Results of Orthogonal Polynomials

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.1.E1 C n ( 0 ) ⁑ ( x ) = 2 n ⁒ T n ⁑ ( x ) ultraspherical-Gegenbauer-polynomial 0 𝑛 π‘₯ 2 𝑛 Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ {\displaystyle{\displaystyle C^{(0)}_{n}\left(x\right)=\frac{2}{n}T_{n}\left(x% \right)}} GegenbauerC(n, 0, x)=(2)/(n)*ChebyshevT(n, x) GegenbauerC[n, 0, x]=Divide[2,n]*ChebyshevT[n, x] Failure Failure Successful
Fail
-0.6666666666666666 <- {Rule[n, 3], Rule[x, 1]}
-17.333333333333332 <- {Rule[n, 3], Rule[x, 2]}
-66.0 <- {Rule[n, 3], Rule[x, 3]}
18.1.E1 2 n ⁒ T n ⁑ ( x ) = 2 ⁒ ( n - 1 ) ! ( 1 2 ) n ⁒ P n ( - 1 2 , - 1 2 ) ⁑ ( x ) 2 𝑛 Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ 2 𝑛 1 Pochhammer 1 2 𝑛 Jacobi-polynomial-P 1 2 1 2 𝑛 π‘₯ {\displaystyle{\displaystyle\frac{2}{n}T_{n}\left(x\right)=\frac{2(n-1)!}{{% \left(\tfrac{1}{2}\right)_{n}}}P^{(-\frac{1}{2},-\frac{1}{2})}_{n}\left(x% \right)}} (2)/(n)*ChebyshevT(n, x)=(2*factorial(n - 1))/(pochhammer((1)/(2), n))*JacobiP(n, -(1)/(2), -(1)/(2), x) Divide[2,n]*ChebyshevT[n, x]=Divide[2*(n - 1)!,Pochhammer[Divide[1,2], n]]*JacobiP[n, -Divide[1,2], -Divide[1,2], x] Successful Successful - -
18.1.E2 G n ⁑ ( p , q , x ) = n ! ( n + p ) n ⁒ P n ( p - q , q - 1 ) ⁑ ( 2 ⁒ x - 1 ) shifted-Jacobi-polynomial-G 𝑛 𝑝 π‘ž π‘₯ 𝑛 Pochhammer 𝑛 𝑝 𝑛 Jacobi-polynomial-P 𝑝 π‘ž π‘ž 1 𝑛 2 π‘₯ 1 {\displaystyle{\displaystyle G_{n}\left(p,q,x\right)=\frac{n!}{{\left(n+p% \right)_{n}}}P^{(p-q,q-1)}_{n}\left(2x-1\right)}} JacobiP(n, p-q, q-1, 2*(x)-1)*((n)!)/pochhammer(n+p, n)=(factorial(n))/(pochhammer(n + p, n))*JacobiP(n, p - q, q - 1, 2*x - 1) Error Successful Error - -
18.2.E1 ∫ a b p n ⁒ ( x ) ⁒ p m ⁒ ( x ) ⁒ w ⁒ ( x ) ⁒ d x = 0 superscript subscript π‘Ž 𝑏 subscript 𝑝 𝑛 π‘₯ subscript 𝑝 π‘š π‘₯ 𝑀 π‘₯ π‘₯ 0 {\displaystyle{\displaystyle\int_{a}^{b}p_{n}(x)p_{m}(x)w(x)\mathrm{d}x=0}} int(p[n]*(x)* p[m]*(x)* w*(x), x = a..b)= 0 Integrate[Subscript[p, n]*(x)* Subscript[p, m]*(x)* w*(x), {x, a, b}]= 0 Failure Failure Skip Successful
18.3.E2 x N + 1 , n = cos ⁑ ( ( n - 1 2 ) ⁒ Ο€ / ( N + 1 ) ) subscript π‘₯ 𝑁 1 𝑛 𝑛 1 2 πœ‹ 𝑁 1 {\displaystyle{\displaystyle x_{N+1,n}=\cos\left((n-\tfrac{1}{2})\pi/(N+1)% \right)}} x[N + 1 , n]= cos((n -(1)/(2))* Pi/(N + 1)) Subscript[x, N + 1 , n]= Cos[(n -Divide[1,2])* Pi/(N + 1)] Failure Failure
Fail
.4933988023+1.280284738*I <- {N = 2^(1/2)+I*2^(1/2), x[N+1,n] = 2^(1/2)+I*2^(1/2), n = 1}
1.251822237+.4629104109*I <- {N = 2^(1/2)+I*2^(1/2), x[N+1,n] = 2^(1/2)+I*2^(1/2), n = 2}
3.059241197+.132349918*I <- {N = 2^(1/2)+I*2^(1/2), x[N+1,n] = 2^(1/2)+I*2^(1/2), n = 3}
.4933988023-1.548142386*I <- {N = 2^(1/2)+I*2^(1/2), x[N+1,n] = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Successful
18.5.E1 T n ⁑ ( x ) = cos ⁑ ( n ⁒ ΞΈ ) Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ 𝑛 πœƒ {\displaystyle{\displaystyle T_{n}\left(x\right)=\cos\left(n\theta\right)}} ChebyshevT(n, x)= cos(n*theta) ChebyshevT[n, x]= Cos[n*\[Theta]] Failure Failure
Fail
.6603260076+1.911393109*I <- {theta = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
1.660326008+1.911393109*I <- {theta = 2^(1/2)+I*2^(1/2), n = 1, x = 2}
2.660326008+1.911393109*I <- {theta = 2^(1/2)+I*2^(1/2), n = 1, x = 3}
9.076090394+2.597002114*I <- {theta = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
... skip entries to safe data
Fail
Complex[0.6603260083052754, 1.9113931101642103] <- {Rule[n, 1], Rule[x, 1], Rule[ΞΈ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.6603260083052755, 1.9113931101642103] <- {Rule[n, 1], Rule[x, 2], Rule[ΞΈ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[2.6603260083052755, 1.9113931101642103] <- {Rule[n, 1], Rule[x, 3], Rule[ΞΈ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[9.076090401898771, 2.5970021097090865] <- {Rule[n, 2], Rule[x, 1], Rule[ΞΈ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
18.5.E2 U n ⁑ ( x ) = ( sin ⁑ ( n + 1 ) ⁒ ΞΈ ) / sin ⁑ ΞΈ Chebyshev-polynomial-second-kind-U 𝑛 π‘₯ 𝑛 1 πœƒ πœƒ {\displaystyle{\displaystyle U_{n}\left(x\right)=\ifrac{(\sin(n+1)\theta)}{% \sin\theta}}} ChebyshevU(n, x)=(sin((n + 1)* theta))/(sin(theta)) ChebyshevU[n, x]=Divide[Sin[(n + 1)* \[Theta]],Sin[\[Theta]]] Failure Failure
Fail
1.320652015+3.822786219*I <- {theta = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
3.320652015+3.822786219*I <- {theta = 2^(1/2)+I*2^(1/2), n = 1, x = 2}
5.320652015+3.822786219*I <- {theta = 2^(1/2)+I*2^(1/2), n = 1, x = 3}
18.15218079+5.194004229*I <- {theta = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
... skip entries to safe data
Fail
Complex[1.3206520166105502, 3.82278622032842] <- {Rule[n, 1], Rule[x, 1], Rule[ΞΈ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.32065201661055, 3.82278622032842] <- {Rule[n, 1], Rule[x, 2], Rule[ΞΈ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[5.32065201661055, 3.82278622032842] <- {Rule[n, 1], Rule[x, 3], Rule[ΞΈ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[18.152180803797542, 5.194004219418172] <- {Rule[n, 2], Rule[x, 1], Rule[ΞΈ, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
18.5.E5 p n ⁒ ( x ) = 1 ΞΊ n ⁒ w ⁒ ( x ) ⁒ d n d x n ⁑ ( w ⁒ ( x ) ⁒ ( F ⁒ ( x ) ) n ) subscript 𝑝 𝑛 π‘₯ 1 subscript πœ… 𝑛 𝑀 π‘₯ derivative π‘₯ 𝑛 𝑀 π‘₯ superscript 𝐹 π‘₯ 𝑛 {\displaystyle{\displaystyle p_{n}(x)=\frac{1}{\kappa_{n}w(x)}\frac{{\mathrm{d% }}^{n}}{{\mathrm{d}x}^{n}}\left(w(x)(F(x))^{n}\right)}} p[n]*(x)=(1)/(kappa[n]*w*(x))*diff(w*(x)*(F*(x))^(n), [x$(n)]) Subscript[p, n]*(x)=Divide[1,Subscript[\[Kappa], n]*w*(x)]*D[w*(x)*(F*(x))^(n), {x, n}] Failure Failure Skip Skip
18.5.E7 P n ( Ξ± , Ξ² ) ⁑ ( x ) = βˆ‘ β„“ = 0 n ( n + Ξ± + Ξ² + 1 ) β„“ ⁒ ( Ξ± + β„“ + 1 ) n - β„“ β„“ ! ⁒ ( n - β„“ ) ! ⁒ ( x - 1 2 ) β„“ Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ superscript subscript β„“ 0 𝑛 Pochhammer 𝑛 𝛼 𝛽 1 β„“ Pochhammer 𝛼 β„“ 1 𝑛 β„“ β„“ 𝑛 β„“ superscript π‘₯ 1 2 β„“ {\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}\left(x\right)=\sum_{\ell=0% }^{n}\frac{{\left(n+\alpha+\beta+1\right)_{\ell}}{\left(\alpha+\ell+1\right)_{% n-\ell}}}{\ell!\;(n-\ell)!}\left(\frac{x-1}{2}\right)^{\ell}}} JacobiP(n, alpha, beta, x)= sum((pochhammer(n + alpha + beta + 1, ell)*pochhammer(alpha + ell + 1, n - ell))/(factorial(ell)*factorial(n - ell))*((x - 1)/(2))^(ell), ell = 0..n) JacobiP[n, \[Alpha], \[Beta], x]= Sum[Divide[Pochhammer[n + \[Alpha]+ \[Beta]+ 1, \[ScriptL]]*Pochhammer[\[Alpha]+ \[ScriptL]+ 1, n - \[ScriptL]],(\[ScriptL])!*(n - \[ScriptL])!]*(Divide[x - 1,2])^(\[ScriptL]), {\[ScriptL], 0, n}] Successful Successful - -
18.5.E7 βˆ‘ β„“ = 0 n ( n + Ξ± + Ξ² + 1 ) β„“ ⁒ ( Ξ± + β„“ + 1 ) n - β„“ β„“ ! ⁒ ( n - β„“ ) ! ⁒ ( x - 1 2 ) β„“ = ( Ξ± + 1 ) n n ! ⁒ F 1 2 ⁑ ( - n , n + Ξ± + Ξ² + 1 Ξ± + 1 ; 1 - x 2 ) superscript subscript β„“ 0 𝑛 Pochhammer 𝑛 𝛼 𝛽 1 β„“ Pochhammer 𝛼 β„“ 1 𝑛 β„“ β„“ 𝑛 β„“ superscript π‘₯ 1 2 β„“ Pochhammer 𝛼 1 𝑛 𝑛 Gauss-hypergeometric-F-as-2F1 𝑛 𝑛 𝛼 𝛽 1 𝛼 1 1 π‘₯ 2 {\displaystyle{\displaystyle\sum_{\ell=0}^{n}\frac{{\left(n+\alpha+\beta+1% \right)_{\ell}}{\left(\alpha+\ell+1\right)_{n-\ell}}}{\ell!\;(n-\ell)!}\left(% \frac{x-1}{2}\right)^{\ell}=\frac{{\left(\alpha+1\right)_{n}}}{n!}{{}_{2}F_{1}% }\left({-n,n+\alpha+\beta+1\atop\alpha+1};\frac{1-x}{2}\right)}} sum((pochhammer(n + alpha + beta + 1, ell)*pochhammer(alpha + ell + 1, n - ell))/(factorial(ell)*factorial(n - ell))*((x - 1)/(2))^(ell), ell = 0..n)=(pochhammer(alpha + 1, n))/(factorial(n))*hypergeom([- n , n + alpha + beta + 1], [alpha + 1], (1 - x)/(2)) Sum[Divide[Pochhammer[n + \[Alpha]+ \[Beta]+ 1, \[ScriptL]]*Pochhammer[\[Alpha]+ \[ScriptL]+ 1, n - \[ScriptL]],(\[ScriptL])!*(n - \[ScriptL])!]*(Divide[x - 1,2])^(\[ScriptL]), {\[ScriptL], 0, n}]=Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*HypergeometricPFQ[{- n , n + \[Alpha]+ \[Beta]+ 1}, {\[Alpha]+ 1}, Divide[1 - x,2]] Successful Successful - -
18.5.E8 P n ( Ξ± , Ξ² ) ⁑ ( x ) = 2 - n ⁒ βˆ‘ β„“ = 0 n ( n + Ξ± β„“ ) ⁒ ( n + Ξ² n - β„“ ) ⁒ ( x - 1 ) n - β„“ ⁒ ( x + 1 ) β„“ Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ superscript 2 𝑛 superscript subscript β„“ 0 𝑛 binomial 𝑛 𝛼 β„“ binomial 𝑛 𝛽 𝑛 β„“ superscript π‘₯ 1 𝑛 β„“ superscript π‘₯ 1 β„“ {\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}\left(x\right)=2^{-n}\sum_{% \ell=0}^{n}\genfrac{(}{)}{0.0pt}{}{n+\alpha}{\ell}\genfrac{(}{)}{0.0pt}{}{n+% \beta}{n-\ell}(x-1)^{n-\ell}(x+1)^{\ell}}} JacobiP(n, alpha, beta, x)= (2)^(- n)* sum(binomial(n + alpha,ell)*binomial(n + beta,n - ell)*(x - 1)^(n - ell)*(x + 1)^(ell), ell = 0..n) JacobiP[n, \[Alpha], \[Beta], x]= (2)^(- n)* Sum[Binomial[n + \[Alpha],\[ScriptL]]*Binomial[n + \[Beta],n - \[ScriptL]]*(x - 1)^(n - \[ScriptL])*(x + 1)^(\[ScriptL]), {\[ScriptL], 0, n}] Failure Failure Skip Skip
18.5.E8 2 - n ⁒ βˆ‘ β„“ = 0 n ( n + Ξ± β„“ ) ⁒ ( n + Ξ² n - β„“ ) ⁒ ( x - 1 ) n - β„“ ⁒ ( x + 1 ) β„“ = ( Ξ± + 1 ) n n ! ⁒ ( x + 1 2 ) n ⁒ F 1 2 ⁑ ( - n , - n - Ξ² Ξ± + 1 ; x - 1 x + 1 ) superscript 2 𝑛 superscript subscript β„“ 0 𝑛 binomial 𝑛 𝛼 β„“ binomial 𝑛 𝛽 𝑛 β„“ superscript π‘₯ 1 𝑛 β„“ superscript π‘₯ 1 β„“ Pochhammer 𝛼 1 𝑛 𝑛 superscript π‘₯ 1 2 𝑛 Gauss-hypergeometric-F-as-2F1 𝑛 𝑛 𝛽 𝛼 1 π‘₯ 1 π‘₯ 1 {\displaystyle{\displaystyle 2^{-n}\sum_{\ell=0}^{n}\genfrac{(}{)}{0.0pt}{}{n+% \alpha}{\ell}\genfrac{(}{)}{0.0pt}{}{n+\beta}{n-\ell}(x-1)^{n-\ell}(x+1)^{\ell% }=\frac{{\left(\alpha+1\right)_{n}}}{n!}\left(\frac{x+1}{2}\right)^{n}{{}_{2}F% _{1}}\left({-n,-n-\beta\atop\alpha+1};\frac{x-1}{x+1}\right)}} (2)^(- n)* sum(binomial(n + alpha,ell)*binomial(n + beta,n - ell)*(x - 1)^(n - ell)*(x + 1)^(ell), ell = 0..n)=(pochhammer(alpha + 1, n))/(factorial(n))*((x + 1)/(2))^(n)* hypergeom([- n , - n - beta], [alpha + 1], (x - 1)/(x + 1)) (2)^(- n)* Sum[Binomial[n + \[Alpha],\[ScriptL]]*Binomial[n + \[Beta],n - \[ScriptL]]*(x - 1)^(n - \[ScriptL])*(x + 1)^(\[ScriptL]), {\[ScriptL], 0, n}]=Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*(Divide[x + 1,2])^(n)* HypergeometricPFQ[{- n , - n - \[Beta]}, {\[Alpha]+ 1}, Divide[x - 1,x + 1]] Failure Failure Skip Skip
18.5.E9 C n ( Ξ» ) ⁑ ( x ) = ( 2 ⁒ Ξ» ) n n ! ⁒ F 1 2 ⁑ ( - n , n + 2 ⁒ Ξ» Ξ» + 1 2 ; 1 - x 2 ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ Pochhammer 2 πœ† 𝑛 𝑛 Gauss-hypergeometric-F-as-2F1 𝑛 𝑛 2 πœ† πœ† 1 2 1 π‘₯ 2 {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(x\right)=\frac{{\left(2% \lambda\right)_{n}}}{n!}{{}_{2}F_{1}}\left({-n,n+2\lambda\atop\lambda+\tfrac{1% }{2}};\frac{1-x}{2}\right)}} GegenbauerC(n, lambda, x)=(pochhammer(2*lambda, n))/(factorial(n))*hypergeom([- n , n + 2*lambda], [lambda +(1)/(2)], (1 - x)/(2)) GegenbauerC[n, \[Lambda], x]=Divide[Pochhammer[2*\[Lambda], n],(n)!]*HypergeometricPFQ[{- n , n + 2*\[Lambda]}, {\[Lambda]+Divide[1,2]}, Divide[1 - x,2]] Successful Successful - -
