# Definition:normctsqHahnptilde

The LaTeX DLMF and DRMF macro \normctsqHahnptilde represents the normalized continuous $q$ -Hahn tilde polynomial.

This macro is in the category of polynomials.

In math mode, this macro can be called in the following ways:

\normctsqHahnptilde{n} produces $\displaystyle \normctsqHahnptilde{n}$
\normctsqHahnptilde{n}@{x}{a}{b}{c}{d}{q} produces $\displaystyle \normctsqHahnptilde{n}@{x}{a}{b}{c}{d}{q}$
\normctsqHahnptilde{n}@@{x}{a}{b}{c}{d}{q} produces $\displaystyle \normctsqHahnptilde{n}@@{x}{a}{b}{c}{d}{q}$

These are defined by $\displaystyle {\tilde p}_n(x):=\normctsqHahnptilde{n}@{x}{a}{b}{c}{d}{q}=\frac{(a\expe^{i\phi})^n\ctsqHahn{n}@{x}{a}{b}{c}{d}{q}}{\qPochhammer{ab\expe^{2i\phi},ac,ad}{q}{n}}$

## Symbols List

${\tilde {p}}_{n}}$ : normalized continuous $q}$ -Hahn polynomial ${\tilde {p}}}$ : http://drmf.wmflabs.org/wiki/Definition:normctsqHahnptilde
$\mathrm {e} }$ : the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
$p_{n}}$ : continuous $q}$ -Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqHahn
$(a;q)_{n}}$ : $q}$ -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1