L ( s , χ ) = ∑ n = 1 ∞ χ ( n ) n s Dirichlet-L 𝑠 𝜒 superscript subscript 𝑛 1 𝜒 𝑛 superscript 𝑛 𝑠 {\displaystyle{\displaystyle{\displaystyle L\left(s,\chi\right)=\sum_{n=1}^{% \infty}\frac{\chi(n)}{n^{s}}}}} {\displaystyle \DirichletL@{s}{\chi} = \sum_{n=1}^\infty \frac{\chi(n)}{n^s} }
L ( s , χ ) = ∏ p ( 1 - χ ( p ) p s ) - 1 Dirichlet-L 𝑠 𝜒 subscript product 𝑝 superscript 1 𝜒 𝑝 superscript 𝑝 𝑠 1 {\displaystyle{\displaystyle{\displaystyle L\left(s,\chi\right)=\prod_{p}\left% (1-\frac{\chi(p)}{p^{s}}\right)^{-1}}}} {\displaystyle \DirichletL@{s}{\chi} = \prod_p \left( 1 - \frac{\chi(p)}{p^s} \right)^{-1} }
L ( s , χ ) = k - s ∑ r = 1 k - 1 χ ( r ) \HurwitzZeta @ s r k Dirichlet-L 𝑠 𝜒 superscript 𝑘 𝑠 superscript subscript 𝑟 1 𝑘 1 𝜒 𝑟 \HurwitzZeta @ 𝑠 𝑟 𝑘 {\displaystyle{\displaystyle{\displaystyle L\left(s,\chi\right)=k^{-s}\sum_{r=% 1}^{k-1}\chi(r)\HurwitzZeta@{s}{\frac{r}{k}}}}} {\displaystyle \DirichletL@{s}{\chi} = k^{-s} \sum_{r=1}^{k-1} \chi(r) \HurwitzZeta@{s}{\frac{r}{k}} }
L ( s , χ ) = L ( s , χ 0 ) ∏ p | k ( 1 - χ 0 ( p ) p s ) Dirichlet-L 𝑠 𝜒 Dirichlet-L 𝑠 subscript 𝜒 0 subscript product divides 𝑝 𝑘 1 subscript 𝜒 0 𝑝 superscript 𝑝 𝑠 {\displaystyle{\displaystyle{\displaystyle L\left(s,\chi\right)=L\left(s,\chi_% {0}\right)\prod_{p\mathbin{|}k}\left(1-\frac{\chi_{0}(p)}{p^{s}}\right)}}} {\displaystyle \DirichletL@{s}{\chi} = \DirichletL@{s}{\chi_0} \prod_{p \divides k} \left( 1 - \frac{\chi_0(p)}{p^s} \right) }
L ( 1 - s , χ ) = k s - 1 Γ ( s ) ( 2 π ) s ( e - π i s / 2 + χ ( - 1 ) e π i s / 2 ) G ( χ ) L ( s , χ ¯ ) Dirichlet-L 1 𝑠 𝜒 superscript 𝑘 𝑠 1 Euler-Gamma 𝑠 superscript 2 𝑠 imaginary-unit 𝑠 2 𝜒 1 imaginary-unit 𝑠 2 𝐺 𝜒 Dirichlet-L 𝑠 ¯ 𝜒 {\displaystyle{\displaystyle{\displaystyle L\left(1-s,\chi\right)=\frac{k^{s-1% }\Gamma\left(s\right)}{(2\pi)^{s}}\*{\left({\mathrm{e}^{-\pi\mathrm{i}s/2}}+% \chi(-1){\mathrm{e}^{\pi\mathrm{i}s/2}}\right)}\*G(\chi)L\left(s,\overline{% \chi}\right)}}} {\displaystyle \DirichletL@{1-s}{\chi} = \frac{k^{s-1} \EulerGamma@{s}}{(2 \cpi)^s} \* {\left( \expe^{-\cpi \iunit s/2} + \chi(-1) \expe^{\cpi \iunit s/2} \right)} \* G(\chi) \DirichletL@{s}{\overline{\chi}} }
L ( - 2 n , χ ) = 0 if χ ( - 1 ) = 1 Dirichlet-L 2 𝑛 𝜒 0 if 𝜒 1 1 {\displaystyle{\displaystyle{\displaystyle L\left(-2n,\chi\right)=0\text{\quad if% \quad}\chi(-1)=1}}} {\displaystyle \DirichletL@{-2n}{\chi} \hiderel{=} 0 \text{\quad if\quad} \chi(-1) \hiderel{=} 1 }
L ( - 2 n - 1 , χ ) = 0 if χ ( - 1 ) = - 1 Dirichlet-L 2 𝑛 1 𝜒 0 if 𝜒 1 1 {\displaystyle{\displaystyle{\displaystyle L\left(-2n-1,\chi\right)=0\text{% \quad if\quad}\chi(-1)=-1}}} {\displaystyle \DirichletL@{-2n-1}{\chi} \hiderel{=} 0 \text{\quad if\quad} \chi(-1) \hiderel{=} -1 }
L ( 1 , χ ) ≠ 0 if χ ≠ - 1 Dirichlet-L 1 𝜒 0 if 𝜒 1 {\displaystyle{\displaystyle{\displaystyle L\left(1,\chi\right)\neq 0\text{% \quad if\quad}\chi\neq-1}}} {\displaystyle \DirichletL@{1}{\chi} \hiderel{\neq} 0 \text{\quad if\quad} \chi \hiderel{\neq} -1 }
L ( 0 , χ ) = { - 1 k ∑ r = 1 k r χ ( r ) , χ ≠ χ 1 , 0 , χ = χ 1 . Dirichlet-L 0 𝜒 cases 1 𝑘 superscript subscript 𝑟 1 𝑘 𝑟 𝜒 𝑟 𝜒 subscript 𝜒 1 0 𝜒 subscript 𝜒 1 {\displaystyle{\displaystyle{\displaystyle L\left(0,\chi\right)=\begin{cases}% \displaystyle-\frac{1}{k}\sum_{r=1}^{k}r\chi(r),&\chi\neq\chi_{1},\\ 0,&\chi=\chi_{1}.\end{cases}}}} {\displaystyle \DirichletL@{0}{\chi} = \begin{cases} \displaystyle -\frac{1}{k} \sum_{r=1}^k r \chi(r), & \chi \neq \chi_1, \ 0, & \chi = \chi_1. \end{cases} }