18.5.E10 C n ( Ξ» ) ⁑ ( x ) = βˆ‘ β„“ = 0 ⌊ n / 2 βŒ‹ ( - 1 ) β„“ ⁒ ( Ξ» ) n - β„“ β„“ ! ⁒ ( n - 2 ⁒ β„“ ) ! ⁒ ( 2 ⁒ x ) n - 2 ⁒ β„“ ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ superscript subscript β„“ 0 𝑛 2 superscript 1 β„“ Pochhammer πœ† 𝑛 β„“ β„“ 𝑛 2 β„“ superscript 2 π‘₯ 𝑛 2 β„“ {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(x\right)=\sum_{\ell=0}^{% \left\lfloor n/2\right\rfloor}\frac{(-1)^{\ell}{\left(\lambda\right)_{n-\ell}}% }{\ell!\;(n-2\ell)!}(2x)^{n-2\ell}}} GegenbauerC(n, lambda, x)= sum(((- 1)^(ell)* pochhammer(lambda, n - ell))/(factorial(ell)*factorial(n - 2*ell))*(2*x)^(n - 2*ell), ell = 0..floor(n/ 2)) GegenbauerC[n, \[Lambda], x]= Sum[Divide[(- 1)^(\[ScriptL])* Pochhammer[\[Lambda], n - \[ScriptL]],(\[ScriptL])!*(n - 2*\[ScriptL])!]*(2*x)^(n - 2*\[ScriptL]), {\[ScriptL], 0, Floor[n/ 2]}] Failure Successful Skip -
18.5.E10 βˆ‘ β„“ = 0 ⌊ n / 2 βŒ‹ ( - 1 ) β„“ ⁒ ( Ξ» ) n - β„“ β„“ ! ⁒ ( n - 2 ⁒ β„“ ) ! ⁒ ( 2 ⁒ x ) n - 2 ⁒ β„“ = ( 2 ⁒ x ) n ⁒ ( Ξ» ) n n ! ⁒ F 1 2 ⁑ ( - 1 2 ⁒ n , - 1 2 ⁒ n + 1 2 1 - Ξ» - n ; 1 x 2 ) superscript subscript β„“ 0 𝑛 2 superscript 1 β„“ Pochhammer πœ† 𝑛 β„“ β„“ 𝑛 2 β„“ superscript 2 π‘₯ 𝑛 2 β„“ superscript 2 π‘₯ 𝑛 Pochhammer πœ† 𝑛 𝑛 Gauss-hypergeometric-F-as-2F1 1 2 𝑛 1 2 𝑛 1 2 1 πœ† 𝑛 1 superscript π‘₯ 2 {\displaystyle{\displaystyle\sum_{\ell=0}^{\left\lfloor n/2\right\rfloor}\frac% {(-1)^{\ell}{\left(\lambda\right)_{n-\ell}}}{\ell!\;(n-2\ell)!}(2x)^{n-2\ell}=% (2x)^{n}\frac{{\left(\lambda\right)_{n}}}{n!}{{}_{2}F_{1}}\left({-\tfrac{1}{2}% n,-\tfrac{1}{2}n+\tfrac{1}{2}\atop 1-\lambda-n};\frac{1}{x^{2}}\right)}} sum(((- 1)^(ell)* pochhammer(lambda, n - ell))/(factorial(ell)*factorial(n - 2*ell))*(2*x)^(n - 2*ell), ell = 0..floor(n/ 2))=(2*x)^(n)*(pochhammer(lambda, n))/(factorial(n))*hypergeom([-(1)/(2)*n , -(1)/(2)*n +(1)/(2)], [1 - lambda - n], (1)/((x)^(2))) Sum[Divide[(- 1)^(\[ScriptL])* Pochhammer[\[Lambda], n - \[ScriptL]],(\[ScriptL])!*(n - 2*\[ScriptL])!]*(2*x)^(n - 2*\[ScriptL]), {\[ScriptL], 0, Floor[n/ 2]}]=(2*x)^(n)*Divide[Pochhammer[\[Lambda], n],(n)!]*HypergeometricPFQ[{-Divide[1,2]*n , -Divide[1,2]*n +Divide[1,2]}, {1 - \[Lambda]- n}, Divide[1,(x)^(2)]] Failure Failure Skip Successful
18.5.E11 C n ( Ξ» ) ⁑ ( cos ⁑ ΞΈ ) = βˆ‘ β„“ = 0 n ( Ξ» ) β„“ ⁒ ( Ξ» ) n - β„“ β„“ ! ⁒ ( n - β„“ ) ! ⁒ cos ⁑ ( ( n - 2 ⁒ β„“ ) ⁒ ΞΈ ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 πœƒ superscript subscript β„“ 0 𝑛 Pochhammer πœ† β„“ Pochhammer πœ† 𝑛 β„“ β„“ 𝑛 β„“ 𝑛 2 β„“ πœƒ {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(\cos\theta\right)=\sum_{% \ell=0}^{n}\frac{{\left(\lambda\right)_{\ell}}{\left(\lambda\right)_{n-\ell}}}% {\ell!\;(n-\ell)!}\cos\left((n-2\ell)\theta\right)}} GegenbauerC(n, lambda, cos(theta))= sum((pochhammer(lambda, ell)*pochhammer(lambda, n - ell))/(factorial(ell)*factorial(n - ell))*cos((n - 2*ell)* theta), ell = 0..n) GegenbauerC[n, \[Lambda], Cos[\[Theta]]]= Sum[Divide[Pochhammer[\[Lambda], \[ScriptL]]*Pochhammer[\[Lambda], n - \[ScriptL]],(\[ScriptL])!*(n - \[ScriptL])!]*Cos[(n - 2*\[ScriptL])* \[Theta]], {\[ScriptL], 0, n}] Failure Failure Skip Successful
18.5.E11 βˆ‘ β„“ = 0 n ( Ξ» ) β„“ ⁒ ( Ξ» ) n - β„“ β„“ ! ⁒ ( n - β„“ ) ! ⁒ cos ⁑ ( ( n - 2 ⁒ β„“ ) ⁒ ΞΈ ) = e i ⁒ n ⁒ ΞΈ ⁒ ( Ξ» ) n n ! ⁒ F 1 2 ⁑ ( - n , Ξ» 1 - Ξ» - n ; e - 2 ⁒ i ⁒ ΞΈ ) superscript subscript β„“ 0 𝑛 Pochhammer πœ† β„“ Pochhammer πœ† 𝑛 β„“ β„“ 𝑛 β„“ 𝑛 2 β„“ πœƒ superscript 𝑒 imaginary-unit 𝑛 πœƒ Pochhammer πœ† 𝑛 𝑛 Gauss-hypergeometric-F-as-2F1 𝑛 πœ† 1 πœ† 𝑛 superscript 𝑒 2 imaginary-unit πœƒ {\displaystyle{\displaystyle\sum_{\ell=0}^{n}\frac{{\left(\lambda\right)_{\ell% }}{\left(\lambda\right)_{n-\ell}}}{\ell!\;(n-\ell)!}\cos\left((n-2\ell)\theta% \right)=e^{\mathrm{i}n\theta}\frac{{\left(\lambda\right)_{n}}}{n!}{{}_{2}F_{1}% }\left({-n,\lambda\atop 1-\lambda-n};e^{-2\mathrm{i}\theta}\right)}} sum((pochhammer(lambda, ell)*pochhammer(lambda, n - ell))/(factorial(ell)*factorial(n - ell))*cos((n - 2*ell)* theta), ell = 0..n)= exp(I*n*theta)*(pochhammer(lambda, n))/(factorial(n))*hypergeom([- n , lambda], [1 - lambda - n], exp(- 2*I*theta)) Sum[Divide[Pochhammer[\[Lambda], \[ScriptL]]*Pochhammer[\[Lambda], n - \[ScriptL]],(\[ScriptL])!*(n - \[ScriptL])!]*Cos[(n - 2*\[ScriptL])* \[Theta]], {\[ScriptL], 0, n}]= Exp[I*n*\[Theta]]*Divide[Pochhammer[\[Lambda], n],(n)!]*HypergeometricPFQ[{- n , \[Lambda]}, {1 - \[Lambda]- n}, Exp[- 2*I*\[Theta]]] Failure Failure Skip Skip
18.5.E12 βˆ‘ β„“ = 0 n ( Ξ± + β„“ + 1 ) n - β„“ ( n - β„“ ) ! ⁒ β„“ ! ⁒ ( - x ) β„“ = ( Ξ± + 1 ) n n ! ⁒ F 1 1 ⁑ ( - n Ξ± + 1 ; x ) superscript subscript β„“ 0 𝑛 Pochhammer 𝛼 β„“ 1 𝑛 β„“ 𝑛 β„“ β„“ superscript π‘₯ β„“ Pochhammer 𝛼 1 𝑛 𝑛 Kummer-confluent-hypergeometric-M-as-1F1 𝑛 𝛼 1 π‘₯ {\displaystyle{\displaystyle\sum_{\ell=0}^{n}\frac{{\left(\alpha+\ell+1\right)% _{n-\ell}}}{(n-\ell)!\;\ell!}(-x)^{\ell}=\frac{{\left(\alpha+1\right)_{n}}}{n!% }{{}_{1}F_{1}}\left({-n\atop\alpha+1};x\right)}} sum((pochhammer(alpha + ell + 1, n - ell))/(factorial(n - ell)*factorial(ell))*(- x)^(ell), ell = 0..n)=(pochhammer(alpha + 1, n))/(factorial(n))*hypergeom([- n], [alpha + 1], x) Sum[Divide[Pochhammer[\[Alpha]+ \[ScriptL]+ 1, n - \[ScriptL]],(n - \[ScriptL])!*(\[ScriptL])!]*(- x)^(\[ScriptL]), {\[ScriptL], 0, n}]=Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*HypergeometricPFQ[{- n}, {\[Alpha]+ 1}, x] Successful Successful - -
18.5.E13 H n ⁑ ( x ) = n ! ⁒ βˆ‘ β„“ = 0 ⌊ n / 2 βŒ‹ ( - 1 ) β„“ ⁒ ( 2 ⁒ x ) n - 2 ⁒ β„“ β„“ ! ⁒ ( n - 2 ⁒ β„“ ) ! Hermite-polynomial-H 𝑛 π‘₯ 𝑛 superscript subscript β„“ 0 𝑛 2 superscript 1 β„“ superscript 2 π‘₯ 𝑛 2 β„“ β„“ 𝑛 2 β„“ {\displaystyle{\displaystyle H_{n}\left(x\right)=n!\sum_{\ell=0}^{\left\lfloor n% /2\right\rfloor}\frac{(-1)^{\ell}(2x)^{n-2\ell}}{\ell!\;(n-2\ell)!}}} HermiteH(n, x)= factorial(n)*sum(((- 1)^(ell)*(2*x)^(n - 2*ell))/(factorial(ell)*factorial(n - 2*ell)), ell = 0..floor(n/ 2)) HermiteH[n, x]= (n)!*Sum[Divide[(- 1)^(\[ScriptL])*(2*x)^(n - 2*\[ScriptL]),(\[ScriptL])!*(n - 2*\[ScriptL])!], {\[ScriptL], 0, Floor[n/ 2]}] Failure Failure Skip Successful
18.5.E13 n ! ⁒ βˆ‘ β„“ = 0 ⌊ n / 2 βŒ‹ ( - 1 ) β„“ ⁒ ( 2 ⁒ x ) n - 2 ⁒ β„“ β„“ ! ⁒ ( n - 2 ⁒ β„“ ) ! = ( 2 ⁒ x ) n ⁒ F 0 2 ⁑ ( - 1 2 ⁒ n , - 1 2 ⁒ n + 1 2 - ; - 1 x 2 ) 𝑛 superscript subscript β„“ 0 𝑛 2 superscript 1 β„“ superscript 2 π‘₯ 𝑛 2 β„“ β„“ 𝑛 2 β„“ superscript 2 π‘₯ 𝑛 Gauss-hypergeometric-pFq 2 0 1 2 𝑛 1 2 𝑛 1 2 1 superscript π‘₯ 2 {\displaystyle{\displaystyle n!\sum_{\ell=0}^{\left\lfloor n/2\right\rfloor}% \frac{(-1)^{\ell}(2x)^{n-2\ell}}{\ell!\;(n-2\ell)!}=(2x)^{n}{{}_{2}F_{0}}\left% ({-\tfrac{1}{2}n,-\tfrac{1}{2}n+\tfrac{1}{2}\atop-};-\frac{1}{x^{2}}\right)}} factorial(n)*sum(((- 1)^(ell)*(2*x)^(n - 2*ell))/(factorial(ell)*factorial(n - 2*ell)), ell = 0..floor(n/ 2))=(2*x)^(n)* hypergeom([-(1)/(2)*n , -(1)/(2)*n +(1)/(2)], [-], -(1)/((x)^(2))) (n)!*Sum[Divide[(- 1)^(\[ScriptL])*(2*x)^(n - 2*\[ScriptL]),(\[ScriptL])!*(n - 2*\[ScriptL])!], {\[ScriptL], 0, Floor[n/ 2]}]=(2*x)^(n)* HypergeometricPFQ[{-Divide[1,2]*n , -Divide[1,2]*n +Divide[1,2]}, {-}, -Divide[1,(x)^(2)]] Error Failure - Error
18.5#Ex1 T 0 ⁑ ( x ) = 1 Chebyshev-polynomial-first-kind-T 0 π‘₯ 1 {\displaystyle{\displaystyle T_{0}\left(x\right)=1}} ChebyshevT(0, x)= 1 ChebyshevT[0, x]= 1 Successful Successful - -
18.5#Ex2 T 1 ⁑ ( x ) = x Chebyshev-polynomial-first-kind-T 1 π‘₯ π‘₯ {\displaystyle{\displaystyle T_{1}\left(x\right)=x}} ChebyshevT(1, x)= x ChebyshevT[1, x]= x Successful Successful - -
18.5#Ex3 T 2 ⁑ ( x ) = 2 ⁒ x 2 - 1 Chebyshev-polynomial-first-kind-T 2 π‘₯ 2 superscript π‘₯ 2 1 {\displaystyle{\displaystyle T_{2}\left(x\right)=2x^{2}-1}} ChebyshevT(2, x)= 2*(x)^(2)- 1 ChebyshevT[2, x]= 2*(x)^(2)- 1 Successful Successful - -
18.5#Ex4 T 3 ⁑ ( x ) = 4 ⁒ x 3 - 3 ⁒ x Chebyshev-polynomial-first-kind-T 3 π‘₯ 4 superscript π‘₯ 3 3 π‘₯ {\displaystyle{\displaystyle T_{3}\left(x\right)=4x^{3}-3x}} ChebyshevT(3, x)= 4*(x)^(3)- 3*x ChebyshevT[3, x]= 4*(x)^(3)- 3*x Successful Successful - -
18.5#Ex5 T 4 ⁑ ( x ) = 8 ⁒ x 4 - 8 ⁒ x 2 + 1 Chebyshev-polynomial-first-kind-T 4 π‘₯ 8 superscript π‘₯ 4 8 superscript π‘₯ 2 1 {\displaystyle{\displaystyle T_{4}\left(x\right)=8x^{4}-8x^{2}+1}} ChebyshevT(4, x)= 8*(x)^(4)- 8*(x)^(2)+ 1 ChebyshevT[4, x]= 8*(x)^(4)- 8*(x)^(2)+ 1 Successful Successful - -
18.5#Ex6 T 5 ⁑ ( x ) = 16 ⁒ x 5 - 20 ⁒ x 3 + 5 ⁒ x Chebyshev-polynomial-first-kind-T 5 π‘₯ 16 superscript π‘₯ 5 20 superscript π‘₯ 3 5 π‘₯ {\displaystyle{\displaystyle T_{5}\left(x\right)=16x^{5}-20x^{3}+5x}} ChebyshevT(5, x)= 16*(x)^(5)- 20*(x)^(3)+ 5*x ChebyshevT[5, x]= 16*(x)^(5)- 20*(x)^(3)+ 5*x Successful Successful - -
18.5#Ex7 T 6 ⁑ ( x ) = 32 ⁒ x 6 - 48 ⁒ x 4 + 18 ⁒ x 2 - 1 Chebyshev-polynomial-first-kind-T 6 π‘₯ 32 superscript π‘₯ 6 48 superscript π‘₯ 4 18 superscript π‘₯ 2 1 {\displaystyle{\displaystyle T_{6}\left(x\right)=32x^{6}-48x^{4}+18x^{2}-1}} ChebyshevT(6, x)= 32*(x)^(6)- 48*(x)^(4)+ 18*(x)^(2)- 1 ChebyshevT[6, x]= 32*(x)^(6)- 48*(x)^(4)+ 18*(x)^(2)- 1 Successful Successful - -
18.5#Ex8 U 0 ⁑ ( x ) = 1 Chebyshev-polynomial-second-kind-U 0 π‘₯ 1 {\displaystyle{\displaystyle U_{0}\left(x\right)=1}} ChebyshevU(0, x)= 1 ChebyshevU[0, x]= 1 Successful Successful - -
18.5#Ex9 U 1 ⁑ ( x ) = 2 ⁒ x Chebyshev-polynomial-second-kind-U 1 π‘₯ 2 π‘₯ {\displaystyle{\displaystyle U_{1}\left(x\right)=2x}} ChebyshevU(1, x)= 2*x ChebyshevU[1, x]= 2*x Successful Successful - -
18.5#Ex10 U 2 ⁑ ( x ) = 4 ⁒ x 2 - 1 Chebyshev-polynomial-second-kind-U 2 π‘₯ 4 superscript π‘₯ 2 1 {\displaystyle{\displaystyle U_{2}\left(x\right)=4x^{2}-1}} ChebyshevU(2, x)= 4*(x)^(2)- 1 ChebyshevU[2, x]= 4*(x)^(2)- 1 Successful Successful - -
18.5#Ex11 U 3 ⁑ ( x ) = 8 ⁒ x 3 - 4 ⁒ x Chebyshev-polynomial-second-kind-U 3 π‘₯ 8 superscript π‘₯ 3 4 π‘₯ {\displaystyle{\displaystyle U_{3}\left(x\right)=8x^{3}-4x}} ChebyshevU(3, x)= 8*(x)^(3)- 4*x ChebyshevU[3, x]= 8*(x)^(3)- 4*x Successful Successful - -
18.5#Ex12 U 4 ⁑ ( x ) = 16 ⁒ x 4 - 12 ⁒ x 2 + 1 Chebyshev-polynomial-second-kind-U 4 π‘₯ 16 superscript π‘₯ 4 12 superscript π‘₯ 2 1 {\displaystyle{\displaystyle U_{4}\left(x\right)=16x^{4}-12x^{2}+1}} ChebyshevU(4, x)= 16*(x)^(4)- 12*(x)^(2)+ 1 ChebyshevU[4, x]= 16*(x)^(4)- 12*(x)^(2)+ 1 Successful Successful - -
