Definition:ctsqJacobi

From DRMF
Jump to: navigation, search

The LaTeX DLMF and DRMF macro \ctsqJacobi represents the continuous Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle q} -Jacobi polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\ctsqJacobi{\alpha}{\beta}{m} produces Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \ctsqJacobi{\alpha}{\beta}{m}}}
\ctsqJacobi{\alpha}{\beta}{m}@{x}{q} produces Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \ctsqJacobi{\alpha}{\beta}{m}@{x}{q}}}

These are defined by
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle \ctsqJacobi{\alpha}{\beta}{n}@{x}{q} :=\frac{\qPochhammer{q^{\alpha+1}}{q}{n}}{\qPochhammer{q}{q}{n}} \qHyperrphis{4}{3}@@{q^{-n},q^{n+\alpha+\beta+1},q^{\frac{1}{2}\alpha+\frac{1}{4}}\expe^{i\theta},q^{\frac{1}{2}\alpha+\frac{1}{4}}\expe^{-i\theta}} {q^{\alpha+1},-q^{\frac{1}{2}(\alpha+\beta+1)},-q^{\frac{1}{2}(\alpha+\beta+2)}}{q}{q} }

with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle x=\cos@@{\theta}} .

Symbols List

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle P^{(\alpha,\beta)}_{n}}}  : continuous Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle q}} -Jacobi polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqJacobi
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle (a;q)_n}}  : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle q}} -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle {{}_{r}\phi_{s}}}}  : basic hypergeometric (or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle q}} -hypergeometric) function : http://dlmf.nist.gov/17.4#E1
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \mathrm{e}}}  : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \mathrm{cos}}}  : cosine function : http://dlmf.nist.gov/4.14#E2