Formula:DLMF:25.2:E9

From DRMF
Jump to navigation Jump to search


Failed to parse (unknown function "\RiemannZeta"): {\displaystyle {\displaystyle \RiemannZeta@{s} = \sum_{k=1}^N \frac{1}{k^s} + \frac{N^{1-s}}{s-1} - \frac{1}{2}N^{-s} + \sum_{k=1}^n \binom{s+2k-2}{2k-1} \frac{\BernoulliB{2k}}{2k} N^{1-s-2k} - \binom{s+2n}{2n+1} \int_N^\infty \frac{\PeriodicBernoulliB{2n+1}@{x}}{x^{s+2n+1}} \diff{x}}

Constraint(s)

Failed to parse (unknown function "\realpart"): {\displaystyle {\displaystyle \realpart{s} > -2n} }



Proof

Follows from

Failed to parse (unknown function "\RiemannZeta"): {\displaystyle {\displaystyle \RiemannZeta@{s} = \frac{1}{\EulerGamma@{s}} \int_0^\infty \frac{x^{s-1}}{\expe^x-1} \diff{x} }}

by repeated integration by parts.

Symbols List

& : logical and
 : Riemann zeta function : http://dlmf.nist.gov/25.2#E1
 : sum : http://drmf.wmflabs.org/wiki/Definition:sum
 : binomial coefficient : http://dlmf.nist.gov/1.2#E1 http://dlmf.nist.gov/26.3#SS1.p1
 : Bernoulli polynomial : http://dlmf.nist.gov/24.2#i
 : integral : http://dlmf.nist.gov/1.4#iv
 : periodic Bernoulli functions : http://dlmf.nist.gov/24.2#iii
 : differential : http://dlmf.nist.gov/1.4#iv
 : real part : http://dlmf.nist.gov/1.9#E2

Bibliography

Equation (9), Section 25.2 of DLMF.

URL links

We ask users to provide relevant URL links in this space.