð superscript ð ð ð ð \qPochhammer superscript ð 1 ð ð ð \qPochhammer superscript ð 1 ð ð ð superscript ð ð ð ð 0 {\displaystyle{\displaystyle{\displaystyle\frac{\qPochhammer{aq^{-n}}{q}{n}}{% \qPochhammer{bq^{-n}}{q}{n}}=\frac{\qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{b% ^{-1}q}{q}{n}}\left(\frac{a}{b}\right)^{n},\quad a\neq 0}}} {\displaystyle \frac{\qPochhammer{aq^{-n}}{q}{n}}{\qPochhammer{bq^{-n}}{q}{n}}=\frac{\qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{b^{-1}q}{q}{n}} \left(\frac{a}{b}\right)^n,\quad a\neq 0 }
\qPochhammer ⢠a ⢠q ⢠n - k \qPochhammer ⢠b ⢠q ⢠n - k = \qPochhammer ⢠a ⢠q ⢠n \qPochhammer ⢠b ⢠q ⢠n ⢠\qPochhammer ⢠b - 1 ⢠q 1 - n ⢠q ⢠k \qPochhammer ⢠a - 1 ⢠q 1 - n ⢠q ⢠k ⢠( b a ) k \qPochhammer ð ð ð ð \qPochhammer ð ð ð ð \qPochhammer ð ð ð \qPochhammer ð ð ð \qPochhammer superscript ð 1 superscript ð 1 ð ð ð \qPochhammer superscript ð 1 superscript ð 1 ð ð ð superscript ð ð ð {\displaystyle{\displaystyle{\displaystyle\frac{\qPochhammer{a}{q}{n-k}}{% \qPochhammer{b}{q}{n-k}}=\frac{\qPochhammer{a}{q}{n}}{\qPochhammer{b}{q}{n}}% \frac{\qPochhammer{b^{-1}q^{1-n}}{q}{k}}{\qPochhammer{a^{-1}q^{1-n}}{q}{k}}% \left(\frac{b}{a}\right)^{k}{}}}} {\displaystyle \frac{\qPochhammer{a}{q}{n-k}}{\qPochhammer{b}{q}{n-k}}=\frac{\qPochhammer{a}{q}{n}}{\qPochhammer{b}{q}{n}} \frac{\qPochhammer{b^{-1}q^{1-n}}{q}{k}}{\qPochhammer{a^{-1}q^{1-n}}{q}{k}}\left(\frac{b}{a}\right)^k {} }
b â 0 ð 0 {\displaystyle{\displaystyle{\displaystyle b\neq 0}}} & k = 0 , 1 , 2 , ⦠, n ð 0 1 2 ⦠ð {\displaystyle{\displaystyle{\displaystyle k=0,1,2,\ldots,n}}} & 0 < | q | < 1 0 ð 1 {\displaystyle{\displaystyle{\displaystyle 0<|q|<1}}} & a â 0 ð 0 {\displaystyle{\displaystyle{\displaystyle a\neq 0}}} &
\qPochhammer ⢠a ⢠q ⢠n = \qPochhammer ⢠a ⢠q ⢠â \qPochhammer ⢠a ⢠q n ⢠q ⢠â = \qPochhammer ⢠a - 1 ⢠q 1 - n ⢠q ⢠n ⢠( - a ) n ⢠q \binomial ⢠n ⢠2 \qPochhammer ð ð ð \qPochhammer ð ð \qPochhammer ð superscript ð ð ð \qPochhammer superscript ð 1 superscript ð 1 ð ð ð superscript ð ð superscript ð \binomial ð 2 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{n}=\frac{% \qPochhammer{a}{q}{\infty}}{\qPochhammer{aq^{n}}{q}{\infty}}=\qPochhammer{a^{-% 1}q^{1-n}}{q}{n}(-a)^{n}q^{\binomial{n}{2}}}}} &
\qPochhammer ⢠q - n ⢠q ⢠k = \qPochhammer ⢠q ⢠q ⢠n \qPochhammer ⢠q ⢠q ⢠n - k ⢠( - 1 ) k ⢠q \binomial ⢠k ⢠2 - n ⢠k \qPochhammer superscript ð ð ð ð \qPochhammer ð ð ð \qPochhammer ð ð ð ð superscript 1 ð superscript ð \binomial ð 2 ð ð {\displaystyle{\displaystyle{\displaystyle\qPochhammer{q^{-n}}{q}{k}=\frac{% \qPochhammer{q}{q}{n}}{\qPochhammer{q}{q}{n-k}}(-1)^{k}q^{\binomial{k}{2}-nk}}}} {\displaystyle \qPochhammer{q^{-n}}{q}{k}=\frac{\qPochhammer{q}{q}{n}}{\qPochhammer{q}{q}{n-k}}(-1)^kq^{\binomial{k}{2}-nk} }