18.5#Ex13 U 5 ⁑ ( x ) = 32 ⁒ x 5 - 32 ⁒ x 3 + 6 ⁒ x Chebyshev-polynomial-second-kind-U 5 π‘₯ 32 superscript π‘₯ 5 32 superscript π‘₯ 3 6 π‘₯ {\displaystyle{\displaystyle U_{5}\left(x\right)=32x^{5}-32x^{3}+6x}} ChebyshevU(5, x)= 32*(x)^(5)- 32*(x)^(3)+ 6*x ChebyshevU[5, x]= 32*(x)^(5)- 32*(x)^(3)+ 6*x Successful Successful - -
18.5#Ex14 U 6 ⁑ ( x ) = 64 ⁒ x 6 - 80 ⁒ x 4 + 24 ⁒ x 2 - 1 Chebyshev-polynomial-second-kind-U 6 π‘₯ 64 superscript π‘₯ 6 80 superscript π‘₯ 4 24 superscript π‘₯ 2 1 {\displaystyle{\displaystyle U_{6}\left(x\right)=64x^{6}-80x^{4}+24x^{2}-1}} ChebyshevU(6, x)= 64*(x)^(6)- 80*(x)^(4)+ 24*(x)^(2)- 1 ChebyshevU[6, x]= 64*(x)^(6)- 80*(x)^(4)+ 24*(x)^(2)- 1 Successful Successful - -
18.5#Ex15 P 0 ⁑ ( x ) = 1 Legendre-spherical-polynomial 0 π‘₯ 1 {\displaystyle{\displaystyle P_{0}\left(x\right)=1}} LegendreP(0, x)= 1 LegendreP[0, x]= 1 Successful Successful - -
18.5#Ex16 P 1 ⁑ ( x ) = x Legendre-spherical-polynomial 1 π‘₯ π‘₯ {\displaystyle{\displaystyle P_{1}\left(x\right)=x}} LegendreP(1, x)= x LegendreP[1, x]= x Successful Successful - -
18.5#Ex17 P 2 ⁑ ( x ) = 3 2 ⁒ x 2 - 1 2 Legendre-spherical-polynomial 2 π‘₯ 3 2 superscript π‘₯ 2 1 2 {\displaystyle{\displaystyle P_{2}\left(x\right)=\tfrac{3}{2}x^{2}-\tfrac{1}{2% }}} LegendreP(2, x)=(3)/(2)*(x)^(2)-(1)/(2) LegendreP[2, x]=Divide[3,2]*(x)^(2)-Divide[1,2] Successful Successful - -
18.5#Ex18 P 3 ⁑ ( x ) = 5 2 ⁒ x 3 - 3 2 ⁒ x Legendre-spherical-polynomial 3 π‘₯ 5 2 superscript π‘₯ 3 3 2 π‘₯ {\displaystyle{\displaystyle P_{3}\left(x\right)=\tfrac{5}{2}x^{3}-\tfrac{3}{2% }x}} LegendreP(3, x)=(5)/(2)*(x)^(3)-(3)/(2)*x LegendreP[3, x]=Divide[5,2]*(x)^(3)-Divide[3,2]*x Successful Successful - -
18.5#Ex19 P 4 ⁑ ( x ) = 35 8 ⁒ x 4 - 15 4 ⁒ x 2 + 3 8 Legendre-spherical-polynomial 4 π‘₯ 35 8 superscript π‘₯ 4 15 4 superscript π‘₯ 2 3 8 {\displaystyle{\displaystyle P_{4}\left(x\right)=\tfrac{35}{8}x^{4}-\tfrac{15}% {4}x^{2}+\tfrac{3}{8}}} LegendreP(4, x)=(35)/(8)*(x)^(4)-(15)/(4)*(x)^(2)+(3)/(8) LegendreP[4, x]=Divide[35,8]*(x)^(4)-Divide[15,4]*(x)^(2)+Divide[3,8] Successful Successful - -
18.5#Ex20 P 5 ⁑ ( x ) = 63 8 ⁒ x 5 - 35 4 ⁒ x 3 + 15 8 ⁒ x Legendre-spherical-polynomial 5 π‘₯ 63 8 superscript π‘₯ 5 35 4 superscript π‘₯ 3 15 8 π‘₯ {\displaystyle{\displaystyle P_{5}\left(x\right)=\tfrac{63}{8}x^{5}-\tfrac{35}% {4}x^{3}+\tfrac{15}{8}x}} LegendreP(5, x)=(63)/(8)*(x)^(5)-(35)/(4)*(x)^(3)+(15)/(8)*x LegendreP[5, x]=Divide[63,8]*(x)^(5)-Divide[35,4]*(x)^(3)+Divide[15,8]*x Successful Successful - -
18.5#Ex21 P 6 ⁑ ( x ) = 231 16 ⁒ x 6 - 315 16 ⁒ x 4 + 105 16 ⁒ x 2 - 5 16 Legendre-spherical-polynomial 6 π‘₯ 231 16 superscript π‘₯ 6 315 16 superscript π‘₯ 4 105 16 superscript π‘₯ 2 5 16 {\displaystyle{\displaystyle P_{6}\left(x\right)=\tfrac{231}{16}x^{6}-\tfrac{3% 15}{16}x^{4}+\tfrac{105}{16}x^{2}-\tfrac{5}{16}}} LegendreP(6, x)=(231)/(16)*(x)^(6)-(315)/(16)*(x)^(4)+(105)/(16)*(x)^(2)-(5)/(16) LegendreP[6, x]=Divide[231,16]*(x)^(6)-Divide[315,16]*(x)^(4)+Divide[105,16]*(x)^(2)-Divide[5,16] Successful Successful - -
18.5#Ex22 L 0 ⁑ ( x ) = 1 shorthand-Laguerre-polynomial-L 0 π‘₯ 1 {\displaystyle{\displaystyle L_{0}\left(x\right)=1}} LaguerreL(0, x)= 1 Error Successful Error - -
18.5#Ex23 L 1 ⁑ ( x ) = - x + 1 shorthand-Laguerre-polynomial-L 1 π‘₯ π‘₯ 1 {\displaystyle{\displaystyle L_{1}\left(x\right)=-x+1}} LaguerreL(1, x)= - x + 1 Error Successful Error - -
18.5#Ex24 L 2 ⁑ ( x ) = 1 2 ⁒ x 2 - 2 ⁒ x + 1 shorthand-Laguerre-polynomial-L 2 π‘₯ 1 2 superscript π‘₯ 2 2 π‘₯ 1 {\displaystyle{\displaystyle L_{2}\left(x\right)=\tfrac{1}{2}x^{2}-2x+1}} LaguerreL(2, x)=(1)/(2)*(x)^(2)- 2*x + 1 Error Successful Error - -
18.5#Ex25 L 3 ⁑ ( x ) = - 1 6 ⁒ x 3 + 3 2 ⁒ x 2 - 3 ⁒ x + 1 shorthand-Laguerre-polynomial-L 3 π‘₯ 1 6 superscript π‘₯ 3 3 2 superscript π‘₯ 2 3 π‘₯ 1 {\displaystyle{\displaystyle L_{3}\left(x\right)=-\tfrac{1}{6}x^{3}+\tfrac{3}{% 2}x^{2}-3x+1}} LaguerreL(3, x)= -(1)/(6)*(x)^(3)+(3)/(2)*(x)^(2)- 3*x + 1 Error Successful Error - -
18.5#Ex26 L 4 ⁑ ( x ) = 1 24 ⁒ x 4 - 2 3 ⁒ x 3 + 3 ⁒ x 2 - 4 ⁒ x + 1 shorthand-Laguerre-polynomial-L 4 π‘₯ 1 24 superscript π‘₯ 4 2 3 superscript π‘₯ 3 3 superscript π‘₯ 2 4 π‘₯ 1 {\displaystyle{\displaystyle L_{4}\left(x\right)=\tfrac{1}{24}x^{4}-\tfrac{2}{% 3}x^{3}+3x^{2}-4x+1}} LaguerreL(4, x)=(1)/(24)*(x)^(4)-(2)/(3)*(x)^(3)+ 3*(x)^(2)- 4*x + 1 Error Successful Error - -
18.5#Ex27 L 5 ⁑ ( x ) = - 1 120 ⁒ x 5 + 5 24 ⁒ x 4 - 5 3 ⁒ x 3 + 5 ⁒ x 2 - 5 ⁒ x + 1 shorthand-Laguerre-polynomial-L 5 π‘₯ 1 120 superscript π‘₯ 5 5 24 superscript π‘₯ 4 5 3 superscript π‘₯ 3 5 superscript π‘₯ 2 5 π‘₯ 1 {\displaystyle{\displaystyle L_{5}\left(x\right)=-\tfrac{1}{120}x^{5}+\tfrac{5% }{24}x^{4}-\tfrac{5}{3}x^{3}+5x^{2}-5x+1}} LaguerreL(5, x)= -(1)/(120)*(x)^(5)+(5)/(24)*(x)^(4)-(5)/(3)*(x)^(3)+ 5*(x)^(2)- 5*x + 1 Error Successful Error - -
18.5#Ex28 L 6 ⁑ ( x ) = 1 720 ⁒ x 6 - 1 20 ⁒ x 5 + 5 8 ⁒ x 4 - 10 3 ⁒ x 3 + 15 2 ⁒ x 2 - 6 ⁒ x + 1 shorthand-Laguerre-polynomial-L 6 π‘₯ 1 720 superscript π‘₯ 6 1 20 superscript π‘₯ 5 5 8 superscript π‘₯ 4 10 3 superscript π‘₯ 3 15 2 superscript π‘₯ 2 6 π‘₯ 1 {\displaystyle{\displaystyle L_{6}\left(x\right)=\tfrac{1}{720}x^{6}-\tfrac{1}% {20}x^{5}+\tfrac{5}{8}x^{4}-\tfrac{10}{3}x^{3}+\tfrac{15}{2}x^{2}-6x+1}} LaguerreL(6, x)=(1)/(720)*(x)^(6)-(1)/(20)*(x)^(5)+(5)/(8)*(x)^(4)-(10)/(3)*(x)^(3)+(15)/(2)*(x)^(2)- 6*x + 1 Error Successful Error - -
18.5#Ex29 H 0 ⁑ ( x ) = 1 Hermite-polynomial-H 0 π‘₯ 1 {\displaystyle{\displaystyle H_{0}\left(x\right)=1}} HermiteH(0, x)= 1 HermiteH[0, x]= 1 Successful Successful - -
18.5#Ex30 H 1 ⁑ ( x ) = 2 ⁒ x Hermite-polynomial-H 1 π‘₯ 2 π‘₯ {\displaystyle{\displaystyle H_{1}\left(x\right)=2x}} HermiteH(1, x)= 2*x HermiteH[1, x]= 2*x Successful Successful - -
18.5#Ex31 H 2 ⁑ ( x ) = 4 ⁒ x 2 - 2 Hermite-polynomial-H 2 π‘₯ 4 superscript π‘₯ 2 2 {\displaystyle{\displaystyle H_{2}\left(x\right)=4x^{2}-2}} HermiteH(2, x)= 4*(x)^(2)- 2 HermiteH[2, x]= 4*(x)^(2)- 2 Successful Successful - -
18.5#Ex32 H 3 ⁑ ( x ) = 8 ⁒ x 3 - 12 ⁒ x Hermite-polynomial-H 3 π‘₯ 8 superscript π‘₯ 3 12 π‘₯ {\displaystyle{\displaystyle H_{3}\left(x\right)=8x^{3}-12x}} HermiteH(3, x)= 8*(x)^(3)- 12*x HermiteH[3, x]= 8*(x)^(3)- 12*x Successful Successful - -
18.5#Ex33 H 4 ⁑ ( x ) = 16 ⁒ x 4 - 48 ⁒ x 2 + 12 Hermite-polynomial-H 4 π‘₯ 16 superscript π‘₯ 4 48 superscript π‘₯ 2 12 {\displaystyle{\displaystyle H_{4}\left(x\right)=16x^{4}-48x^{2}+12}} HermiteH(4, x)= 16*(x)^(4)- 48*(x)^(2)+ 12 HermiteH[4, x]= 16*(x)^(4)- 48*(x)^(2)+ 12 Successful Successful - -
18.5#Ex34 H 5 ⁑ ( x ) = 32 ⁒ x 5 - 160 ⁒ x 3 + 120 ⁒ x Hermite-polynomial-H 5 π‘₯ 32 superscript π‘₯ 5 160 superscript π‘₯ 3 120 π‘₯ {\displaystyle{\displaystyle H_{5}\left(x\right)=32x^{5}-160x^{3}+120x}} HermiteH(5, x)= 32*(x)^(5)- 160*(x)^(3)+ 120*x HermiteH[5, x]= 32*(x)^(5)- 160*(x)^(3)+ 120*x Successful Successful - -
18.5#Ex35 H 6 ⁑ ( x ) = 64 ⁒ x 6 - 480 ⁒ x 4 + 720 ⁒ x 2 - 120 Hermite-polynomial-H 6 π‘₯ 64 superscript π‘₯ 6 480 superscript π‘₯ 4 720 superscript π‘₯ 2 120 {\displaystyle{\displaystyle H_{6}\left(x\right)=64x^{6}-480x^{4}+720x^{2}-120}} HermiteH(6, x)= 64*(x)^(6)- 480*(x)^(4)+ 720*(x)^(2)- 120 HermiteH[6, x]= 64*(x)^(6)- 480*(x)^(4)+ 720*(x)^(2)- 120 Successful Successful - -
18.6.E2 lim Ξ± β†’ ∞ ⁑ P n ( Ξ± , Ξ² ) ⁑ ( x ) P n ( Ξ± , Ξ² ) ⁑ ( 1 ) = ( 1 + x 2 ) n subscript β†’ 𝛼 Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 superscript 1 π‘₯ 2 𝑛 {\displaystyle{\displaystyle\lim_{\alpha\to\infty}\frac{P^{(\alpha,\beta)}_{n}% \left(x\right)}{P^{(\alpha,\beta)}_{n}\left(1\right)}=\left(\frac{1+x}{2}% \right)^{n}}} limit((JacobiP(n, alpha, beta, x))/(JacobiP(n, alpha, beta, 1)), alpha = infinity)=((1 + x)/(2))^(n) Limit[Divide[JacobiP[n, \[Alpha], \[Beta], x],JacobiP[n, \[Alpha], \[Beta], 1]], \[Alpha] -> Infinity]=(Divide[1 + x,2])^(n) Failure Failure Skip Error
18.6.E3 lim Ξ² β†’ ∞ ⁑ P n ( Ξ± , Ξ² ) ⁑ ( x ) P n ( Ξ± , Ξ² ) ⁑ ( - 1 ) = ( 1 - x 2 ) n subscript β†’ 𝛽 Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 superscript 1 π‘₯ 2 𝑛 {\displaystyle{\displaystyle\lim_{\beta\to\infty}\frac{P^{(\alpha,\beta)}_{n}% \left(x\right)}{P^{(\alpha,\beta)}_{n}\left(-1\right)}=\left(\frac{1-x}{2}% \right)^{n}}} limit((JacobiP(n, alpha, beta, x))/(JacobiP(n, alpha, beta, - 1)), beta = infinity)=((1 - x)/(2))^(n) Limit[Divide[JacobiP[n, \[Alpha], \[Beta], x],JacobiP[n, \[Alpha], \[Beta], - 1]], \[Beta] -> Infinity]=(Divide[1 - x,2])^(n) Failure Failure Skip Skip
18.6.E4 lim Ξ» β†’ ∞ ⁑ C n ( Ξ» ) ⁑ ( x ) C n ( Ξ» ) ⁑ ( 1 ) = x n subscript β†’ πœ† ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ ultraspherical-Gegenbauer-polynomial πœ† 𝑛 1 superscript π‘₯ 𝑛 {\displaystyle{\displaystyle\lim_{\lambda\to\infty}\frac{C^{(\lambda)}_{n}% \left(x\right)}{C^{(\lambda)}_{n}\left(1\right)}=x^{n}}} limit((GegenbauerC(n, lambda, x))/(GegenbauerC(n, lambda, 1)), lambda = infinity)= (x)^(n) Limit[Divide[GegenbauerC[n, \[Lambda], x],GegenbauerC[n, \[Lambda], 1]], \[Lambda] -> Infinity]= (x)^(n) Failure Failure Skip Error
18.7.E1 C n ( Ξ» ) ⁑ ( x ) = ( 2 ⁒ Ξ» ) n ( Ξ» + 1 2 ) n ⁒ P n ( Ξ» - 1 2 , Ξ» - 1 2 ) ⁑ ( x ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ Pochhammer 2 πœ† 𝑛 Pochhammer πœ† 1 2 𝑛 Jacobi-polynomial-P πœ† 1 2 πœ† 1 2 𝑛 π‘₯ {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(x\right)=\frac{{\left(2% \lambda\right)_{n}}}{{\left(\lambda+\frac{1}{2}\right)_{n}}}P^{(\lambda-\frac{% 1}{2},\lambda-\frac{1}{2})}_{n}\left(x\right)}} GegenbauerC(n, lambda, x)=(pochhammer(2*lambda, n))/(pochhammer(lambda +(1)/(2), n))*JacobiP(n, lambda -(1)/(2), lambda -(1)/(2), x) GegenbauerC[n, \[Lambda], x]=Divide[Pochhammer[2*\[Lambda], n],Pochhammer[\[Lambda]+Divide[1,2], n]]*JacobiP[n, \[Lambda]-Divide[1,2], \[Lambda]-Divide[1,2], x] Successful Successful - -
18.7.E2 P n ( Ξ± , Ξ± ) ⁑ ( x ) = ( Ξ± + 1 ) n ( 2 ⁒ Ξ± + 1 ) n ⁒ C n ( Ξ± + 1 2 ) ⁑ ( x ) Jacobi-polynomial-P 𝛼 𝛼 𝑛 π‘₯ Pochhammer 𝛼 1 𝑛 Pochhammer 2 𝛼 1 𝑛 ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 π‘₯ {\displaystyle{\displaystyle P^{(\alpha,\alpha)}_{n}\left(x\right)=\frac{{% \left(\alpha+1\right)_{n}}}{{\left(2\alpha+1\right)_{n}}}C^{(\alpha+\frac{1}{2% })}_{n}\left(x\right)}} JacobiP(n, alpha, alpha, x)=(pochhammer(alpha + 1, n))/(pochhammer(2*alpha + 1, n))*GegenbauerC(n, alpha +(1)/(2), x) JacobiP[n, \[Alpha], \[Alpha], x]=Divide[Pochhammer[\[Alpha]+ 1, n],Pochhammer[2*\[Alpha]+ 1, n]]*GegenbauerC[n, \[Alpha]+Divide[1,2], x] Successful Successful - -
