q-Laguerre
Basic hypergeometric representation
![{\displaystyle {\displaystyle
\qLaguerre[\alpha]{n}@{x}{q}=\frac{\qPochhammer{q^{\alpha+1}}{q}{n}}{\qPochhammer{q}{q}{n}}\
\qHyperrphis{1}{1}@@{q^{-n}}{q^{\alpha+1}}{q}{-q^{n+\alpha+1}x}
}}](/index.php?title=Special:MathShowImage&hash=431c492fa4dd72e38834b0720a41d244&mode=latexml)
Orthogonality relation(s)
Recurrence relation
Monic recurrence relation
![{\displaystyle {\displaystyle
x\monicqLaguerre[\alpha]{n}@@{x}{q}=\monicqLaguerre[\alpha]{n+1}@@{x}{q}+q^{-2n-\alpha-1}\left[(1-q^{n+1})+q(1-q^{n+\alpha})\right]\monicqLaguerre[\alpha]{n}@@{x}{q}
{}+q^{-4n-2\alpha+1}(1-q^n)(1-q^{n+\alpha})\monicqLaguerre[\alpha]{n-1}@@{x}{q}
}}](/index.php?title=Special:MathShowImage&hash=eecbd5d42b83046d11312a683435ce68&mode=latexml)
q-Difference equation
Forward shift operator
![{\displaystyle {\displaystyle
\qLaguerre[\alpha]{n}@{x}{q}-\qLaguerre[\alpha]{n}@{qx}{q}=-q^{\alpha+1}x\qLaguerre[\alpha+1]{n-1}@{qx}{q}
}}](/index.php?title=Special:MathShowImage&hash=66095ccdd9e2519d66e7ae8570ab8bb6&mode=latexml)
Backward shift operator
![{\displaystyle {\displaystyle
\qLaguerre[\alpha]{n}@{x}{q}-q^{\alpha}(1+x)\qLaguerre[\alpha]{n}@{qx}{q}=(1-q^{n+1})\qLaguerre[\alpha-1]{n+1}@{x}{q}
}}](/index.php?title=Special:MathShowImage&hash=bcb328b752234b34231bb004fbf14bd1&mode=latexml)
Rodrigues-type formula
Generating functions
![{\displaystyle {\displaystyle
\frac{1}{\qPochhammer{t}{q}{\infty}}\,\qHyperrphis{1}{1}@@{-x}{0}{q}{q^{\alpha+1}t}
=\sum_{n=0}^{\infty}\qLaguerre[\alpha]{n}@{x}{q}t^n
}}](/index.php?title=Special:MathShowImage&hash=62b7b8222a2711dc9e8d237c25aaab1e&mode=latexml)
![{\displaystyle {\displaystyle
\frac{1}{\qPochhammer{t}{q}{\infty}}\,\qHyperrphis{0}{1}@@{-}{q^{\alpha+1}}{q}{-q^{\alpha+1}xt}
=\sum_{n=0}^{\infty}\frac{\qLaguerre[\alpha]{n}@{x}{q}}{\qPochhammer{q^{\alpha+1}}{q}{n}}t^n
}}](/index.php?title=Special:MathShowImage&hash=4f5e150ca1ee83cbf252524b18c539af&mode=latexml)
![{\displaystyle {\displaystyle
\qPochhammer{t}{q}{\infty}\cdot\qHyperrphis{0}{2}@@{-}{q^{\alpha+1},t}{q}{-q^{\alpha+1}xt}
=\sum_{n=0}^{\infty}\frac{(-1)^nq^{\binomial{n}{2}}}{\qPochhammer{q^{\alpha+1}}{q}{n}}\qLaguerre[\alpha]{n}@{x}{q}t^n
}}](/index.php?title=Special:MathShowImage&hash=2118d521af16730d3515b629964374a3&mode=latexml)
Limit relations
Little q-Jacobi polynomial to q-Laguerre polynomial
![{\displaystyle {\displaystyle
\lim_{b\rightarrow -\infty}\littleqJacobi{n}@{-b^{-1}q^{-1}x}{q^{\alpha}}{b}{q}=
