Formula:KLS:14.21:31

From DRMF
Jump to navigation Jump to search


h n h 0 = ( q Ξ± + 1 ; q ) n ( q ; q ) n ⁒ q n , h 0 subscript β„Ž 𝑛 subscript β„Ž 0 q-Pochhammer-symbol superscript π‘ž 𝛼 1 π‘ž 𝑛 q-Pochhammer-symbol π‘ž π‘ž 𝑛 superscript π‘ž 𝑛 subscript β„Ž 0 {\displaystyle{\displaystyle{\displaystyle\frac{h_{n}}{h_{0}}=\frac{\left(q^{% \alpha+1};q\right)_{n}}{\left(q;q\right)_{n}q^{n}},\qquad h_{0}}}}

Substitution(s)

h n h 0 = - ( q - Ξ± ; q ) ∞ ( q ; q ) ∞ ⁒ Ο€ sin ⁑ ( Ο€ ⁒ Ξ± ) subscript β„Ž 𝑛 subscript β„Ž 0 q-Pochhammer-symbol superscript π‘ž 𝛼 π‘ž q-Pochhammer-symbol π‘ž π‘ž 𝛼 {\displaystyle{\displaystyle{\displaystyle\frac{h_{n}}{h_{0}}=-\frac{\left(q^{% -\alpha};q\right)_{\infty}}{\left(q;q\right)_{\infty}}\frac{\pi}{\sin\left(\pi% \alpha\right)}}}} &
h n = q - 1 2 ⁒ Ξ± ⁒ ( Ξ± + 1 ) ( q ; q ) Ξ± log ( q - 1 )    ( Ξ± ∈ \ZZ β‰₯ 0 ) fragments subscript β„Ž 𝑛 superscript π‘ž 1 2 𝛼 𝛼 1 q-Pochhammer-symbol π‘ž π‘ž 𝛼 fragments ( superscript π‘ž 1 ) italic-   fragments ( Ξ± subscript \ZZ absent 0 ) {\displaystyle{\displaystyle{\displaystyle h_{n}=q^{-\frac{1}{2}\alpha(\alpha+% 1)}\left(q;q\right)_{\alpha}\log(q^{-1})\qquad(\alpha\in\ZZ_{\geq 0})}}}


Proof

We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.

Symbols List

& : logical and
( a ; q ) n subscript π‘Ž π‘ž 𝑛 {\displaystyle{\displaystyle{\displaystyle(a;q)_{n}}}}  : q π‘ž {\displaystyle{\displaystyle{\displaystyle q}}} -Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
sin sin {\displaystyle{\displaystyle{\displaystyle\mathrm{sin}}}}  : sine function : http://dlmf.nist.gov/4.14#E1
Ο€ πœ‹ {\displaystyle{\displaystyle{\displaystyle\pi}}}  : ratio of a circle's circumference to its diameter : http://dlmf.nist.gov/5.19.E4
log log {\displaystyle{\displaystyle{\displaystyle\mathrm{log}}}}  : principle branch of logarithm logarithm : http://dlmf.nist.gov/4.2#E2

Bibliography

Equation in Section 14.21 of KLS.

URL links

We ask users to provide relevant URL links in this space.