18.7.E3 T n ⁑ ( x ) = P n ( - 1 2 , - 1 2 ) ⁑ ( x ) / P n ( - 1 2 , - 1 2 ) ⁑ ( 1 ) Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ Jacobi-polynomial-P 1 2 1 2 𝑛 π‘₯ Jacobi-polynomial-P 1 2 1 2 𝑛 1 {\displaystyle{\displaystyle T_{n}\left(x\right)=\ifrac{P^{(-\frac{1}{2},-% \frac{1}{2})}_{n}\left(x\right)}{P^{(-\frac{1}{2},-\frac{1}{2})}_{n}\left(1% \right)}}} ChebyshevT(n, x)=(JacobiP(n, -(1)/(2), -(1)/(2), x))/(JacobiP(n, -(1)/(2), -(1)/(2), 1)) ChebyshevT[n, x]=Divide[JacobiP[n, -Divide[1,2], -Divide[1,2], x],JacobiP[n, -Divide[1,2], -Divide[1,2], 1]] Successful Successful - -
18.7.E4 U n ⁑ ( x ) = C n ( 1 ) ⁑ ( x ) Chebyshev-polynomial-second-kind-U 𝑛 π‘₯ ultraspherical-Gegenbauer-polynomial 1 𝑛 π‘₯ {\displaystyle{\displaystyle U_{n}\left(x\right)=C^{(1)}_{n}\left(x\right)}} ChebyshevU(n, x)= GegenbauerC(n, 1, x) ChebyshevU[n, x]= GegenbauerC[n, 1, x] Successful Successful - -
18.7.E4 C n ( 1 ) ⁑ ( x ) = ( n + 1 ) ⁒ P n ( 1 2 , 1 2 ) ⁑ ( x ) / P n ( 1 2 , 1 2 ) ⁑ ( 1 ) ultraspherical-Gegenbauer-polynomial 1 𝑛 π‘₯ 𝑛 1 Jacobi-polynomial-P 1 2 1 2 𝑛 π‘₯ Jacobi-polynomial-P 1 2 1 2 𝑛 1 {\displaystyle{\displaystyle C^{(1)}_{n}\left(x\right)=\ifrac{(n+1)P^{(\frac{1% }{2},\frac{1}{2})}_{n}\left(x\right)}{P^{(\frac{1}{2},\frac{1}{2})}_{n}\left(1% \right)}}} GegenbauerC(n, 1, x)=((n + 1)* JacobiP(n, (1)/(2), (1)/(2), x))/(JacobiP(n, (1)/(2), (1)/(2), 1)) GegenbauerC[n, 1, x]=Divide[(n + 1)* JacobiP[n, Divide[1,2], Divide[1,2], x],JacobiP[n, Divide[1,2], Divide[1,2], 1]] Successful Successful - -
18.7.E9 P n ⁑ ( x ) = C n ( 1 2 ) ⁑ ( x ) Legendre-spherical-polynomial 𝑛 π‘₯ ultraspherical-Gegenbauer-polynomial 1 2 𝑛 π‘₯ {\displaystyle{\displaystyle P_{n}\left(x\right)=C^{(\frac{1}{2})}_{n}\left(x% \right)}} LegendreP(n, x)= GegenbauerC(n, (1)/(2), x) LegendreP[n, x]= GegenbauerC[n, Divide[1,2], x] Successful Successful - -
18.7.E9 C n ( 1 2 ) ⁑ ( x ) = P n ( 0 , 0 ) ⁑ ( x ) ultraspherical-Gegenbauer-polynomial 1 2 𝑛 π‘₯ Jacobi-polynomial-P 0 0 𝑛 π‘₯ {\displaystyle{\displaystyle C^{(\frac{1}{2})}_{n}\left(x\right)=P^{(0,0)}_{n}% \left(x\right)}} GegenbauerC(n, (1)/(2), x)= JacobiP(n, 0, 0, x) GegenbauerC[n, Divide[1,2], x]= JacobiP[n, 0, 0, x] Successful Successful - -
18.7.E10 P n * ⁑ ( x ) = P n ⁑ ( 2 ⁒ x - 1 ) shifted-spherical-Legendre-polynomial-s 𝑛 π‘₯ Legendre-spherical-polynomial 𝑛 2 π‘₯ 1 {\displaystyle{\displaystyle P^{*}_{n}\left(x\right)=P_{n}\left(2x-1\right)}} LegendreP(n, 2*(x) - 1)= LegendreP(n, 2*x - 1) Error Successful Error - -
18.7.E13 P 2 ⁒ n ( Ξ± , Ξ± ) ⁑ ( x ) P 2 ⁒ n ( Ξ± , Ξ± ) ⁑ ( 1 ) = P n ( Ξ± , - 1 2 ) ⁑ ( 2 ⁒ x 2 - 1 ) P n ( Ξ± , - 1 2 ) ⁑ ( 1 ) Jacobi-polynomial-P 𝛼 𝛼 2 𝑛 π‘₯ Jacobi-polynomial-P 𝛼 𝛼 2 𝑛 1 Jacobi-polynomial-P 𝛼 1 2 𝑛 2 superscript π‘₯ 2 1 Jacobi-polynomial-P 𝛼 1 2 𝑛 1 {\displaystyle{\displaystyle\frac{P^{(\alpha,\alpha)}_{2n}\left(x\right)}{P^{(% \alpha,\alpha)}_{2n}\left(1\right)}=\frac{P^{(\alpha,-\frac{1}{2})}_{n}\left(2% x^{2}-1\right)}{P^{(\alpha,-\frac{1}{2})}_{n}\left(1\right)}}} (JacobiP(2*n, alpha, alpha, x))/(JacobiP(2*n, alpha, alpha, 1))=(JacobiP(n, alpha, -(1)/(2), 2*(x)^(2)- 1))/(JacobiP(n, alpha, -(1)/(2), 1)) Divide[JacobiP[2*n, \[Alpha], \[Alpha], x],JacobiP[2*n, \[Alpha], \[Alpha], 1]]=Divide[JacobiP[n, \[Alpha], -Divide[1,2], 2*(x)^(2)- 1],JacobiP[n, \[Alpha], -Divide[1,2], 1]] Failure Failure Successful Successful
18.7.E14 P 2 ⁒ n + 1 ( Ξ± , Ξ± ) ⁑ ( x ) P 2 ⁒ n + 1 ( Ξ± , Ξ± ) ⁑ ( 1 ) = x ⁒ P n ( Ξ± , 1 2 ) ⁑ ( 2 ⁒ x 2 - 1 ) P n ( Ξ± , 1 2 ) ⁑ ( 1 ) Jacobi-polynomial-P 𝛼 𝛼 2 𝑛 1 π‘₯ Jacobi-polynomial-P 𝛼 𝛼 2 𝑛 1 1 π‘₯ Jacobi-polynomial-P 𝛼 1 2 𝑛 2 superscript π‘₯ 2 1 Jacobi-polynomial-P 𝛼 1 2 𝑛 1 {\displaystyle{\displaystyle\frac{P^{(\alpha,\alpha)}_{2n+1}\left(x\right)}{P^% {(\alpha,\alpha)}_{2n+1}\left(1\right)}=\frac{xP^{(\alpha,\frac{1}{2})}_{n}% \left(2x^{2}-1\right)}{P^{(\alpha,\frac{1}{2})}_{n}\left(1\right)}}} (JacobiP(2*n + 1, alpha, alpha, x))/(JacobiP(2*n + 1, alpha, alpha, 1))=(x*JacobiP(n, alpha, (1)/(2), 2*(x)^(2)- 1))/(JacobiP(n, alpha, (1)/(2), 1)) Divide[JacobiP[2*n + 1, \[Alpha], \[Alpha], x],JacobiP[2*n + 1, \[Alpha], \[Alpha], 1]]=Divide[x*JacobiP[n, \[Alpha], Divide[1,2], 2*(x)^(2)- 1],JacobiP[n, \[Alpha], Divide[1,2], 1]] Failure Failure Successful Successful
18.7.E15 C 2 ⁒ n ( Ξ» ) ⁑ ( x ) = ( Ξ» ) n ( 1 2 ) n ⁒ P n ( Ξ» - 1 2 , - 1 2 ) ⁑ ( 2 ⁒ x 2 - 1 ) ultraspherical-Gegenbauer-polynomial πœ† 2 𝑛 π‘₯ Pochhammer πœ† 𝑛 Pochhammer 1 2 𝑛 Jacobi-polynomial-P πœ† 1 2 1 2 𝑛 2 superscript π‘₯ 2 1 {\displaystyle{\displaystyle C^{(\lambda)}_{2n}\left(x\right)=\frac{{\left(% \lambda\right)_{n}}}{{\left(\tfrac{1}{2}\right)_{n}}}P^{(\lambda-\frac{1}{2},-% \frac{1}{2})}_{n}\left(2x^{2}-1\right)}} GegenbauerC(2*n, lambda, x)=(pochhammer(lambda, n))/(pochhammer((1)/(2), n))*JacobiP(n, lambda -(1)/(2), -(1)/(2), 2*(x)^(2)- 1) GegenbauerC[2*n, \[Lambda], x]=Divide[Pochhammer[\[Lambda], n],Pochhammer[Divide[1,2], n]]*JacobiP[n, \[Lambda]-Divide[1,2], -Divide[1,2], 2*(x)^(2)- 1] Failure Failure Successful Successful
18.7.E16 C 2 ⁒ n + 1 ( Ξ» ) ⁑ ( x ) = ( Ξ» ) n + 1 ( 1 2 ) n + 1 ⁒ x ⁒ P n ( Ξ» - 1 2 , 1 2 ) ⁑ ( 2 ⁒ x 2 - 1 ) ultraspherical-Gegenbauer-polynomial πœ† 2 𝑛 1 π‘₯ Pochhammer πœ† 𝑛 1 Pochhammer 1 2 𝑛 1 π‘₯ Jacobi-polynomial-P πœ† 1 2 1 2 𝑛 2 superscript π‘₯ 2 1 {\displaystyle{\displaystyle C^{(\lambda)}_{2n+1}\left(x\right)=\frac{{\left(% \lambda\right)_{n+1}}}{{\left(\frac{1}{2}\right)_{n+1}}}xP^{(\lambda-\frac{1}{% 2},\frac{1}{2})}_{n}\left(2x^{2}-1\right)}} GegenbauerC(2*n + 1, lambda, x)=(pochhammer(lambda, n + 1))/(pochhammer((1)/(2), n + 1))*x*JacobiP(n, lambda -(1)/(2), (1)/(2), 2*(x)^(2)- 1) GegenbauerC[2*n + 1, \[Lambda], x]=Divide[Pochhammer[\[Lambda], n + 1],Pochhammer[Divide[1,2], n + 1]]*x*JacobiP[n, \[Lambda]-Divide[1,2], Divide[1,2], 2*(x)^(2)- 1] Failure Failure Successful Successful
18.7.E23 lim Ξ± β†’ ∞ ⁑ Ξ± - 1 2 ⁒ n ⁒ P n ( Ξ± , Ξ± ) ⁑ ( Ξ± - 1 2 ⁒ x ) = H n ⁑ ( x ) 2 n ⁒ n ! subscript β†’ 𝛼 superscript 𝛼 1 2 𝑛 Jacobi-polynomial-P 𝛼 𝛼 𝑛 superscript 𝛼 1 2 π‘₯ Hermite-polynomial-H 𝑛 π‘₯ superscript 2 𝑛 𝑛 {\displaystyle{\displaystyle\lim_{\alpha\to\infty}\alpha^{-\frac{1}{2}n}P^{(% \alpha,\alpha)}_{n}\left(\alpha^{-\frac{1}{2}}x\right)=\frac{H_{n}\left(x% \right)}{2^{n}n!}}} limit((alpha)^(-(1)/(2)*n)* JacobiP(n, alpha, alpha, (alpha)^(-(1)/(2))* x), alpha = infinity)=(HermiteH(n, x))/((2)^(n)* factorial(n)) Limit[(\[Alpha])^(-Divide[1,2]*n)* JacobiP[n, \[Alpha], \[Alpha], (\[Alpha])^(-Divide[1,2])* x], \[Alpha] -> Infinity]=Divide[HermiteH[n, x],(2)^(n)* (n)!] Failure Failure Skip Error
18.7.E24 lim Ξ» β†’ ∞ ⁑ Ξ» - 1 2 ⁒ n ⁒ C n ( Ξ» ) ⁑ ( Ξ» - 1 2 ⁒ x ) = H n ⁑ ( x ) n ! subscript β†’ πœ† superscript πœ† 1 2 𝑛 ultraspherical-Gegenbauer-polynomial πœ† 𝑛 superscript πœ† 1 2 π‘₯ Hermite-polynomial-H 𝑛 π‘₯ 𝑛 {\displaystyle{\displaystyle\lim_{\lambda\to\infty}\lambda^{-\frac{1}{2}n}C^{(% \lambda)}_{n}\left(\lambda^{-\frac{1}{2}}x\right)=\frac{H_{n}\left(x\right)}{n% !}}} limit((lambda)^(-(1)/(2)*n)* GegenbauerC(n, lambda, (lambda)^(-(1)/(2))* x), lambda = infinity)=(HermiteH(n, x))/(factorial(n)) Limit[(\[Lambda])^(-Divide[1,2]*n)* GegenbauerC[n, \[Lambda], (\[Lambda])^(-Divide[1,2])* x], \[Lambda] -> Infinity]=Divide[HermiteH[n, x],(n)!] Failure Failure Skip Skip
18.7.E25 lim Ξ» β†’ 0 ⁑ 1 Ξ» ⁒ C n ( Ξ» ) ⁑ ( x ) = 2 n ⁒ T n ⁑ ( x ) subscript β†’ πœ† 0 1 πœ† ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ 2 𝑛 Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ {\displaystyle{\displaystyle\lim_{\lambda\to 0}\frac{1}{\lambda}C^{(\lambda)}_% {n}\left(x\right)=\frac{2}{n}T_{n}\left(x\right)}} limit((1)/(lambda)*GegenbauerC(n, lambda, x), lambda = 0)=(2)/(n)*ChebyshevT(n, x) Limit[Divide[1,\[Lambda]]*GegenbauerC[n, \[Lambda], x], \[Lambda] -> 0]=Divide[2,n]*ChebyshevT[n, x] Failure Failure Skip Successful
18.9.E3 P n ( Ξ± , Ξ² - 1 ) ⁑ ( x ) - P n ( Ξ± - 1 , Ξ² ) ⁑ ( x ) = P n - 1 ( Ξ± , Ξ² ) ⁑ ( x ) Jacobi-polynomial-P 𝛼 𝛽 1 𝑛 π‘₯ Jacobi-polynomial-P 𝛼 1 𝛽 𝑛 π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 π‘₯ {\displaystyle{\displaystyle P^{(\alpha,\beta-1)}_{n}\left(x\right)-P^{(\alpha% -1,\beta)}_{n}\left(x\right)=P^{(\alpha,\beta)}_{n-1}\left(x\right)}} JacobiP(n, alpha, beta - 1, x)- JacobiP(n, alpha - 1, beta, x)= JacobiP(n - 1, alpha, beta, x) JacobiP[n, \[Alpha], \[Beta]- 1, x]- JacobiP[n, \[Alpha]- 1, \[Beta], x]= JacobiP[n - 1, \[Alpha], \[Beta], x] Failure Successful Successful -
18.9.E4 ( 1 - x ) ⁒ P n ( Ξ± + 1 , Ξ² ) ⁑ ( x ) + ( 1 + x ) ⁒ P n ( Ξ± , Ξ² + 1 ) ⁑ ( x ) = 2 ⁒ P n ( Ξ± , Ξ² ) ⁑ ( x ) 1 π‘₯ Jacobi-polynomial-P 𝛼 1 𝛽 𝑛 π‘₯ 1 π‘₯ Jacobi-polynomial-P 𝛼 𝛽 1 𝑛 π‘₯ 2 Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ {\displaystyle{\displaystyle(1-x)P^{(\alpha+1,\beta)}_{n}\left(x\right)+(1+x)P% ^{(\alpha,\beta+1)}_{n}\left(x\right)=2\!P^{(\alpha,\beta)}_{n}\left(x\right)}} (1 - x)* JacobiP(n, alpha + 1, beta, x)+(1 + x)* JacobiP(n, alpha, beta + 1, x)= 2*JacobiP(n, alpha, beta, x) (1 - x)* JacobiP[n, \[Alpha]+ 1, \[Beta], x]+(1 + x)* JacobiP[n, \[Alpha], \[Beta]+ 1, x]= 2*JacobiP[n, \[Alpha], \[Beta], x] Failure Successful Successful -
18.9.E5 ( 2 ⁒ n + Ξ± + Ξ² + 1 ) ⁒ P n ( Ξ± , Ξ² ) ⁑ ( x ) = ( n + Ξ± + Ξ² + 1 ) ⁒ P n ( Ξ± , Ξ² + 1 ) ⁑ ( x ) + ( n + Ξ± ) ⁒ P n - 1 ( Ξ± , Ξ² + 1 ) ⁑ ( x ) 2 𝑛 𝛼 𝛽 1 Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ 𝑛 𝛼 𝛽 1 Jacobi-polynomial-P 𝛼 𝛽 1 𝑛 π‘₯ 𝑛 𝛼 Jacobi-polynomial-P 𝛼 𝛽 1 𝑛 1 π‘₯ {\displaystyle{\displaystyle(2n+\alpha+\beta+1)P^{(\alpha,\beta)}_{n}\left(x% \right)=(n+\alpha+\beta+1)P^{(\alpha,\beta+1)}_{n}\left(x\right)+(n+\alpha)P^{% (\alpha,\beta+1)}_{n-1}\left(x\right)}} (2*n + alpha + beta + 1)* JacobiP(n, alpha, beta, x)=(n + alpha + beta + 1)* JacobiP(n, alpha, beta + 1, x)+(n + alpha)* JacobiP(n - 1, alpha, beta + 1, x) (2*n + \[Alpha]+ \[Beta]+ 1)* JacobiP[n, \[Alpha], \[Beta], x]=(n + \[Alpha]+ \[Beta]+ 1)* JacobiP[n, \[Alpha], \[Beta]+ 1, x]+(n + \[Alpha])* JacobiP[n - 1, \[Alpha], \[Beta]+ 1, x] Failure Successful Successful -
18.9.E6 ( n + 1 2 ⁒ Ξ± + 1 2 ⁒ Ξ² + 1 ) ⁒ ( 1 + x ) ⁒ P n ( Ξ± , Ξ² + 1 ) ⁑ ( x ) = ( n + 1 ) ⁒ P n + 1 ( Ξ± , Ξ² ) ⁑ ( x ) + ( n + Ξ² + 1 ) ⁒ P n ( Ξ± , Ξ² ) ⁑ ( x ) 𝑛 1 2 𝛼 1 2 𝛽 1 1 π‘₯ Jacobi-polynomial-P 𝛼 𝛽 1 𝑛 π‘₯ 𝑛 1 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 π‘₯ 𝑛 𝛽 1 Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ {\displaystyle{\displaystyle(n+\tfrac{1}{2}\alpha+\tfrac{1}{2}\beta+1)(1+x)P^{% (\alpha,\beta+1)}_{n}\left(x\right)=(n+1)P^{(\alpha,\beta)}_{n+1}\left(x\right% )+(n+\beta+1)P^{(\alpha,\beta)}_{n}\left(x\right)}} (n +(1)/(2)*alpha +(1)/(2)*beta + 1)*(1 + x)* JacobiP(n, alpha, beta + 1, x)=(n + 1)* JacobiP(n + 1, alpha, beta, x)+(n + beta + 1)* JacobiP(n, alpha, beta, x) (n +Divide[1,2]*\[Alpha]+Divide[1,2]*\[Beta]+ 1)*(1 + x)* JacobiP[n, \[Alpha], \[Beta]+ 1, x]=(n + 1)* JacobiP[n + 1, \[Alpha], \[Beta], x]+(n + \[Beta]+ 1)* JacobiP[n, \[Alpha], \[Beta], x] Failure Successful Successful -
