# Definition:normctsdualqHahnptilde

The LaTeX DLMF and DRMF macro **\normctsdualqHahnptilde** represents the normalized continuous dual **Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle q}**
-Hahn tilde polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

**\normctsdualqHahnptilde{n}**produces**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \normctsdualqHahnptilde{n}}}****\normctsdualqHahnptilde{n}@{x}{a}{b}{c}{q}**produces**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \normctsdualqHahnptilde{n}@{x}{a}{b}{c}{q}}}****\normctsdualqHahnptilde{n}@@{x}{a}{b}{c}{q}**produces**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle \normctsdualqHahnptilde{n}@@{x}{a}{b}{c}{q}}}**

These are defined by
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle {\tilde p}_n(x):=\normctsdualqHahnptilde{n}@{x}{a}{b}{c}{q}=\frac{a^n\ctsdualqHahn{n}@{x}{a}{b}{c}{q}}{\qPochhammer{ab,ac}{q}{n}} }}**

## Symbols List

**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle {\tilde p}_{n}}}**
: normalized continuous dual **Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle q}}**
-Hahn polynomial **Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle {\tilde p}}}**
: http://drmf.wmflabs.org/wiki/Definition:normctsdualqHahnptilde

**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle p_{n}}}**
: continuous dual **Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle q}}**
-Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsdualqHahn

**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle (a;q)_n}}**
: **Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://vmext-demo.wmflabs.org/v1/":): {\displaystyle {\displaystyle q}}**
-Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1