# Definition:ctsqHahn

The LaTeX DLMF and DRMF macro \ctsqHahn represents the continuous $q$ -Hahn polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\ctsqHahn{n} produces $\displaystyle \ctsqHahn{n}$
\ctsqHahn{n}@{x}{a}{b}{c}{d}{q} produces $\displaystyle \ctsqHahn{n}@{x}{a}{b}{c}{d}{q}$

These are defined by $\displaystyle \frac{(a\expe^{i\phi})^n\ctsqHahn{n}@{x}{a}{b}{c}{d}{q}}{\qPochhammer{ab\expe^{2i\phi},ac,ad}{q}{n}} {}:=\qHyperrphis{4}{3}@@{q^{-n},abcdq^{n-1},a\expe^{i(\theta+2\phi)},a\expe^{-i\theta}}{ab\expe^{2i\phi},ac,ad}{q}{q}.$

## Symbols List

$p_{n}}$ : continuous $q}$ -Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqHahn
$\mathrm {e} }$ : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
$(a;q)_{n}}$ : $q}$ -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
${{}_{r}\phi _{s}}}$ : basic hypergeometric (or $q}$ -hypergeometric) function : http://dlmf.nist.gov/17.4#E1