# Definition:ctsqHahn

The LaTeX DLMF and DRMF macro \ctsqHahn represents the continuous ${\displaystyle q}$-Hahn polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\ctsqHahn{n} produces $\displaystyle {\displaystyle \ctsqHahn{n}}$
\ctsqHahn{n}@{x}{a}{b}{c}{d}{q} produces $\displaystyle {\displaystyle \ctsqHahn{n}@{x}{a}{b}{c}{d}{q}}$

These are defined by $\displaystyle {\displaystyle \frac{(a\expe^{i\phi})^n\ctsqHahn{n}@{x}{a}{b}{c}{d}{q}}{\qPochhammer{ab\expe^{2i\phi},ac,ad}{q}{n}} {}:=\qHyperrphis{4}{3}@@{q^{-n},abcdq^{n-1},a\expe^{i(\theta+2\phi)},a\expe^{-i\theta}}{ab\expe^{2i\phi},ac,ad}{q}{q}. }$

## Symbols List

${\displaystyle {\displaystyle p_{n}}}$ : continuous ${\displaystyle {\displaystyle q}}$-Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqHahn
${\displaystyle {\displaystyle \mathrm {e} }}$ : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
${\displaystyle {\displaystyle (a;q)_{n}}}$ : ${\displaystyle {\displaystyle q}}$-Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
${\displaystyle {\displaystyle {{}_{r}\phi _{s}}}}$ : basic hypergeometric (or ${\displaystyle {\displaystyle q}}$-hypergeometric) function : http://dlmf.nist.gov/17.4#E1