18.9.E7 ( n + Ξ» ) ⁒ C n ( Ξ» ) ⁑ ( x ) = Ξ» ⁒ ( C n ( Ξ» + 1 ) ⁑ ( x ) - C n - 2 ( Ξ» + 1 ) ⁑ ( x ) ) 𝑛 πœ† ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ πœ† ultraspherical-Gegenbauer-polynomial πœ† 1 𝑛 π‘₯ ultraspherical-Gegenbauer-polynomial πœ† 1 𝑛 2 π‘₯ {\displaystyle{\displaystyle(n+\lambda)C^{(\lambda)}_{n}\left(x\right)=\lambda% \left(C^{(\lambda+1)}_{n}\left(x\right)-C^{(\lambda+1)}_{n-2}\left(x\right)% \right)}} (n + lambda)* GegenbauerC(n, lambda, x)= lambda*(GegenbauerC(n, lambda + 1, x)- GegenbauerC(n - 2, lambda + 1, x)) (n + \[Lambda])* GegenbauerC[n, \[Lambda], x]= \[Lambda]*(GegenbauerC[n, \[Lambda]+ 1, x]- GegenbauerC[n - 2, \[Lambda]+ 1, x]) Successful Successful - -
18.9.E8 4 ⁒ Ξ» ⁒ ( n + Ξ» + 1 ) ⁒ ( 1 - x 2 ) ⁒ C n ( Ξ» + 1 ) ⁑ ( x ) = - ( n + 1 ) ⁒ ( n + 2 ) ⁒ C n + 2 ( Ξ» ) ⁑ ( x ) + ( n + 2 ⁒ Ξ» ) ⁒ ( n + 2 ⁒ Ξ» + 1 ) ⁒ C n ( Ξ» ) ⁑ ( x ) 4 πœ† 𝑛 πœ† 1 1 superscript π‘₯ 2 ultraspherical-Gegenbauer-polynomial πœ† 1 𝑛 π‘₯ 𝑛 1 𝑛 2 ultraspherical-Gegenbauer-polynomial πœ† 𝑛 2 π‘₯ 𝑛 2 πœ† 𝑛 2 πœ† 1 ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ {\displaystyle{\displaystyle 4\lambda(n+\lambda+1)(1-x^{2})C^{(\lambda+1)}_{n}% \left(x\right)=-(n+1)(n+2)C^{(\lambda)}_{n+2}\left(x\right)+(n+2\lambda)(n+2% \lambda+1)C^{(\lambda)}_{n}\left(x\right)}} 4*lambda*(n + lambda + 1)*(1 - (x)^(2))* GegenbauerC(n, lambda + 1, x)= -(n + 1)*(n + 2)* GegenbauerC(n + 2, lambda, x)+(n + 2*lambda)*(n + 2*lambda + 1)* GegenbauerC(n, lambda, x) 4*\[Lambda]*(n + \[Lambda]+ 1)*(1 - (x)^(2))* GegenbauerC[n, \[Lambda]+ 1, x]= -(n + 1)*(n + 2)* GegenbauerC[n + 2, \[Lambda], x]+(n + 2*\[Lambda])*(n + 2*\[Lambda]+ 1)* GegenbauerC[n, \[Lambda], x] Successful Successful - -
18.9.E9 T n ⁑ ( x ) = 1 2 ⁒ ( U n ⁑ ( x ) - U n - 2 ⁑ ( x ) ) Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ 1 2 Chebyshev-polynomial-second-kind-U 𝑛 π‘₯ Chebyshev-polynomial-second-kind-U 𝑛 2 π‘₯ {\displaystyle{\displaystyle T_{n}\left(x\right)=\tfrac{1}{2}\left(U_{n}\left(% x\right)-U_{n-2}\left(x\right)\right)}} ChebyshevT(n, x)=(1)/(2)*(ChebyshevU(n, x)- ChebyshevU(n - 2, x)) ChebyshevT[n, x]=Divide[1,2]*(ChebyshevU[n, x]- ChebyshevU[n - 2, x]) Successful Failure - Successful
18.9.E10 ( 1 - x 2 ) ⁒ U n ⁑ ( x ) = - 1 2 ⁒ ( T n + 2 ⁑ ( x ) - T n ⁑ ( x ) ) 1 superscript π‘₯ 2 Chebyshev-polynomial-second-kind-U 𝑛 π‘₯ 1 2 Chebyshev-polynomial-first-kind-T 𝑛 2 π‘₯ Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ {\displaystyle{\displaystyle(1-x^{2})U_{n}\left(x\right)=-\tfrac{1}{2}\left(T_% {n+2}\left(x\right)-T_{n}\left(x\right)\right)}} (1 - (x)^(2))* ChebyshevU(n, x)= -(1)/(2)*(ChebyshevT(n + 2, x)- ChebyshevT(n, x)) (1 - (x)^(2))* ChebyshevU[n, x]= -Divide[1,2]*(ChebyshevT[n + 2, x]- ChebyshevT[n, x]) Successful Failure - Successful
18.9.E15 d d x ⁑ P n ( Ξ± , Ξ² ) ⁑ ( x ) = 1 2 ⁒ ( n + Ξ± + Ξ² + 1 ) ⁒ P n - 1 ( Ξ± + 1 , Ξ² + 1 ) ⁑ ( x ) derivative π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ 1 2 𝑛 𝛼 𝛽 1 Jacobi-polynomial-P 𝛼 1 𝛽 1 𝑛 1 π‘₯ {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}P^{(\alpha,\beta)}_{% n}\left(x\right)=\tfrac{1}{2}(n+\alpha+\beta+1)P^{(\alpha+1,\beta+1)}_{n-1}% \left(x\right)}} diff(JacobiP(n, alpha, beta, x), x)=(1)/(2)*(n + alpha + beta + 1)* JacobiP(n - 1, alpha + 1, beta + 1, x) D[JacobiP[n, \[Alpha], \[Beta], x], x]=Divide[1,2]*(n + \[Alpha]+ \[Beta]+ 1)* JacobiP[n - 1, \[Alpha]+ 1, \[Beta]+ 1, x] Failure Successful
Fail
Float(infinity)+Float(infinity)*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
Float(infinity)+Float(infinity)*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
Float(infinity)+Float(infinity)*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), n = 3, x = 1}
Float(infinity)+Float(infinity)*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), n = 1, x = 1}
... skip entries to safe data
-
18.9.E16 d d x ⁑ ( ( 1 - x ) Ξ± ⁒ ( 1 + x ) Ξ² ⁒ P n ( Ξ± , Ξ² ) ⁑ ( x ) ) = - 2 ⁒ ( n + 1 ) ⁒ ( 1 - x ) Ξ± - 1 ⁒ ( 1 + x ) Ξ² - 1 ⁒ P n + 1 ( Ξ± - 1 , Ξ² - 1 ) ⁑ ( x ) derivative π‘₯ superscript 1 π‘₯ 𝛼 superscript 1 π‘₯ 𝛽 Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ 2 𝑛 1 superscript 1 π‘₯ 𝛼 1 superscript 1 π‘₯ 𝛽 1 Jacobi-polynomial-P 𝛼 1 𝛽 1 𝑛 1 π‘₯ {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}\left((1-x)^{\alpha}% (1+x)^{\beta}P^{(\alpha,\beta)}_{n}\left(x\right)\right)=-2(n+1)(1-x)^{\alpha-% 1}(1+x)^{\beta-1}P^{(\alpha-1,\beta-1)}_{n+1}\left(x\right)}} diff((1 - x)^(alpha)*(1 + x)^(beta)* JacobiP(n, alpha, beta, x), x)= - 2*(n + 1)*(1 - x)^(alpha - 1)*(1 + x)^(beta - 1)* JacobiP(n + 1, alpha - 1, beta - 1, x) D[(1 - x)^(\[Alpha])*(1 + x)^(\[Beta])* JacobiP[n, \[Alpha], \[Beta], x], x]= - 2*(n + 1)*(1 - x)^(\[Alpha]- 1)*(1 + x)^(\[Beta]- 1)* JacobiP[n + 1, \[Alpha]- 1, \[Beta]- 1, x] Failure Successful
Fail
Float(undefined)+Float(undefined)*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
Float(undefined)+Float(undefined)*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
Float(undefined)+Float(undefined)*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), n = 3, x = 1}
Float(undefined)+Float(undefined)*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)-I*2^(1/2), n = 1, x = 1}
... skip entries to safe data
-
18.9.E17 ( 2 ⁒ n + Ξ± + Ξ² ) ⁒ ( 1 - x 2 ) ⁒ d d x ⁑ P n ( Ξ± , Ξ² ) ⁑ ( x ) = n ⁒ ( Ξ± - Ξ² - ( 2 ⁒ n + Ξ± + Ξ² ) ⁒ x ) ⁒ P n ( Ξ± , Ξ² ) ⁑ ( x ) + 2 ⁒ ( n + Ξ± ) ⁒ ( n + Ξ² ) ⁒ P n - 1 ( Ξ± , Ξ² ) ⁑ ( x ) 2 𝑛 𝛼 𝛽 1 superscript π‘₯ 2 derivative π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ 𝑛 𝛼 𝛽 2 𝑛 𝛼 𝛽 π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ 2 𝑛 𝛼 𝑛 𝛽 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 π‘₯ {\displaystyle{\displaystyle(2n+\alpha+\beta)(1-x^{2})\frac{\mathrm{d}}{% \mathrm{d}x}P^{(\alpha,\beta)}_{n}\left(x\right)=n\left(\alpha-\beta-(2n+% \alpha+\beta)x\right)P^{(\alpha,\beta)}_{n}\left(x\right)+2(n+\alpha)(n+\beta)% P^{(\alpha,\beta)}_{n-1}\left(x\right)}} (2*n + alpha + beta)*(1 - (x)^(2))* diff(JacobiP(n, alpha, beta, x), x)= n*(alpha - beta -(2*n + alpha + beta)*x)* JacobiP(n, alpha, beta, x)+ 2*(n + alpha)*(n + beta)* JacobiP(n - 1, alpha, beta, x) (2*n + \[Alpha]+ \[Beta])*(1 - (x)^(2))* D[JacobiP[n, \[Alpha], \[Beta], x], x]= n*(\[Alpha]- \[Beta]-(2*n + \[Alpha]+ \[Beta])*x)* JacobiP[n, \[Alpha], \[Beta], x]+ 2*(n + \[Alpha])*(n + \[Beta])* JacobiP[n - 1, \[Alpha], \[Beta], x] Failure Successful Successful -
18.9.E18 ( 2 ⁒ n + Ξ± + Ξ² + 2 ) ⁒ ( 1 - x 2 ) ⁒ d d x ⁑ P n ( Ξ± , Ξ² ) ⁑ ( x ) = ( n + Ξ± + Ξ² + 1 ) ⁒ ( Ξ± - Ξ² + ( 2 ⁒ n + Ξ± + Ξ² + 2 ) ⁒ x ) ⁒ P n ( Ξ± , Ξ² ) ⁑ ( x ) - 2 ⁒ ( n + 1 ) ⁒ ( n + Ξ± + Ξ² + 1 ) ⁒ P n + 1 ( Ξ± , Ξ² ) ⁑ ( x ) 2 𝑛 𝛼 𝛽 2 1 superscript π‘₯ 2 derivative π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ 𝑛 𝛼 𝛽 1 𝛼 𝛽 2 𝑛 𝛼 𝛽 2 π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ 2 𝑛 1 𝑛 𝛼 𝛽 1 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 π‘₯ {\displaystyle{\displaystyle(2n+\alpha+\beta+2)(1-x^{2})\frac{\mathrm{d}}{% \mathrm{d}x}P^{(\alpha,\beta)}_{n}\left(x\right)=(n+\alpha+\beta+1)\left(% \alpha-\beta+(2n+\alpha+\beta+2)x\right)P^{(\alpha,\beta)}_{n}\left(x\right)-2% (n+1)(n+\alpha+\beta+1)P^{(\alpha,\beta)}_{n+1}\left(x\right)}} (2*n + alpha + beta + 2)*(1 - (x)^(2))* diff(JacobiP(n, alpha, beta, x), x)=(n + alpha + beta + 1)*(alpha - beta +(2*n + alpha + beta + 2)*x)* JacobiP(n, alpha, beta, x)- 2*(n + 1)*(n + alpha + beta + 1)* JacobiP(n + 1, alpha, beta, x) (2*n + \[Alpha]+ \[Beta]+ 2)*(1 - (x)^(2))* D[JacobiP[n, \[Alpha], \[Beta], x], x]=(n + \[Alpha]+ \[Beta]+ 1)*(\[Alpha]- \[Beta]+(2*n + \[Alpha]+ \[Beta]+ 2)*x)* JacobiP[n, \[Alpha], \[Beta], x]- 2*(n + 1)*(n + \[Alpha]+ \[Beta]+ 1)* JacobiP[n + 1, \[Alpha], \[Beta], x] Failure Successful Successful -
18.9.E19 d d x ⁑ C n ( Ξ» ) ⁑ ( x ) = 2 ⁒ Ξ» ⁒ C n - 1 ( Ξ» + 1 ) ⁑ ( x ) derivative π‘₯ ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ 2 πœ† ultraspherical-Gegenbauer-polynomial πœ† 1 𝑛 1 π‘₯ {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}C^{(\lambda)}_{n}% \left(x\right)=2\lambda C^{(\lambda+1)}_{n-1}\left(x\right)}} diff(GegenbauerC(n, lambda, x), x)= 2*lambda*GegenbauerC(n - 1, lambda + 1, x) D[GegenbauerC[n, \[Lambda], x], x]= 2*\[Lambda]*GegenbauerC[n - 1, \[Lambda]+ 1, x] Successful Successful - -
18.9.E20 d d x ⁑ ( ( 1 - x 2 ) Ξ» - 1 2 ⁒ C n ( Ξ» ) ⁑ ( x ) ) = - ( n + 1 ) ⁒ ( n + 2 ⁒ Ξ» - 1 ) 2 ⁒ ( Ξ» - 1 ) ⁒ ( 1 - x 2 ) Ξ» - 3 2 ⁒ C n + 1 ( Ξ» - 1 ) ⁑ ( x ) derivative π‘₯ superscript 1 superscript π‘₯ 2 πœ† 1 2 ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ 𝑛 1 𝑛 2 πœ† 1 2 πœ† 1 superscript 1 superscript π‘₯ 2 πœ† 3 2 ultraspherical-Gegenbauer-polynomial πœ† 1 𝑛 1 π‘₯ {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}\left((1-x^{2})^{% \lambda-\frac{1}{2}}C^{(\lambda)}_{n}\left(x\right)\right)=-\frac{(n+1)(n+2% \lambda-1)}{2(\lambda-1)}{(1-x^{2})^{\lambda-\frac{3}{2}}}C^{(\lambda-1)}_{n+1% }\left(x\right)}} diff((1 - (x)^(2))^(lambda -(1)/(2))* GegenbauerC(n, lambda, x), x)= -((n + 1)*(n + 2*lambda - 1))/(2*(lambda - 1))*(1 - (x)^(2))^(lambda -(3)/(2))*GegenbauerC(n + 1, lambda - 1, x) D[(1 - (x)^(2))^(\[Lambda]-Divide[1,2])* GegenbauerC[n, \[Lambda], x], x]= -Divide[(n + 1)*(n + 2*\[Lambda]- 1),2*(\[Lambda]- 1)]*(1 - (x)^(2))^(\[Lambda]-Divide[3,2])*GegenbauerC[n + 1, \[Lambda]- 1, x] Failure Successful
Fail
Float(infinity)+Float(infinity)*I <- {lambda = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
Float(infinity)+Float(infinity)*I <- {lambda = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
Float(infinity)+Float(infinity)*I <- {lambda = 2^(1/2)+I*2^(1/2), n = 3, x = 1}
Float(infinity)+Float(infinity)*I <- {lambda = 2^(1/2)-I*2^(1/2), n = 1, x = 1}
... skip entries to safe data
-
18.9.E21 d d x ⁑ T n ⁑ ( x ) = n ⁒ U n - 1 ⁑ ( x ) derivative π‘₯ Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ 𝑛 Chebyshev-polynomial-second-kind-U 𝑛 1 π‘₯ {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}T_{n}\left(x\right)=% nU_{n-1}\left(x\right)}} diff(ChebyshevT(n, x), x)= n*ChebyshevU(n - 1, x) D[ChebyshevT[n, x], x]= n*ChebyshevU[n - 1, x] Successful Successful - -
