Jump to navigation Jump to search

The LaTeX DLMF and DRMF macro \ctsqJacobi represents the continuous -Jacobi polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\ctsqJacobi{\alpha}{\beta}{m} produces Failed to parse (unknown function "\ctsqJacobi"): {\displaystyle {\displaystyle \ctsqJacobi{\alpha}{\beta}{m}}}
\ctsqJacobi{\alpha}{\beta}{m}@{x}{q} produces Failed to parse (unknown function "\ctsqJacobi"): {\displaystyle {\displaystyle \ctsqJacobi{\alpha}{\beta}{m}@{x}{q}}}

These are defined by
Failed to parse (unknown function "\ctsqJacobi"): {\displaystyle \ctsqJacobi{\alpha}{\beta}{n}@{x}{q} :=\frac{\qPochhammer{q^{\alpha+1}}{q}{n}}{\qPochhammer{q}{q}{n}} \qHyperrphis{4}{3}@@{q^{-n},q^{n+\alpha+\beta+1},q^{\frac{1}{2}\alpha+\frac{1}{4}}\expe^{i\theta},q^{\frac{1}{2}\alpha+\frac{1}{4}}\expe^{-i\theta}} {q^{\alpha+1},-q^{\frac{1}{2}(\alpha+\beta+1)},-q^{\frac{1}{2}(\alpha+\beta+2)}}{q}{q} }

with Failed to parse (syntax error): {\displaystyle x=\cos@@{\theta}} .

Symbols List

 : continuous -Jacobi polynomial :
 : -Pochhammer symbol :
 : basic hypergeometric (or -hypergeometric) function :
 : the base of the natural logarithm :
 : cosine function :