Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle \HurwitzZeta'@{1-2n}{\frac{h}{k}} = \frac{(\digamma@{2n} - \ln@{2 \cpi k}) \BernoulliB{2n}@{h/k}}{2n} - \frac{(\digamma@{2n} - \ln@{2 \cpi}) \BernoulliB{2n}}{2 n k^{2n}} + \frac{\opminus^{n+1} \cpi}{(2 \cpi k)^{2n}} \sum_{r=1}^{k-1} \sin@{\frac{2 \cpi r h}{k}} \digamma^{(2n-1)}@{\frac{r}{k}} + \frac{\opminus^{n+1} 2 \cdot (2n-1)!}{(2 \cpi k)^{2n}} \sum_{r=1}^{k-1} \cos@{\frac{2 \cpi r h}{k}} \HurwitzZeta'@{2n}{\frac{r}{k}} + \frac{\RiemannZeta'@{1-2n}}{k^{2n}} }}
Constraint(s)
Note(s)
Proof
We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.
Symbols List
& : logical and
: Hurwitz zeta function : http://dlmf.nist.gov/25.11#E1
: psi (or digamma) function : http://dlmf.nist.gov/5.2#E2
: principal branch of logarithm function : http://dlmf.nist.gov/4.2#E2
: ratio of a circle's circumference to its diameter : http://dlmf.nist.gov/5.19.E4
: Bernoulli polynomial : http://dlmf.nist.gov/24.2#i
: negative unity to an integer power : http://dlmf.nist.gov/5.7.E7
: sum : http://drmf.wmflabs.org/wiki/Definition:sum
: sine function : http://dlmf.nist.gov/4.14#E1
: cosine function : http://dlmf.nist.gov/4.14#E2
: Riemann zeta function : http://dlmf.nist.gov/25.2#E1
Bibliography
Equation (21), Section 25.11 of DLMF.
URL links
We ask users to provide relevant URL links in this space.