18.9.E22 d d x ⁑ ( ( 1 - x 2 ) 1 2 ⁒ U n ⁑ ( x ) ) = - ( n + 1 ) ⁒ ( 1 - x 2 ) - 1 2 ⁒ T n + 1 ⁑ ( x ) derivative π‘₯ superscript 1 superscript π‘₯ 2 1 2 Chebyshev-polynomial-second-kind-U 𝑛 π‘₯ 𝑛 1 superscript 1 superscript π‘₯ 2 1 2 Chebyshev-polynomial-first-kind-T 𝑛 1 π‘₯ {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}\left((1-x^{2})^{% \frac{1}{2}}U_{n}\left(x\right)\right)=-(n+1){(1-x^{2})^{-\frac{1}{2}}}T_{n+1}% \left(x\right)}} diff((1 - (x)^(2))^((1)/(2))* ChebyshevU(n, x), x)= -(n + 1)*(1 - (x)^(2))^(-(1)/(2))*ChebyshevT(n + 1, x) D[(1 - (x)^(2))^(Divide[1,2])* ChebyshevU[n, x], x]= -(n + 1)*(1 - (x)^(2))^(-Divide[1,2])*ChebyshevT[n + 1, x] Successful Successful - -
18.9.E25 d d x ⁑ H n ⁑ ( x ) = 2 ⁒ n ⁒ H n - 1 ⁑ ( x ) derivative π‘₯ Hermite-polynomial-H 𝑛 π‘₯ 2 𝑛 Hermite-polynomial-H 𝑛 1 π‘₯ {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}H_{n}\left(x\right)=% 2nH_{n-1}\left(x\right)}} diff(HermiteH(n, x), x)= 2*n*HermiteH(n - 1, x) D[HermiteH[n, x], x]= 2*n*HermiteH[n - 1, x] Successful Successful - -
18.9.E26 d d x ⁑ ( e - x 2 ⁒ H n ⁑ ( x ) ) = - e - x 2 ⁒ H n + 1 ⁑ ( x ) derivative π‘₯ superscript 𝑒 superscript π‘₯ 2 Hermite-polynomial-H 𝑛 π‘₯ superscript 𝑒 superscript π‘₯ 2 Hermite-polynomial-H 𝑛 1 π‘₯ {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}\left(e^{-x^{2}}H_{n% }\left(x\right)\right)=-e^{-x^{2}}H_{n+1}\left(x\right)}} diff(exp(- (x)^(2))*HermiteH(n, x), x)= - exp(- (x)^(2))*HermiteH(n + 1, x) D[Exp[- (x)^(2)]*HermiteH[n, x], x]= - Exp[- (x)^(2)]*HermiteH[n + 1, x] Successful Successful - -
18.10.E1 P n ( Ξ± , Ξ± ) ⁑ ( cos ⁑ ΞΈ ) P n ( Ξ± , Ξ± ) ⁑ ( 1 ) = C n ( Ξ± + 1 2 ) ⁑ ( cos ⁑ ΞΈ ) C n ( Ξ± + 1 2 ) ⁑ ( 1 ) Jacobi-polynomial-P 𝛼 𝛼 𝑛 πœƒ Jacobi-polynomial-P 𝛼 𝛼 𝑛 1 ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 πœƒ ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 1 {\displaystyle{\displaystyle\frac{P^{(\alpha,\alpha)}_{n}\left(\cos\theta% \right)}{P^{(\alpha,\alpha)}_{n}\left(1\right)}=\frac{C^{(\alpha+\frac{1}{2})}% _{n}\left(\cos\theta\right)}{C^{(\alpha+\frac{1}{2})}_{n}\left(1\right)}}} (JacobiP(n, alpha, alpha, cos(theta)))/(JacobiP(n, alpha, alpha, 1))=(GegenbauerC(n, alpha +(1)/(2), cos(theta)))/(GegenbauerC(n, alpha +(1)/(2), 1)) Divide[JacobiP[n, \[Alpha], \[Alpha], Cos[\[Theta]]],JacobiP[n, \[Alpha], \[Alpha], 1]]=Divide[GegenbauerC[n, \[Alpha]+Divide[1,2], Cos[\[Theta]]],GegenbauerC[n, \[Alpha]+Divide[1,2], 1]] Successful Successful - -
18.10.E1 C n ( Ξ± + 1 2 ) ⁑ ( cos ⁑ ΞΈ ) C n ( Ξ± + 1 2 ) ⁑ ( 1 ) = 2 Ξ± + 1 2 ⁒ Ξ“ ⁑ ( Ξ± + 1 ) Ο€ 1 2 ⁒ Ξ“ ⁑ ( Ξ± + 1 2 ) ⁒ ( sin ⁑ ΞΈ ) - 2 ⁒ Ξ± ⁒ ∫ 0 ΞΈ cos ⁑ ( ( n + Ξ± + 1 2 ) ⁒ Ο• ) ( cos ⁑ Ο• - cos ⁑ ΞΈ ) - Ξ± + 1 2 ⁒ d Ο• ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 πœƒ ultraspherical-Gegenbauer-polynomial 𝛼 1 2 𝑛 1 superscript 2 𝛼 1 2 Euler-Gamma 𝛼 1 superscript πœ‹ 1 2 Euler-Gamma 𝛼 1 2 superscript πœƒ 2 𝛼 superscript subscript 0 πœƒ 𝑛 𝛼 1 2 italic-Ο• superscript italic-Ο• πœƒ 𝛼 1 2 italic-Ο• {\displaystyle{\displaystyle\frac{C^{(\alpha+\frac{1}{2})}_{n}\left(\cos\theta% \right)}{C^{(\alpha+\frac{1}{2})}_{n}\left(1\right)}=\frac{2^{\alpha+\frac{1}{% 2}}\Gamma\left(\alpha+1\right)}{\pi^{\frac{1}{2}}\Gamma\left(\alpha+\frac{1}{2% }\right)}(\sin\theta)^{-2\alpha}\int_{0}^{\theta}\frac{\cos\left((n+\alpha+% \tfrac{1}{2})\phi\right)}{(\cos\phi-\cos\theta)^{-\alpha+\frac{1}{2}}}\mathrm{% d}\phi}} (GegenbauerC(n, alpha +(1)/(2), cos(theta)))/(GegenbauerC(n, alpha +(1)/(2), 1))=((2)^(alpha +(1)/(2))* GAMMA(alpha + 1))/((Pi)^((1)/(2))* GAMMA(alpha +(1)/(2)))*(sin(theta))^(- 2*alpha)* int((cos((n + alpha +(1)/(2))* phi))/((cos(phi)- cos(theta))^(- alpha +(1)/(2))), phi = 0..theta) Divide[GegenbauerC[n, \[Alpha]+Divide[1,2], Cos[\[Theta]]],GegenbauerC[n, \[Alpha]+Divide[1,2], 1]]=Divide[(2)^(\[Alpha]+Divide[1,2])* Gamma[\[Alpha]+ 1],(Pi)^(Divide[1,2])* Gamma[\[Alpha]+Divide[1,2]]]*(Sin[\[Theta]])^(- 2*\[Alpha])* Integrate[Divide[Cos[(n + \[Alpha]+Divide[1,2])* \[Phi]],(Cos[\[Phi]]- Cos[\[Theta]])^(- \[Alpha]+Divide[1,2])], {\[Phi], 0, \[Theta]}] Failure Failure Skip Successful
18.10.E2 P n ⁑ ( cos ⁑ ΞΈ ) = 2 1 2 Ο€ ⁒ ∫ 0 ΞΈ cos ⁑ ( ( n + 1 2 ) ⁒ Ο• ) ( cos ⁑ Ο• - cos ⁑ ΞΈ ) 1 2 ⁒ d Ο• Legendre-spherical-polynomial 𝑛 πœƒ superscript 2 1 2 πœ‹ superscript subscript 0 πœƒ 𝑛 1 2 italic-Ο• superscript italic-Ο• πœƒ 1 2 italic-Ο• {\displaystyle{\displaystyle P_{n}\left(\cos\theta\right)=\frac{2^{\frac{1}{2}% }}{\pi}\int_{0}^{\theta}\frac{\cos\left((n+\tfrac{1}{2})\phi\right)}{(\cos\phi% -\cos\theta)^{\frac{1}{2}}}\mathrm{d}\phi}} LegendreP(n, cos(theta))=((2)^((1)/(2)))/(Pi)*int((cos((n +(1)/(2))* phi))/((cos(phi)- cos(theta))^((1)/(2))), phi = 0..theta) LegendreP[n, Cos[\[Theta]]]=Divide[(2)^(Divide[1,2]),Pi]*Integrate[Divide[Cos[(n +Divide[1,2])* \[Phi]],(Cos[\[Phi]]- Cos[\[Theta]])^(Divide[1,2])], {\[Phi], 0, \[Theta]}] Failure Failure Skip Successful
18.10.E5 P n ⁑ ( cos ⁑ ΞΈ ) = 1 Ο€ ⁒ ∫ 0 Ο€ ( cos ⁑ ΞΈ + i ⁒ sin ⁑ ΞΈ ⁒ cos ⁑ Ο• ) n ⁒ d Ο• Legendre-spherical-polynomial 𝑛 πœƒ 1 πœ‹ superscript subscript 0 πœ‹ superscript πœƒ 𝑖 πœƒ italic-Ο• 𝑛 italic-Ο• {\displaystyle{\displaystyle P_{n}\left(\cos\theta\right)=\frac{1}{\pi}\int_{0% }^{\pi}(\cos\theta+i\sin\theta\cos\phi)^{n}\mathrm{d}\phi}} LegendreP(n, cos(theta))=(1)/(Pi)*int((cos(theta)+ I*sin(theta)*cos(phi))^(n), phi = 0..Pi) LegendreP[n, Cos[\[Theta]]]=Divide[1,Pi]*Integrate[(Cos[\[Theta]]+ I*Sin[\[Theta]]*Cos[\[Phi]])^(n), {\[Phi], 0, Pi}] Failure Failure Skip Error
18.10.E7 H n ⁑ ( x ) = 2 n Ο€ 1 2 ⁒ ∫ - ∞ ∞ ( x + i ⁒ t ) n ⁒ e - t 2 ⁒ d t Hermite-polynomial-H 𝑛 π‘₯ superscript 2 𝑛 superscript πœ‹ 1 2 superscript subscript superscript π‘₯ 𝑖 𝑑 𝑛 superscript 𝑒 superscript 𝑑 2 𝑑 {\displaystyle{\displaystyle H_{n}\left(x\right)=\frac{2^{n}}{\pi^{\frac{1}{2}% }}\int_{-\infty}^{\infty}(x+it)^{n}e^{-t^{2}}\mathrm{d}t}} HermiteH(n, x)=((2)^(n))/((Pi)^((1)/(2)))*int((x + I*t)^(n)* exp(- (t)^(2)), t = - infinity..infinity) HermiteH[n, x]=Divide[(2)^(n),(Pi)^(Divide[1,2])]*Integrate[(x + I*t)^(n)* Exp[- (t)^(2)], {t, - Infinity, Infinity}] Failure Failure Skip Skip
18.10.E10 H n ⁑ ( x ) = ( - 2 ⁒ i ) n ⁒ e x 2 Ο€ 1 2 ⁒ ∫ - ∞ ∞ e - t 2 ⁒ t n ⁒ e 2 ⁒ i ⁒ x ⁒ t ⁒ d t Hermite-polynomial-H 𝑛 π‘₯ superscript 2 𝑖 𝑛 superscript 𝑒 superscript π‘₯ 2 superscript πœ‹ 1 2 superscript subscript superscript 𝑒 superscript 𝑑 2 superscript 𝑑 𝑛 superscript 𝑒 2 𝑖 π‘₯ 𝑑 𝑑 {\displaystyle{\displaystyle H_{n}\left(x\right)=\frac{(-2i)^{n}e^{x^{2}}}{\pi% ^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\mathrm{d}t}} HermiteH(n, x)=((- 2*I)^(n)* exp((x)^(2)))/((Pi)^((1)/(2)))*int(exp(- (t)^(2))*(t)^(n)* exp(2*I*x*t), t = - infinity..infinity) HermiteH[n, x]=Divide[(- 2*I)^(n)* Exp[(x)^(2)],(Pi)^(Divide[1,2])]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Exp[2*I*x*t], {t, - Infinity, Infinity}] Failure Failure Skip Successful
18.10.E10 ( - 2 ⁒ i ) n ⁒ e x 2 Ο€ 1 2 ⁒ ∫ - ∞ ∞ e - t 2 ⁒ t n ⁒ e 2 ⁒ i ⁒ x ⁒ t ⁒ d t = 2 n + 1 Ο€ 1 2 ⁒ e x 2 ⁒ ∫ 0 ∞ e - t 2 ⁒ t n ⁒ cos ⁑ ( 2 ⁒ x ⁒ t - 1 2 ⁒ n ⁒ Ο€ ) ⁒ d t superscript 2 𝑖 𝑛 superscript 𝑒 superscript π‘₯ 2 superscript πœ‹ 1 2 superscript subscript superscript 𝑒 superscript 𝑑 2 superscript 𝑑 𝑛 superscript 𝑒 2 𝑖 π‘₯ 𝑑 𝑑 superscript 2 𝑛 1 superscript πœ‹ 1 2 superscript 𝑒 superscript π‘₯ 2 superscript subscript 0 superscript 𝑒 superscript 𝑑 2 superscript 𝑑 𝑛 2 π‘₯ 𝑑 1 2 𝑛 πœ‹ 𝑑 {\displaystyle{\displaystyle\frac{(-2i)^{n}e^{x^{2}}}{\pi^{\frac{1}{2}}}\int_{% -\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\mathrm{d}t=\frac{2^{n+1}}{\pi^{\frac{% 1}{2}}}e^{x^{2}}\int_{0}^{\infty}e^{-t^{2}}t^{n}\cos\left(2xt-\tfrac{1}{2}n\pi% \right)\mathrm{d}t}} ((- 2*I)^(n)* exp((x)^(2)))/((Pi)^((1)/(2)))*int(exp(- (t)^(2))*(t)^(n)* exp(2*I*x*t), t = - infinity..infinity)=((2)^(n + 1))/((Pi)^((1)/(2)))*exp((x)^(2))*int(exp(- (t)^(2))*(t)^(n)* cos(2*x*t -(1)/(2)*n*Pi), t = 0..infinity) Divide[(- 2*I)^(n)* Exp[(x)^(2)],(Pi)^(Divide[1,2])]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Exp[2*I*x*t], {t, - Infinity, Infinity}]=Divide[(2)^(n + 1),(Pi)^(Divide[1,2])]*Exp[(x)^(2)]*Integrate[Exp[- (t)^(2)]*(t)^(n)* Cos[2*x*t -Divide[1,2]*n*Pi], {t, 0, Infinity}] Successful Failure - Error
18.11.E1 𝖯 n m ⁑ ( x ) = ( 1 2 ) m ⁒ ( - 2 ) m ⁒ ( 1 - x 2 ) 1 2 ⁒ m ⁒ C n - m ( m + 1 2 ) ⁑ ( x ) Ferrers-Legendre-P-first-kind π‘š 𝑛 π‘₯ Pochhammer 1 2 π‘š superscript 2 π‘š superscript 1 superscript π‘₯ 2 1 2 π‘š ultraspherical-Gegenbauer-polynomial π‘š 1 2 𝑛 π‘š π‘₯ {\displaystyle{\displaystyle\mathsf{P}^{m}_{n}\left(x\right)={\left(\tfrac{1}{% 2}\right)_{m}}(-2)^{m}(1-x^{2})^{\frac{1}{2}m}C^{(m+\frac{1}{2})}_{n-m}\left(x% \right)}} LegendreP(n, m, x)= pochhammer((1)/(2), m)*(- 2)^(m)*(1 - (x)^(2))^((1)/(2)*m)* GegenbauerC(n - m, m +(1)/(2), x) LegendreP[n, m, x]= Pochhammer[Divide[1,2], m]*(- 2)^(m)*(1 - (x)^(2))^(Divide[1,2]*m)* GegenbauerC[n - m, m +Divide[1,2], x] Failure Failure Skip Successful
18.11.E1 ( 1 2 ) m ⁒ ( - 2 ) m ⁒ ( 1 - x 2 ) 1 2 ⁒ m ⁒ C n - m ( m + 1 2 ) ⁑ ( x ) = ( n + 1 ) m ⁒ ( - 2 ) - m ⁒ ( 1 - x 2 ) 1 2 ⁒ m ⁒ P n - m ( m , m ) ⁑ ( x ) Pochhammer 1 2 π‘š superscript 2 π‘š superscript 1 superscript π‘₯ 2 1 2 π‘š ultraspherical-Gegenbauer-polynomial π‘š 1 2 𝑛 π‘š π‘₯ Pochhammer 𝑛 1 π‘š superscript 2 π‘š superscript 1 superscript π‘₯ 2 1 2 π‘š Jacobi-polynomial-P π‘š π‘š 𝑛 π‘š π‘₯ {\displaystyle{\displaystyle{\left(\tfrac{1}{2}\right)_{m}}(-2)^{m}(1-x^{2})^{% \frac{1}{2}m}C^{(m+\frac{1}{2})}_{n-m}\left(x\right)={\left(n+1\right)_{m}}(-2% )^{-m}(1-x^{2})^{\frac{1}{2}m}P^{(m,m)}_{n-m}\left(x\right)}} pochhammer((1)/(2), m)*(- 2)^(m)*(1 - (x)^(2))^((1)/(2)*m)* GegenbauerC(n - m, m +(1)/(2), x)= pochhammer(n + 1, m)*(- 2)^(- m)*(1 - (x)^(2))^((1)/(2)*m)* JacobiP(n - m, m, m, x) Pochhammer[Divide[1,2], m]*(- 2)^(m)*(1 - (x)^(2))^(Divide[1,2]*m)* GegenbauerC[n - m, m +Divide[1,2], x]= Pochhammer[n + 1, m]*(- 2)^(- m)*(1 - (x)^(2))^(Divide[1,2]*m)* JacobiP[n - m, m, m, x] Failure Failure Skip Successful
18.11.E2 ( Ξ± + 1 ) n n ! ⁒ M ⁑ ( - n , Ξ± + 1 , x ) = ( - 1 ) n n ! ⁒ U ⁑ ( - n , Ξ± + 1 , x ) Pochhammer 𝛼 1 𝑛 𝑛 Kummer-confluent-hypergeometric-M 𝑛 𝛼 1 π‘₯ superscript 1 𝑛 𝑛 Kummer-confluent-hypergeometric-U 𝑛 𝛼 1 π‘₯ {\displaystyle{\displaystyle\frac{{\left(\alpha+1\right)_{n}}}{n!}M\left(-n,% \alpha+1,x\right)=\frac{(-1)^{n}}{n!}U\left(-n,\alpha+1,x\right)}} (pochhammer(alpha + 1, n))/(factorial(n))*KummerM(- n, alpha + 1, x)=((- 1)^(n))/(factorial(n))*KummerU(- n, alpha + 1, x) Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*Hypergeometric1F1[- n, \[Alpha]+ 1, x]=Divide[(- 1)^(n),(n)!]*HypergeometricU[- n, \[Alpha]+ 1, x] Failure Failure Successful Successful
