Φ â¡ ( z , s , a ) = â n = 0 â z n ( a + n ) s Lerch-Phi ð§ ð ð superscript subscript ð 0 superscript ð§ ð superscript ð ð ð {\displaystyle{\displaystyle{\displaystyle{\Phi\left(z,s,a\right)=\sum_{n=0}^{% \infty}\frac{z^{n}}{(a+n)^{s}}}}}} {\displaystyle { \LerchPhi@{z}{s}{a} = \sum_{n=0}^\infty \frac{z^n}{(a+n)^s} } }
ζ â¡ ( s , a ) = Φ â¡ ( 1 , s , a ) Hurwitz-zeta ð ð Lerch-Phi 1 ð ð {\displaystyle{\displaystyle{\displaystyle\zeta\left(s,a\right)=\Phi\left(1,s,% a\right)}}} {\displaystyle \HurwitzZeta@{s}{a} = \LerchPhi@{1}{s}{a} }
Li s â¡ ( z ) = z ⢠Φ â¡ ( z , s , 1 ) polylogarithm ð ð§ ð§ Lerch-Phi ð§ ð 1 {\displaystyle{\displaystyle{\displaystyle\mathrm{Li}_{s}\left(z\right)=z\Phi% \left(z,s,1\right)}}} {\displaystyle \Polylogarithm{s}@{z} = z \LerchPhi@{z}{s}{1} }
Φ â¡ ( z , s , a ) = z m ⢠Φ â¡ ( z , s , a + m ) + â n = 0 m - 1 z n ( a + n ) s Lerch-Phi ð§ ð ð superscript ð§ ð Lerch-Phi ð§ ð ð ð superscript subscript ð 0 ð 1 superscript ð§ ð superscript ð ð ð {\displaystyle{\displaystyle{\displaystyle\Phi\left(z,s,a\right)=z^{m}\Phi% \left(z,s,a+m\right)+\sum_{n=0}^{m-1}\frac{z^{n}}{(a+n)^{s}}}}} {\displaystyle \LerchPhi@{z}{s}{a} = z^m \LerchPhi@{z}{s}{a+m} + \sum_{n=0}^{m-1} \frac{z^n}{(a+n)^s} }
Φ â¡ ( z , s , a ) = 1 Î â¡ ( s ) ⢠⫠0 â x s - 1 ⢠\expe - a ⢠x 1 - z ⢠\expe - x ⢠\diffd â¡ x Lerch-Phi ð§ ð ð 1 Euler-Gamma ð superscript subscript 0 superscript ð¥ ð 1 superscript \expe ð ð¥ 1 ð§ superscript \expe ð¥ ð¥ {\displaystyle{\displaystyle{\displaystyle\Phi\left(z,s,a\right)=\frac{1}{% \Gamma\left(s\right)}\int_{0}^{\infty}\frac{x^{s-1}\expe^{-ax}}{1-z\expe^{-x}}% \diffd x}}} {\displaystyle \LerchPhi@{z}{s}{a} = \frac{1}{\EulerGamma@{s}} \int_0^\infty \frac{x^{s-1} \expe^{-ax}}{1-z\expe^{-x}} \diff{x} }
Φ â¡ ( z , s , a ) = 1 2 ⢠a - s + â« 0 â z x ( a + x ) s ⢠\diffd â¡ x - 2 ⢠⫠0 â sin â¡ ( x ⢠ln â¡ z - s ⢠arctan â¡ ( x / a ) ) ( a 2 + x 2 ) s / 2 ⢠( \expe 2 ⢠\cpi ⢠x - 1 ) ⢠\diffd â¡ x Lerch-Phi ð§ ð ð 1 2 superscript ð ð superscript subscript 0 superscript ð§ ð¥ superscript ð ð¥ ð ð¥ 2 superscript subscript 0 ð¥ ð§ ð ð¥ ð superscript superscript ð 2 superscript ð¥ 2 ð 2 superscript \expe 2 \cpi ð¥ 1 ð¥ {\displaystyle{\displaystyle{\displaystyle\Phi\left(z,s,a\right)=\frac{1}{2}a^% {-s}+\int_{0}^{\infty}\frac{z^{x}}{(a+x)^{s}}\diffd x-2\int_{0}^{\infty}\frac{% \sin\!\left(x\ln z-s\mathrm{arctan}\!\left(x/a\right)\right)}{(a^{2}+x^{2})^{s% /2}(\expe^{2\cpi x}-1)}\diffd x}}} {\displaystyle \LerchPhi@{z}{s}{a} = \frac{1}{2} a^{-s} + \int_0^\infty \frac{z^x}{(a+x)^s} \diff{x} - 2 \int_0^\infty \frac{\sin@{x \ln@@{z} - s \atan@{x/a}}} {(a^2 + x^2)^{s/2} (\expe^{2 \cpi x} - 1)} \diff{x} }