Formula:DLMF:25.11:E20

From DRMF
Jump to navigation Jump to search


Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \opminus^k \HurwitzZeta^{(k)}@{s}{a} = \frac{(\ln@@{a})^k}{a^s} \left( \frac{1}{2} + \frac{a}{s-1} \right) + k! a^{1-s} \sum_{r=0}^{k-1} \frac{(\ln@@{a})^r}{r! (s-1)^{k-r+1}} - s (s+1) \int_0^\infty \frac{\PeriodicBernoulliB{2}@{x} (\ln@{x+a})^k} {(x+a)^{s+2}} \diff{x} + k (2s+1) \int_0^\infty \frac{\PeriodicBernoulliB{2}@{x} (\ln@{x+a})^{k-1}} {(x+a)^{s+2}} \diff{x} - k (k-1) \int_0^\infty \frac{\PeriodicBernoulliB{2}@{x} (\ln@{x+a})^{k-2}} {(x+a)^{s+2}} \diff{x} }}

Constraint(s)

&
&


Note(s)

primes on denote derivatives with respect to


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
 : negative unity to an integer power : http://dlmf.nist.gov/5.7.E7
 : Hurwitz zeta function : http://dlmf.nist.gov/25.11#E1
 : principal branch of logarithm function : http://dlmf.nist.gov/4.2#E2
 : sum : http://drmf.wmflabs.org/wiki/Definition:sum
 : integral : http://dlmf.nist.gov/1.4#iv
 : periodic Bernoulli functions : http://dlmf.nist.gov/24.2#iii
 : differential : http://dlmf.nist.gov/1.4#iv
 : real part : http://dlmf.nist.gov/1.9#E2

Bibliography

Equation (20), Section 25.11 of DLMF.

URL links

We ask users to provide relevant URL links in this space.