Formula:KLS:14.02:05

From DRMF
Jump to navigation Jump to search


Substitution(s)

&

&
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle {\displaystyle h_n=\frac{\qPochhammer{\alpha^{-1}\beta^{-1}\gamma,\alpha^{-1}\delta,\beta^{-1},\gamma\delta q^2}{q}{\infty}} {\qPochhammer{\alpha^{-1}\beta^{-1}q^{-1},\alpha^{-1}\gamma\delta q,\beta^{-1}\gamma q,\delta q}{q}{\infty}} {}\frac{(1-\alpha\beta q)(\gamma\delta q)^n}{(1-\alpha\beta q^{2n+1})} \frac{\qPochhammer{q,\alpha\beta\gamma^{-1}q,\alpha\delta^{-1}q,\beta q}{q}{n}}{\qPochhammer{\alpha q,\alpha\beta q,\beta\delta q,\gamma q}{q}{n}} =\left\{\begin{array}{ll} \displaystyle\frac{\qPochhammer{\beta^{-1},\gamma\delta q^2}{q}{N}}{\qPochhammer{\beta^{-1}\gamma q,\delta q}{q}{N}} \frac{(1-\beta q^{-N})(\gamma\delta q)^n}{(1-\beta q^{2n-N})} \frac{\qPochhammer{q,\beta q,\beta\gamma^{-1}q^{-N},\delta^{-1}q^{-N}}{q}{n}}{\qPochhammer{\beta q^{-N},\beta\delta q,\gamma q,q^{-N}}{q}{n}} &<br /> \quad\textrm{if}\quad\alpha q=q^{-N}\\ \\ \displaystyle\frac{\qPochhammer{\alpha\beta q^2,\beta\gamma^{-1}}{q}{N}}{\qPochhammer{\alpha\beta\gamma^{-1}q,\beta q}{q}{N}} \frac{(1-\alpha\beta q)(\beta^{-1}\gamma q^{-N})^n}{(1-\alpha\beta q^{2n+1})} \frac{\qPochhammer{q,\alpha\beta q^{N+2},\alpha\beta\gamma^{-1}q,\beta q}{q}{n}}{\qPochhammer{\alpha q,\alpha\beta q,\gamma q,q^{-N}}{q}{n}} &<br /> \quad\textrm{if}\quad\beta\delta q=q^{-N}\\ \\ \displaystyle\frac{\qPochhammer{\alpha\beta q^2,\delta^{-1}}{q}{N}}{\qPochhammer{\alpha\delta^{-1}q,\beta q}{q}{N}} \frac{(1-\alpha\beta q)(\delta q^{-N})^n}{(1-\alpha\beta q^{2n+1})} \frac{\qPochhammer{q,\alpha\beta q^{N+2},\alpha\delta^{-1}q,\beta q}{q}{n}} {\qPochhammer{\alpha q,\alpha\beta q,\beta\delta q,q^{-N}}{q}{n}} &<br /> \quad\textrm{if}\quad\gamma q=q^{-N} \end{array}\right.}} } &
&
&


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
 : sum : http://drmf.wmflabs.org/wiki/Definition:sum
 : -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
 : -Racah polynomial : http://dlmf.nist.gov/18.28#E19
 : Kronecker delta : http://dlmf.nist.gov/front/introduction#Sx4.p1.t1.r4
 : cosine function : http://dlmf.nist.gov/4.14#E2

Bibliography

Equation in Section 14.2 of KLS.

URL links

We ask users to provide relevant URL links in this space.