# Formula:KLS:14.04:26

$\displaystyle {\displaystyle \lim_{q\rightarrow 1}\frac{\ctsqHahn{n}@{\cos@{\ln@@{q^{-x}}+\phi}}{q^a}{q^b}{q^c}{q^d}{q}} {(1-q)^n\qPochhammer{q}{q}{n}}=(-2\sin@@{\phi})^n\ctsHahn{n}@{x}{a}{b}{c}{d} }$

## Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

## Symbols List

$\displaystyle {\displaystyle p_{n}}$  : continuous $\displaystyle {\displaystyle q}$ -Hahn polynomial : http://drmf.wmflabs.org/wiki/Definition:ctsqHahn
$\displaystyle {\displaystyle \mathrm{cos}}$  : cosine function : http://dlmf.nist.gov/4.14#E2
$\displaystyle {\displaystyle \mathrm{ln}}$  : principal branch of logarithm function : http://dlmf.nist.gov/4.2#E2
$\displaystyle {\displaystyle (a;q)_n}$  : $\displaystyle {\displaystyle q}$ -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
$\displaystyle {\displaystyle \mathrm{sin}}$  : sine function : http://dlmf.nist.gov/4.14#E1
$\displaystyle {\displaystyle p_{n}}$  : continuous Hahn polynomial : http://dlmf.nist.gov/18.19#P2.p1