![{\displaystyle {\displaystyle
{\tilde w}(x;a,b,c,d;q)\ctsqHahn{n}@{x}{a}{b}{c}{d}{q}
{}=\left(\frac{q-1}{2}\right)^nq^{\frac{1}{4}n(n-1)}\left(D_q\right)^n
\left[{\tilde w}(x;aq^{\frac{1}{2}n},bq^{\frac{1}{2}n},cq^{\frac{1}{2}n},dq^{\frac{1}{2}n};q)\right]
}}](/index.php?title=Special:MathShowImage&hash=54c1e632d0228e96935a1370f8721790&mode=latexml)
Substitution(s)

&
&
&

Proof
We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.
Symbols List
& : logical and
: continuous
-Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqHahn
:
-Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
: the base of the natural logarithm : http://dlmf.nist.gov/4.2.E11
: imaginary unit : http://dlmf.nist.gov/1.9.i
: product : http://drmf.wmflabs.org/wiki/Definition:prod
: cosine function : http://dlmf.nist.gov/4.14#E2
Bibliography
Equation in Section 14.4 of KLS.
URL links
We ask users to provide relevant URL links in this space.