18.11.E2 ( - 1 ) n n ! ⁒ U ⁑ ( - n , Ξ± + 1 , x ) = ( Ξ± + 1 ) n n ! ⁒ x - 1 2 ⁒ ( Ξ± + 1 ) ⁒ e 1 2 ⁒ x ⁒ M n + 1 2 ⁒ ( Ξ± + 1 ) , 1 2 ⁒ Ξ± ⁑ ( x ) superscript 1 𝑛 𝑛 Kummer-confluent-hypergeometric-U 𝑛 𝛼 1 π‘₯ Pochhammer 𝛼 1 𝑛 𝑛 superscript π‘₯ 1 2 𝛼 1 superscript 𝑒 1 2 π‘₯ Whittaker-confluent-hypergeometric-M 𝑛 1 2 𝛼 1 1 2 𝛼 π‘₯ {\displaystyle{\displaystyle\frac{(-1)^{n}}{n!}U\left(-n,\alpha+1,x\right)=% \frac{{\left(\alpha+1\right)_{n}}}{n!}x^{-\frac{1}{2}(\alpha+1)}e^{\frac{1}{2}% x}M_{n+\frac{1}{2}(\alpha+1),\frac{1}{2}\alpha}\left(x\right)}} ((- 1)^(n))/(factorial(n))*KummerU(- n, alpha + 1, x)=(pochhammer(alpha + 1, n))/(factorial(n))*(x)^(-(1)/(2)*(alpha + 1))* exp((1)/(2)*x)*WhittakerM(n +(1)/(2)*(alpha + 1), (1)/(2)*alpha, x) Divide[(- 1)^(n),(n)!]*HypergeometricU[- n, \[Alpha]+ 1, x]=Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*(x)^(-Divide[1,2]*(\[Alpha]+ 1))* Exp[Divide[1,2]*x]*WhittakerM[n +Divide[1,2]*(\[Alpha]+ 1), Divide[1,2]*\[Alpha], x] Failure Failure Skip Successful
18.11.E2 ( Ξ± + 1 ) n n ! ⁒ x - 1 2 ⁒ ( Ξ± + 1 ) ⁒ e 1 2 ⁒ x ⁒ M n + 1 2 ⁒ ( Ξ± + 1 ) , 1 2 ⁒ Ξ± ⁑ ( x ) = ( - 1 ) n n ! ⁒ x - 1 2 ⁒ ( Ξ± + 1 ) ⁒ e 1 2 ⁒ x ⁒ W n + 1 2 ⁒ ( Ξ± + 1 ) , 1 2 ⁒ Ξ± ⁑ ( x ) Pochhammer 𝛼 1 𝑛 𝑛 superscript π‘₯ 1 2 𝛼 1 superscript 𝑒 1 2 π‘₯ Whittaker-confluent-hypergeometric-M 𝑛 1 2 𝛼 1 1 2 𝛼 π‘₯ superscript 1 𝑛 𝑛 superscript π‘₯ 1 2 𝛼 1 superscript 𝑒 1 2 π‘₯ Whittaker-confluent-hypergeometric-W 𝑛 1 2 𝛼 1 1 2 𝛼 π‘₯ {\displaystyle{\displaystyle\frac{{\left(\alpha+1\right)_{n}}}{n!}x^{-\frac{1}% {2}(\alpha+1)}e^{\frac{1}{2}x}M_{n+\frac{1}{2}(\alpha+1),\frac{1}{2}\alpha}% \left(x\right)=\frac{(-1)^{n}}{n!}x^{-\frac{1}{2}(\alpha+1)}e^{\frac{1}{2}x}W_% {n+\frac{1}{2}(\alpha+1),\frac{1}{2}\alpha}\left(x\right)}} (pochhammer(alpha + 1, n))/(factorial(n))*(x)^(-(1)/(2)*(alpha + 1))* exp((1)/(2)*x)*WhittakerM(n +(1)/(2)*(alpha + 1), (1)/(2)*alpha, x)=((- 1)^(n))/(factorial(n))*(x)^(-(1)/(2)*(alpha + 1))* exp((1)/(2)*x)*WhittakerW(n +(1)/(2)*(alpha + 1), (1)/(2)*alpha, x) Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*(x)^(-Divide[1,2]*(\[Alpha]+ 1))* Exp[Divide[1,2]*x]*WhittakerM[n +Divide[1,2]*(\[Alpha]+ 1), Divide[1,2]*\[Alpha], x]=Divide[(- 1)^(n),(n)!]*(x)^(-Divide[1,2]*(\[Alpha]+ 1))* Exp[Divide[1,2]*x]*WhittakerW[n +Divide[1,2]*(\[Alpha]+ 1), Divide[1,2]*\[Alpha], x] Failure Failure Skip Successful
18.11.E3 H n ⁑ ( x ) = 2 n ⁒ U ⁑ ( - 1 2 ⁒ n , 1 2 , x 2 ) Hermite-polynomial-H 𝑛 π‘₯ superscript 2 𝑛 Kummer-confluent-hypergeometric-U 1 2 𝑛 1 2 superscript π‘₯ 2 {\displaystyle{\displaystyle H_{n}\left(x\right)=2^{n}U\left(-\tfrac{1}{2}n,% \tfrac{1}{2},x^{2}\right)}} HermiteH(n, x)= (2)^(n)* KummerU(-(1)/(2)*n, (1)/(2), (x)^(2)) HermiteH[n, x]= (2)^(n)* HypergeometricU[-Divide[1,2]*n, Divide[1,2], (x)^(2)] Failure Failure Successful Successful
18.11.E3 2 n ⁒ U ⁑ ( - 1 2 ⁒ n , 1 2 , x 2 ) = 2 n ⁒ x ⁒ U ⁑ ( - 1 2 ⁒ n + 1 2 , 3 2 , x 2 ) superscript 2 𝑛 Kummer-confluent-hypergeometric-U 1 2 𝑛 1 2 superscript π‘₯ 2 superscript 2 𝑛 π‘₯ Kummer-confluent-hypergeometric-U 1 2 𝑛 1 2 3 2 superscript π‘₯ 2 {\displaystyle{\displaystyle 2^{n}U\left(-\tfrac{1}{2}n,\tfrac{1}{2},x^{2}% \right)=2^{n}xU\left(-\tfrac{1}{2}n+\tfrac{1}{2},\tfrac{3}{2},x^{2}\right)}} (2)^(n)* KummerU(-(1)/(2)*n, (1)/(2), (x)^(2))= (2)^(n)* x*KummerU(-(1)/(2)*n +(1)/(2), (3)/(2), (x)^(2)) (2)^(n)* HypergeometricU[-Divide[1,2]*n, Divide[1,2], (x)^(2)]= (2)^(n)* x*HypergeometricU[-Divide[1,2]*n +Divide[1,2], Divide[3,2], (x)^(2)] Failure Failure Successful Successful
18.11.E3 2 n ⁒ x ⁒ U ⁑ ( - 1 2 ⁒ n + 1 2 , 3 2 , x 2 ) = 2 1 2 ⁒ n ⁒ e 1 2 ⁒ x 2 ⁒ U ⁑ ( - n - 1 2 , 2 1 2 ⁒ x ) superscript 2 𝑛 π‘₯ Kummer-confluent-hypergeometric-U 1 2 𝑛 1 2 3 2 superscript π‘₯ 2 superscript 2 1 2 𝑛 superscript 𝑒 1 2 superscript π‘₯ 2 parabolic-U 𝑛 1 2 superscript 2 1 2 π‘₯ {\displaystyle{\displaystyle 2^{n}xU\left(-\tfrac{1}{2}n+\tfrac{1}{2},\tfrac{3% }{2},x^{2}\right)=2^{\frac{1}{2}n}e^{\frac{1}{2}x^{2}}U\left(-n-\tfrac{1}{2},2% ^{\frac{1}{2}}x\right)}} (2)^(n)* x*KummerU(-(1)/(2)*n +(1)/(2), (3)/(2), (x)^(2))= (2)^((1)/(2)*n)* exp((1)/(2)*(x)^(2))*CylinderU(- n -(1)/(2), (2)^((1)/(2))* x) (2)^(n)* x*HypergeometricU[-Divide[1,2]*n +Divide[1,2], Divide[3,2], (x)^(2)]= (2)^(Divide[1,2]*n)* Exp[Divide[1,2]*(x)^(2)]*ParabolicCylinderD[-- n -Divide[1,2] - 1/2, (2)^(Divide[1,2])* x] Failure Failure Skip Successful
18.11.E4 2 1 2 ⁒ n ⁒ U ⁑ ( - 1 2 ⁒ n , 1 2 , 1 2 ⁒ x 2 ) = 2 1 2 ⁒ ( n - 1 ) ⁒ x ⁒ U ⁑ ( - 1 2 ⁒ n + 1 2 , 3 2 , 1 2 ⁒ x 2 ) superscript 2 1 2 𝑛 Kummer-confluent-hypergeometric-U 1 2 𝑛 1 2 1 2 superscript π‘₯ 2 superscript 2 1 2 𝑛 1 π‘₯ Kummer-confluent-hypergeometric-U 1 2 𝑛 1 2 3 2 1 2 superscript π‘₯ 2 {\displaystyle{\displaystyle 2^{\frac{1}{2}n}U\left(-\tfrac{1}{2}n,\tfrac{1}{2% },\tfrac{1}{2}x^{2}\right)=2^{\frac{1}{2}(n-1)}xU\left(-\tfrac{1}{2}n+\tfrac{1% }{2},\tfrac{3}{2},\tfrac{1}{2}x^{2}\right)}} (2)^((1)/(2)*n)* KummerU(-(1)/(2)*n, (1)/(2), (1)/(2)*(x)^(2))= (2)^((1)/(2)*(n - 1))* x*KummerU(-(1)/(2)*n +(1)/(2), (3)/(2), (1)/(2)*(x)^(2)) (2)^(Divide[1,2]*n)* HypergeometricU[-Divide[1,2]*n, Divide[1,2], Divide[1,2]*(x)^(2)]= (2)^(Divide[1,2]*(n - 1))* x*HypergeometricU[-Divide[1,2]*n +Divide[1,2], Divide[3,2], Divide[1,2]*(x)^(2)] Failure Failure Successful Successful
18.11.E4 2 1 2 ⁒ ( n - 1 ) ⁒ x ⁒ U ⁑ ( - 1 2 ⁒ n + 1 2 , 3 2 , 1 2 ⁒ x 2 ) = e 1 4 ⁒ x 2 ⁒ U ⁑ ( - n - 1 2 , x ) superscript 2 1 2 𝑛 1 π‘₯ Kummer-confluent-hypergeometric-U 1 2 𝑛 1 2 3 2 1 2 superscript π‘₯ 2 superscript 𝑒 1 4 superscript π‘₯ 2 parabolic-U 𝑛 1 2 π‘₯ {\displaystyle{\displaystyle 2^{\frac{1}{2}(n-1)}xU\left(-\tfrac{1}{2}n+\tfrac% {1}{2},\tfrac{3}{2},\tfrac{1}{2}x^{2}\right)=e^{\tfrac{1}{4}x^{2}}U\left(-n-% \tfrac{1}{2},x\right)}} (2)^((1)/(2)*(n - 1))* x*KummerU(-(1)/(2)*n +(1)/(2), (3)/(2), (1)/(2)*(x)^(2))= exp((1)/(4)*(x)^(2))*CylinderU(- n -(1)/(2), x) (2)^(Divide[1,2]*(n - 1))* x*HypergeometricU[-Divide[1,2]*n +Divide[1,2], Divide[3,2], Divide[1,2]*(x)^(2)]= Exp[Divide[1,4]*(x)^(2)]*ParabolicCylinderD[-- n -Divide[1,2] - 1/2, x] Failure Failure Skip Successful
18.11.E5 lim n β†’ ∞ ⁑ 1 n Ξ± ⁒ P n ( Ξ± , Ξ² ) ⁑ ( 1 - z 2 2 ⁒ n 2 ) = lim n β†’ ∞ ⁑ 1 n Ξ± ⁒ P n ( Ξ± , Ξ² ) ⁑ ( cos ⁑ z n ) subscript β†’ 𝑛 1 superscript 𝑛 𝛼 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 superscript 𝑧 2 2 superscript 𝑛 2 subscript β†’ 𝑛 1 superscript 𝑛 𝛼 Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑧 𝑛 {\displaystyle{\displaystyle\lim_{n\to\infty}\frac{1}{n^{\alpha}}P^{(\alpha,% \beta)}_{n}\left(1-\frac{z^{2}}{2n^{2}}\right)=\lim_{n\to\infty}\frac{1}{n^{% \alpha}}P^{(\alpha,\beta)}_{n}\left(\cos\frac{z}{n}\right)}} limit((1)/((n)^(alpha))*JacobiP(n, alpha, beta, 1 -((z)^(2))/(2*(n)^(2))), n = infinity)= limit((1)/((n)^(alpha))*JacobiP(n, alpha, beta, cos((z)/(n))), n = infinity) Limit[Divide[1,(n)^(\[Alpha])]*JacobiP[n, \[Alpha], \[Beta], 1 -Divide[(z)^(2),2*(n)^(2)]], n -> Infinity]= Limit[Divide[1,(n)^(\[Alpha])]*JacobiP[n, \[Alpha], \[Beta], Cos[Divide[z,n]]], n -> Infinity] Failure Failure Skip
Fail
Complex[0.0, 2.8284271247461903] <- {Rule[Limit[Times[Power[n, Times[-1, Ξ±]], JacobiP[n, Ξ±, Ξ², Plus[1, Times[Rational[-1, 2], Power[n, -2], Power[z, 2]]]]], Rule[n, DirectedInfinity[1]]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Limit[Times[Power[n, Times[-1, Ξ±]], JacobiP[n, Ξ±, Ξ², Cos[Times[Power[n, -1], z]]]], Rule[n, DirectedInfinity[1]]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[Limit[Times[Power[n, Times[-1, Ξ±]], JacobiP[n, Ξ±, Ξ², Plus[1, Times[Rational[-1, 2], Power[n, -2], Power[z, 2]]]]], Rule[n, DirectedInfinity[1]]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Limit[Times[Power[n, Times[-1, Ξ±]], JacobiP[n, Ξ±, Ξ², Cos[Times[Power[n, -1], z]]]], Rule[n, DirectedInfinity[1]]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
2.8284271247461903 <- {Rule[Limit[Times[Power[n, Times[-1, Ξ±]], JacobiP[n, Ξ±, Ξ², Plus[1, Times[Rational[-1, 2], Power[n, -2], Power[z, 2]]]]], Rule[n, DirectedInfinity[1]]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Limit[Times[Power[n, Times[-1, Ξ±]], JacobiP[n, Ξ±, Ξ², Cos[Times[Power[n, -1], z]]]], Rule[n, DirectedInfinity[1]]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -2.8284271247461903] <- {Rule[Limit[Times[Power[n, Times[-1, Ξ±]], JacobiP[n, Ξ±, Ξ², Plus[1, Times[Rational[-1, 2], Power[n, -2], Power[z, 2]]]]], Rule[n, DirectedInfinity[1]]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Limit[Times[Power[n, Times[-1, Ξ±]], JacobiP[n, Ξ±, Ξ², Cos[Times[Power[n, -1], z]]]], Rule[n, DirectedInfinity[1]]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
18.11.E5 lim n β†’ ∞ ⁑ 1 n Ξ± ⁒ P n ( Ξ± , Ξ² ) ⁑ ( cos ⁑ z n ) = 2 Ξ± z Ξ± ⁒ J Ξ± ⁑ ( z ) subscript β†’ 𝑛 1 superscript 𝑛 𝛼 Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑧 𝑛 superscript 2 𝛼 superscript 𝑧 𝛼 Bessel-J 𝛼 𝑧 {\displaystyle{\displaystyle\lim_{n\to\infty}\frac{1}{n^{\alpha}}P^{(\alpha,% \beta)}_{n}\left(\cos\frac{z}{n}\right)=\frac{2^{\alpha}}{z^{\alpha}}J_{\alpha% }\left(z\right)}} limit((1)/((n)^(alpha))*JacobiP(n, alpha, beta, cos((z)/(n))), n = infinity)=((2)^(alpha))/((z)^(alpha))*BesselJ(alpha, z) Limit[Divide[1,(n)^(\[Alpha])]*JacobiP[n, \[Alpha], \[Beta], Cos[Divide[z,n]]], n -> Infinity]=Divide[(2)^(\[Alpha]),(z)^(\[Alpha])]*BesselJ[\[Alpha], z] Failure Failure Skip Skip
18.11.E7 lim n β†’ ∞ ⁑ ( - 1 ) n ⁒ n 1 2 2 2 ⁒ n ⁒ n ! ⁒ H 2 ⁒ n ⁑ ( z 2 ⁒ n 1 2 ) = 1 Ο€ 1 2 ⁒ cos ⁑ z subscript β†’ 𝑛 superscript 1 𝑛 superscript 𝑛 1 2 superscript 2 2 𝑛 𝑛 Hermite-polynomial-H 2 𝑛 𝑧 2 superscript 𝑛 1 2 1 superscript πœ‹ 1 2 𝑧 {\displaystyle{\displaystyle\lim_{n\to\infty}\frac{(-1)^{n}n^{\frac{1}{2}}}{2^% {2n}n!}H_{2n}\left(\frac{z}{2n^{\frac{1}{2}}}\right)=\frac{1}{\pi^{\frac{1}{2}% }}\cos z}} limit(((- 1)^(n)* (n)^((1)/(2)))/((2)^(2*n)* factorial(n))*HermiteH(2*n, (z)/(2*(n)^((1)/(2)))), n = infinity)=(1)/((Pi)^((1)/(2)))*cos(z) Limit[Divide[(- 1)^(n)* (n)^(Divide[1,2]),(2)^(2*n)* (n)!]*HermiteH[2*n, Divide[z,2*(n)^(Divide[1,2])]], n -> Infinity]=Divide[1,(Pi)^(Divide[1,2])]*Cos[z] Failure Failure Skip -
18.11.E8 lim n β†’ ∞ ⁑ ( - 1 ) n 2 2 ⁒ n ⁒ n ! ⁒ H 2 ⁒ n + 1 ⁑ ( z 2 ⁒ n 1 2 ) = 2 Ο€ 1 2 ⁒ sin ⁑ z subscript β†’ 𝑛 superscript 1 𝑛 superscript 2 2 𝑛 𝑛 Hermite-polynomial-H 2 𝑛 1 𝑧 2 superscript 𝑛 1 2 2 superscript πœ‹ 1 2 𝑧 {\displaystyle{\displaystyle\lim_{n\to\infty}\frac{(-1)^{n}}{2^{2n}n!}H_{2n+1}% \left(\frac{z}{2n^{\frac{1}{2}}}\right)=\frac{2}{\pi^{\frac{1}{2}}}\sin z}} limit(((- 1)^(n))/((2)^(2*n)* factorial(n))*HermiteH(2*n + 1, (z)/(2*(n)^((1)/(2)))), n = infinity)=(2)/((Pi)^((1)/(2)))*sin(z) Limit[Divide[(- 1)^(n),(2)^(2*n)* (n)!]*HermiteH[2*n + 1, Divide[z,2*(n)^(Divide[1,2])]], n -> Infinity]=Divide[2,(Pi)^(Divide[1,2])]*Sin[z] Failure Failure Skip Skip