\frac{\qPochhammer{q}{q}{n}}{\qPochhammer{q^{\alpha+1}}{q}{n}}\qLaguerre[\alpha]{n}@{x}{q}
}}](/index.php?title=Special:MathShowImage&hash=d12d6e484c8fe97de2a6296ba97f4dfb&mode=latexml)
q-Meixner polynomial to q-Laguerre polynomial
![{\displaystyle {\displaystyle
\lim_{c\rightarrow\infty}\qMeixner{n}@{cq^{\alpha}x}{q^{\alpha}}{c}{q}=
\frac{\qPochhammer{q}{q}{n}}{\qPochhammer{q^{\alpha+1}}{q}{n}}\qLaguerre[\alpha]{n}@{x}{q}
}}](/index.php?title=Special:MathShowImage&hash=a8210e50a575324f46ea630cd30cc77a&mode=latexml)
q-Laguerre polynomial to Stieltjes-Wigert polynomial
![{\displaystyle {\displaystyle
\lim_{\alpha\rightarrow\infty}\qLaguerre[\alpha]{n}@{xq^{-\alpha}}{q}=\StieltjesWigert{n}@{x}{q}
}}](/index.php?title=Special:MathShowImage&hash=84186c0762f06585431389de33cd5a50&mode=latexml)
q-Laguerre polynomial to Laguerre / Charlier polynomial
![{\displaystyle {\displaystyle
\lim_{q\rightarrow 1}\Laguerre[\alpha]{n}@{(1-q}x;q)=\Laguerre[\alpha]{n}@{x}
}}](/index.php?title=Special:MathShowImage&hash=4de0c1b5a0bc9ca792b948a260dd83cc&mode=latexml)
![{\displaystyle {\displaystyle
\lim_{q\rightarrow 1}\,\qPochhammer{q}{q}{n}\qLaguerre[\alpha]{n}@{-q^{-x}}{q}=\Charlier{n}@{x}{a}
}}](/index.php?title=Special:MathShowImage&hash=e7992d8f3a9ec0783698d7f8af54f5e7&mode=latexml)
![{\displaystyle {\displaystyle
\qLaguerre[\alpha]{n}@{x}{q^{-1}}=\frac{\qPochhammer{q^{\alpha+1}}{q}{n}}{\qPochhammer{q}{q}{n}q^{n\alpha}}\littleqLaguerre{n}@{-x}{q^{\alpha}}{q}
}}](/index.php?title=Special:MathShowImage&hash=d87ae754c81d2dc30ac39ab44058d372&mode=latexml)
![{\displaystyle {\displaystyle
\frac{\qBesselPoly{n}@{q^x}{a}{q}}{\qPochhammer{q}{q}{n}}=\qLaguerre[x-n]{n}@{aq^n}{q}
}}](/index.php?title=Special:MathShowImage&hash=4fef0ec40e50326f75f7ddad9d4f5e82&mode=latexml)
Koornwinder Addendum: q-Laguerre
Orthogonality relation
Expansion of x^n
![{\displaystyle {\displaystyle
x^n=q^{-\frac12 n(n+2\alpha+1)} \qPochhammer{q^{\alpha+1}}{q}{n}
\sum_{k=0}^n\frac{\qPochhammer{q^{-n}}{q}{k}}{\qPochhammer{q^{\alpha+1}}{q}{k}} q^k \qLaguerre[\alpha]{k}@{x}{q}
}}](/index.php?title=Special:MathShowImage&hash=43d3a3a00c26674fe87ca7c391ab113b&mode=latexml)
Quadratic transformations
![{\displaystyle {\displaystyle
\qLaguerre[-1/2]{n}@{x^2}{q^2}=
\frac{(-1)^n q^{2n^2-n}}{\qPochhammer{q^2}{q^2}{n}} \discrqHermiteII{2n}@{x}{q}
}}](/index.php?title=Special:MathShowImage&hash=dcb8115ba9ca08d264cc0e8f39287063&mode=latexml)