\qPochhammer ⢠a ⢠q - n ⢠q ⢠k = \qPochhammer ⢠a - 1 ⢠q ⢠q ⢠n \qPochhammer ⢠a - 1 ⢠q 1 - k ⢠q ⢠n ⢠\qPochhammer ⢠a ⢠q ⢠k ⢠q - n ⢠k \qPochhammer ð superscript ð ð ð ð \qPochhammer superscript ð 1 ð ð ð \qPochhammer superscript ð 1 superscript ð 1 ð ð ð \qPochhammer ð ð ð superscript ð ð ð {\displaystyle{\displaystyle{\displaystyle\qPochhammer{aq^{-n}}{q}{k}=\frac{% \qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{a^{-1}q^{1-k}}{q}{n}}\qPochhammer{a}% {q}{k}q^{-nk}}}} {\displaystyle \qPochhammer{aq^{-n}}{q}{k}=\frac{\qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{a^{-1}q^{1-k}}{q}{n}}\qPochhammer{a}{q}{k}q^{-nk} }
\qPochhammer ⢠a ⢠q - n ⢠q ⢠n - k = \qPochhammer ⢠a - 1 ⢠q ⢠q ⢠n \qPochhammer ⢠a - 1 ⢠q ⢠q ⢠k ⢠( - a q ) n - k ⢠q \binomial ⢠k ⢠2 - \binomial ⢠n ⢠2 \qPochhammer ð superscript ð ð ð ð ð \qPochhammer superscript ð 1 ð ð ð \qPochhammer superscript ð 1 ð ð ð superscript ð ð ð ð superscript ð \binomial ð 2 \binomial ð 2 {\displaystyle{\displaystyle{\displaystyle\qPochhammer{aq^{-n}}{q}{n-k}=\frac{% \qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{a^{-1}q}{q}{k}}\left(-\frac{a}{q}% \right)^{n-k}q^{\binomial{k}{2}-\binomial{n}{2}}{}}}} {\displaystyle \qPochhammer{aq^{-n}}{q}{n-k}=\frac{\qPochhammer{a^{-1}q}{q}{n}}{\qPochhammer{a^{-1}q}{q}{k}} \left(-\frac{a}{q}\right)^{n-k}q^{\binomial{k}{2}-\binomial{n}{2}} {} }
\qPochhammer ⢠a ⢠q ⢠2 ⢠n = \qPochhammer ⢠a ⢠q 2 ⢠n ⢠\qPochhammer ⢠a ⢠q ⢠q 2 ⢠n \qPochhammer ð ð 2 ð \qPochhammer ð superscript ð 2 ð \qPochhammer ð ð superscript ð 2 ð {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a}{q}{2n}=\qPochhammer{% a}{q^{2}}{n}\qPochhammer{aq}{q^{2}}{n}}}} {\displaystyle \qPochhammer{a}{q}{2n}=\qPochhammer{a}{q^2}{n}\qPochhammer{aq}{q^2}{n} } \qPochhammer ⢠a 2 ⢠q 2 ⢠â = \qPochhammer ⢠a ⢠q ⢠â ⢠\qPochhammer - a ⢠q ⢠â \qPochhammer superscript ð 2 superscript ð 2 \qPochhammer ð ð \qPochhammer ð ð {\displaystyle{\displaystyle{\displaystyle\qPochhammer{a^{2}}{q^{2}}{\infty}=% \qPochhammer{a}{q}{\infty}\qPochhammer{-a}{q}{\infty}}}} {\displaystyle \qPochhammer{a^2}{q^2}{\infty}=\qPochhammer{a}{q}{\infty}\qPochhammer{-a}{q}{\infty} }
1 - a 2 ⢠q 2 ⢠n 1 - a 2 = \qPochhammer ⢠a 2 ⢠q 2 ⢠q 2 ⢠n \qPochhammer ⢠a 2 ⢠q 2 ⢠n = \qPochhammer ⢠a ⢠q ⢠q ⢠n ⢠\qPochhammer - a ⢠q ⢠q ⢠n \qPochhammer ⢠a ⢠q ⢠n ⢠\qPochhammer - a ⢠q ⢠n 1 superscript ð 2 superscript ð 2 ð 1 superscript ð 2 \qPochhammer superscript ð 2 superscript ð 2 superscript ð 2 ð \qPochhammer superscript ð 2 superscript ð 2 ð \qPochhammer ð ð ð ð \qPochhammer ð ð ð ð \qPochhammer ð ð ð \qPochhammer ð ð ð {\displaystyle{\displaystyle{\displaystyle\frac{1-a^{2}q^{2n}}{1-a^{2}}=\frac{% \qPochhammer{a^{2}q^{2}}{q^{2}}{n}}{\qPochhammer{a^{2}}{q^{2}}{n}}=\frac{% \qPochhammer{aq}{q}{n}\qPochhammer{-aq}{q}{n}}{\qPochhammer{a}{q}{n}% \qPochhammer{-a}{q}{n}}}}} {\displaystyle \frac{1-a^2q^{2n}}{1-a^2}=\frac{\qPochhammer{a^2q^2}{q^2}{n}}{\qPochhammer{a^2}{q^2}{n}} =\frac{\qPochhammer{aq}{q}{n}\qPochhammer{-aq}{q}{n}}{\qPochhammer{a}{q}{n}\qPochhammer{-a}{q}{n}} }