Definition:ctsqJacobi

From DRMF
Jump to navigation Jump to search

The LaTeX DLMF and DRMF macro \ctsqJacobi represents the continuous -Jacobi polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\ctsqJacobi{\alpha}{\beta}{m} produces Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Illegal TeX function Found \ctsqJacobiin 1:31"): {\displaystyle {\displaystyle \ctsqJacobi{\alpha}{\beta}{m}}}
\ctsqJacobi{\alpha}{\beta}{m}@{x}{q} produces Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Illegal TeX function Found \ctsqJacobiin 1:31"): {\displaystyle {\displaystyle \ctsqJacobi{\alpha}{\beta}{m}@{x}{q}}}

These are defined by
Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Illegal TeX function Found \ctsqJacobiin 2:1"): {\displaystyle \ctsqJacobi{\alpha}{\beta}{n}@{x}{q} :=\frac{\qPochhammer{q^{\alpha+1}}{q}{n}}{\qPochhammer{q}{q}{n}} \qHyperrphis{4}{3}@@{q^{-n},q^{n+\alpha+\beta+1},q^{\frac{1}{2}\alpha+\frac{1}{4}}\expe^{i\theta},q^{\frac{1}{2}\alpha+\frac{1}{4}}\expe^{-i\theta}} {q^{\alpha+1},-q^{\frac{1}{2}(\alpha+\beta+1)},-q^{\frac{1}{2}(\alpha+\beta+2)}}{q}{q} }

with Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "(", "-", "[", "\\", "\\begin", "\\begin{", "\\{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "@" found.in 1:22"): {\displaystyle x=\cos@@{\theta}} .

Symbols List

 : continuous -Jacobi polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqJacobi
 : -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
 : basic hypergeometric (or -hypergeometric) function : http://dlmf.nist.gov/17.4#E1
 : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
 : cosine function : http://dlmf.nist.gov/4.14#E2