18.12.E1 2 Ξ± + Ξ² R ⁒ ( 1 + R - z ) Ξ± ⁒ ( 1 + R + z ) Ξ² = βˆ‘ n = 0 ∞ P n ( Ξ± , Ξ² ) ⁑ ( x ) ⁒ z n superscript 2 𝛼 𝛽 𝑅 superscript 1 𝑅 𝑧 𝛼 superscript 1 𝑅 𝑧 𝛽 superscript subscript 𝑛 0 Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{2^{\alpha+\beta}}{R(1+R-z)^{\alpha}(1+R+z)^{% \beta}}=\sum_{n=0}^{\infty}P^{(\alpha,\beta)}_{n}\left(x\right)z^{n}}} ((2)^(alpha + beta))/(R*(1 + R - z)^(alpha)*(1 + R + z)^(beta))= sum(JacobiP(n, alpha, beta, x)*(z)^(n), n = 0..infinity) Divide[(2)^(\[Alpha]+ \[Beta]),R*(1 + R - z)^(\[Alpha])*(1 + R + z)^(\[Beta])]= Sum[JacobiP[n, \[Alpha], \[Beta], x]*(z)^(n), {n, 0, Infinity}] Failure Failure Skip Skip
18.12.E3 ( 1 + z ) - Ξ± - Ξ² - 1 ⁒ F 1 2 ⁑ ( 1 2 ⁒ ( Ξ± + Ξ² + 1 ) , 1 2 ⁒ ( Ξ± + Ξ² + 2 ) Ξ² + 1 ; 2 ⁒ ( x + 1 ) ⁒ z ( 1 + z ) 2 ) = βˆ‘ n = 0 ∞ ( Ξ± + Ξ² + 1 ) n ( Ξ² + 1 ) n ⁒ P n ( Ξ± , Ξ² ) ⁑ ( x ) ⁒ z n superscript 1 𝑧 𝛼 𝛽 1 Gauss-hypergeometric-F-as-2F1 1 2 𝛼 𝛽 1 1 2 𝛼 𝛽 2 𝛽 1 2 π‘₯ 1 𝑧 superscript 1 𝑧 2 superscript subscript 𝑛 0 Pochhammer 𝛼 𝛽 1 𝑛 Pochhammer 𝛽 1 𝑛 Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ superscript 𝑧 𝑛 {\displaystyle{\displaystyle(1+z)^{-\alpha-\beta-1}\*{{}_{2}F_{1}}\left({% \tfrac{1}{2}(\alpha+\beta+1),\tfrac{1}{2}(\alpha+\beta+2)\atop\beta+1};\frac{2% (x+1)z}{(1+z)^{2}}\right)=\sum_{n=0}^{\infty}\frac{{\left(\alpha+\beta+1\right% )_{n}}}{{\left(\beta+1\right)_{n}}}P^{(\alpha,\beta)}_{n}\left(x\right)z^{n}}} (1 + z)^(- alpha - beta - 1)* hypergeom([(1)/(2)*(alpha + beta + 1),(1)/(2)*(alpha + beta + 2)], [beta + 1], (2*(x + 1)* z)/((1 + z)^(2)))= sum((pochhammer(alpha + beta + 1, n))/(pochhammer(beta + 1, n))*JacobiP(n, alpha, beta, x)*(z)^(n), n = 0..infinity) (1 + z)^(- \[Alpha]- \[Beta]- 1)* HypergeometricPFQ[{Divide[1,2]*(\[Alpha]+ \[Beta]+ 1),Divide[1,2]*(\[Alpha]+ \[Beta]+ 2)}, {\[Beta]+ 1}, Divide[2*(x + 1)* z,(1 + z)^(2)]]= Sum[Divide[Pochhammer[\[Alpha]+ \[Beta]+ 1, n],Pochhammer[\[Beta]+ 1, n]]*JacobiP[n, \[Alpha], \[Beta], x]*(z)^(n), {n, 0, Infinity}] Failure Successful Skip -
18.12.E4 ( 1 - 2 ⁒ x ⁒ z + z 2 ) - Ξ» = βˆ‘ n = 0 ∞ C n ( Ξ» ) ⁑ ( x ) ⁒ z n superscript 1 2 π‘₯ 𝑧 superscript 𝑧 2 πœ† superscript subscript 𝑛 0 ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ superscript 𝑧 𝑛 {\displaystyle{\displaystyle(1-2xz+z^{2})^{-\lambda}=\sum_{n=0}^{\infty}C^{(% \lambda)}_{n}\left(x\right)z^{n}}} (1 - 2*x*z + (z)^(2))^(- lambda)= sum(GegenbauerC(n, lambda, x)*(z)^(n), n = 0..infinity) (1 - 2*x*z + (z)^(2))^(- \[Lambda])= Sum[GegenbauerC[n, \[Lambda], x]*(z)^(n), {n, 0, Infinity}] Failure Successful Skip -
18.12.E4 βˆ‘ n = 0 ∞ C n ( Ξ» ) ⁑ ( x ) ⁒ z n = βˆ‘ n = 0 ∞ ( 2 ⁒ Ξ» ) n ( Ξ» + 1 2 ) n ⁒ P n ( Ξ» - 1 2 , Ξ» - 1 2 ) ⁑ ( x ) ⁒ z n superscript subscript 𝑛 0 ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ superscript 𝑧 𝑛 superscript subscript 𝑛 0 Pochhammer 2 πœ† 𝑛 Pochhammer πœ† 1 2 𝑛 Jacobi-polynomial-P πœ† 1 2 πœ† 1 2 𝑛 π‘₯ superscript 𝑧 𝑛 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}C^{(\lambda)}_{n}\left(x\right)% z^{n}=\sum_{n=0}^{\infty}\frac{{\left(2\lambda\right)_{n}}}{{\left(\lambda+% \tfrac{1}{2}\right)_{n}}}P^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}_{n}% \left(x\right)z^{n}}} sum(GegenbauerC(n, lambda, x)*(z)^(n), n = 0..infinity)= sum((pochhammer(2*lambda, n))/(pochhammer(lambda +(1)/(2), n))*JacobiP(n, lambda -(1)/(2), lambda -(1)/(2), x)*(z)^(n), n = 0..infinity) Sum[GegenbauerC[n, \[Lambda], x]*(z)^(n), {n, 0, Infinity}]= Sum[Divide[Pochhammer[2*\[Lambda], n],Pochhammer[\[Lambda]+Divide[1,2], n]]*JacobiP[n, \[Lambda]-Divide[1,2], \[Lambda]-Divide[1,2], x]*(z)^(n), {n, 0, Infinity}] Successful Failure - Skip
18.12.E5 1 - x ⁒ z ( 1 - 2 ⁒ x ⁒ z + z 2 ) Ξ» + 1 = βˆ‘ n = 0 ∞ n + 2 ⁒ Ξ» 2 ⁒ Ξ» ⁒ C n ( Ξ» ) ⁑ ( x ) ⁒ z n 1 π‘₯ 𝑧 superscript 1 2 π‘₯ 𝑧 superscript 𝑧 2 πœ† 1 superscript subscript 𝑛 0 𝑛 2 πœ† 2 πœ† ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{1-xz}{(1-2xz+z^{2})^{\lambda+1}}=\sum_{n=0}^% {\infty}\frac{n+2\lambda}{2\lambda}C^{(\lambda)}_{n}\left(x\right)z^{n}}} (1 - x*z)/((1 - 2*x*z + (z)^(2))^(lambda + 1))= sum((n + 2*lambda)/(2*lambda)*GegenbauerC(n, lambda, x)*(z)^(n), n = 0..infinity) Divide[1 - x*z,(1 - 2*x*z + (z)^(2))^(\[Lambda]+ 1)]= Sum[Divide[n + 2*\[Lambda],2*\[Lambda]]*GegenbauerC[n, \[Lambda], x]*(z)^(n), {n, 0, Infinity}] Failure Failure Skip Skip
18.12.E6 Ξ“ ⁑ ( Ξ» + 1 2 ) ⁒ e z ⁒ cos ⁑ ΞΈ ⁒ ( 1 2 ⁒ z ⁒ sin ⁑ ΞΈ ) 1 2 - Ξ» ⁒ J Ξ» - 1 2 ⁑ ( z ⁒ sin ⁑ ΞΈ ) = βˆ‘ n = 0 ∞ C n ( Ξ» ) ⁑ ( cos ⁑ ΞΈ ) ( 2 ⁒ Ξ» ) n ⁒ z n Euler-Gamma πœ† 1 2 superscript 𝑒 𝑧 πœƒ superscript 1 2 𝑧 πœƒ 1 2 πœ† Bessel-J πœ† 1 2 𝑧 πœƒ superscript subscript 𝑛 0 ultraspherical-Gegenbauer-polynomial πœ† 𝑛 πœƒ Pochhammer 2 πœ† 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\Gamma\left(\lambda+\tfrac{1}{2}\right)e^{z\cos% \theta}(\tfrac{1}{2}z\sin\theta)^{\frac{1}{2}-\lambda}J_{\lambda-\frac{1}{2}}% \left(z\sin\theta\right)=\sum_{n=0}^{\infty}\frac{C^{(\lambda)}_{n}\left(\cos% \theta\right)}{{\left(2\lambda\right)_{n}}}z^{n}}} GAMMA(lambda +(1)/(2))*exp(z*cos(theta))*((1)/(2)*z*sin(theta))^((1)/(2)- lambda)* BesselJ(lambda -(1)/(2), z*sin(theta))= sum((GegenbauerC(n, lambda, cos(theta)))/(pochhammer(2*lambda, n))*(z)^(n), n = 0..infinity) Gamma[\[Lambda]+Divide[1,2]]*Exp[z*Cos[\[Theta]]]*(Divide[1,2]*z*Sin[\[Theta]])^(Divide[1,2]- \[Lambda])* BesselJ[\[Lambda]-Divide[1,2], z*Sin[\[Theta]]]= Sum[Divide[GegenbauerC[n, \[Lambda], Cos[\[Theta]]],Pochhammer[2*\[Lambda], n]]*(z)^(n), {n, 0, Infinity}] Failure Successful Skip -
18.12.E7 1 - z 2 1 - 2 ⁒ x ⁒ z + z 2 = 1 + 2 ⁒ βˆ‘ n = 1 ∞ T n ⁑ ( x ) ⁒ z n 1 superscript 𝑧 2 1 2 π‘₯ 𝑧 superscript 𝑧 2 1 2 superscript subscript 𝑛 1 Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{1-z^{2}}{1-2xz+z^{2}}=1+2\sum_{n=1}^{\infty}% T_{n}\left(x\right)z^{n}}} (1 - (z)^(2))/(1 - 2*x*z + (z)^(2))= 1 + 2*sum(ChebyshevT(n, x)*(z)^(n), n = 1..infinity) Divide[1 - (z)^(2),1 - 2*x*z + (z)^(2)]= 1 + 2*Sum[ChebyshevT[n, x]*(z)^(n), {n, 1, Infinity}] Failure Successful Skip -
18.12.E8 1 - x ⁒ z 1 - 2 ⁒ x ⁒ z + z 2 = βˆ‘ n = 0 ∞ T n ⁑ ( x ) ⁒ z n 1 π‘₯ 𝑧 1 2 π‘₯ 𝑧 superscript 𝑧 2 superscript subscript 𝑛 0 Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{1-xz}{1-2xz+z^{2}}=\sum_{n=0}^{\infty}T_{n}% \left(x\right)z^{n}}} (1 - x*z)/(1 - 2*x*z + (z)^(2))= sum(ChebyshevT(n, x)*(z)^(n), n = 0..infinity) Divide[1 - x*z,1 - 2*x*z + (z)^(2)]= Sum[ChebyshevT[n, x]*(z)^(n), {n, 0, Infinity}] Failure Successful Skip -
18.12.E9 - ln ⁑ ( 1 - 2 ⁒ x ⁒ z + z 2 ) = 2 ⁒ βˆ‘ n = 1 ∞ T n ⁑ ( x ) n ⁒ z n 1 2 π‘₯ 𝑧 superscript 𝑧 2 2 superscript subscript 𝑛 1 Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle-\ln\left(1-2xz+z^{2}\right)=2\sum_{n=1}^{\infty}% \frac{T_{n}\left(x\right)}{n}z^{n}}} - ln(1 - 2*x*z + (z)^(2))= 2*sum((ChebyshevT(n, x))/(n)*(z)^(n), n = 1..infinity) - Log[1 - 2*x*z + (z)^(2)]= 2*Sum[Divide[ChebyshevT[n, x],n]*(z)^(n), {n, 1, Infinity}] Failure Failure Skip Successful
18.12.E10 1 1 - 2 ⁒ x ⁒ z + z 2 = βˆ‘ n = 0 ∞ U n ⁑ ( x ) ⁒ z n 1 1 2 π‘₯ 𝑧 superscript 𝑧 2 superscript subscript 𝑛 0 Chebyshev-polynomial-second-kind-U 𝑛 π‘₯ superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{1}{1-2xz+z^{2}}=\sum_{n=0}^{\infty}U_{n}% \left(x\right)z^{n}}} (1)/(1 - 2*x*z + (z)^(2))= sum(ChebyshevU(n, x)*(z)^(n), n = 0..infinity) Divide[1,1 - 2*x*z + (z)^(2)]= Sum[ChebyshevU[n, x]*(z)^(n), {n, 0, Infinity}] Failure Successful Skip -
18.12.E11 1 1 - 2 ⁒ x ⁒ z + z 2 = βˆ‘ n = 0 ∞ P n ⁑ ( x ) ⁒ z n 1 1 2 π‘₯ 𝑧 superscript 𝑧 2 superscript subscript 𝑛 0 Legendre-spherical-polynomial 𝑛 π‘₯ superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{1}{\sqrt{1-2xz+z^{2}}}=\sum_{n=0}^{\infty}P_% {n}\left(x\right)z^{n}}} (1)/(sqrt(1 - 2*x*z + (z)^(2)))= sum(LegendreP(n, x)*(z)^(n), n = 0..infinity) Divide[1,Sqrt[1 - 2*x*z + (z)^(2)]]= Sum[LegendreP[n, x]*(z)^(n), {n, 0, Infinity}] Failure Successful Skip -
18.12.E12 e x ⁒ z ⁒ J 0 ⁑ ( z ⁒ 1 - x 2 ) = βˆ‘ n = 0 ∞ P n ⁑ ( x ) n ! ⁒ z n superscript 𝑒 π‘₯ 𝑧 Bessel-J 0 𝑧 1 superscript π‘₯ 2 superscript subscript 𝑛 0 Legendre-spherical-polynomial 𝑛 π‘₯ 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle e^{xz}J_{0}\left(z\sqrt{1-x^{2}}\right)=\sum_{n=0% }^{\infty}\frac{P_{n}\left(x\right)}{n!}z^{n}}} exp(x*z)*BesselJ(0, z*sqrt(1 - (x)^(2)))= sum((LegendreP(n, x))/(factorial(n))*(z)^(n), n = 0..infinity) Exp[x*z]*BesselJ[0, z*Sqrt[1 - (x)^(2)]]= Sum[Divide[LegendreP[n, x],(n)!]*(z)^(n), {n, 0, Infinity}] Failure Successful Skip -
18.12.E15 e 2 ⁒ x ⁒ z - z 2 = βˆ‘ n = 0 ∞ H n ⁑ ( x ) n ! ⁒ z n superscript 𝑒 2 π‘₯ 𝑧 superscript 𝑧 2 superscript subscript 𝑛 0 Hermite-polynomial-H 𝑛 π‘₯ 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle e^{2xz-z^{2}}=\sum_{n=0}^{\infty}\frac{H_{n}\left% (x\right)}{n!}z^{n}}} exp(2*x*z - (z)^(2))= sum((HermiteH(n, x))/(factorial(n))*(z)^(n), n = 0..infinity) Exp[2*x*z - (z)^(2)]= Sum[Divide[HermiteH[n, x],(n)!]*(z)^(n), {n, 0, Infinity}] Error Successful - -
18.14.E1 | P n ( Ξ± , Ξ² ) ⁑ ( x ) | ≀ P n ( Ξ± , Ξ² ) ⁑ ( 1 ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 {\displaystyle{\displaystyle|P^{(\alpha,\beta)}_{n}\left(x\right)|<=P^{(\alpha% ,\beta)}_{n}\left(1\right)}} abs(JacobiP(n, alpha, beta, x))< = JacobiP(n, alpha, beta, 1) Abs[JacobiP[n, \[Alpha], \[Beta], x]]< = JacobiP[n, \[Alpha], \[Beta], 1] Failure Failure
Fail
3.528680673 <= 1.500000000+0.*I <- {beta = 2^(1/2)+I*2^(1/2), n = 1, x = 2, alpha = 1/2}
5.595865303 <= 1.500000000+0.*I <- {beta = 2^(1/2)+I*2^(1/2), n = 1, x = 3, alpha = 1/2}
11.98055245 <= 1.875000000+0.*I <- {beta = 2^(1/2)+I*2^(1/2), n = 2, x = 2, alpha = 1/2}
29.86867781 <= 1.875000000+0.*I <- {beta = 2^(1/2)+I*2^(1/2), n = 2, x = 3, alpha = 1/2}
... skip entries to safe data
Successful
18.14.E1 P n ( Ξ± , Ξ² ) ⁑ ( 1 ) = ( Ξ± + 1 ) n n ! Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 Pochhammer 𝛼 1 𝑛 𝑛 {\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}\left(1\right)=\frac{{\left% (\alpha+1\right)_{n}}}{n!}}} JacobiP(n, alpha, beta, 1)=(pochhammer(alpha + 1, n))/(factorial(n)) JacobiP[n, \[Alpha], \[Beta], 1]=Divide[Pochhammer[\[Alpha]+ 1, n],(n)!] Successful Successful - -
18.14.E2 | P n ( Ξ± , Ξ² ) ⁑ ( x ) | ≀ | P n ( Ξ± , Ξ² ) ⁑ ( - 1 ) | = ( Ξ² + 1 ) n n ! Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 Pochhammer 𝛽 1 𝑛 𝑛 {\displaystyle{\displaystyle|P^{(\alpha,\beta)}_{n}\left(x\right)|<=|P^{(% \alpha,\beta)}_{n}\left(-1\right)|=\frac{{\left(\beta+1\right)_{n}}}{n!}}} abs(JacobiP(n, alpha, beta, x))< =abs(JacobiP(n, alpha, beta, - 1))=(pochhammer(beta + 1, n))/(factorial(n)) Abs[JacobiP[n, \[Alpha], \[Beta], x]]< =Abs[JacobiP[n, \[Alpha], \[Beta], - 1]]=Divide[Pochhammer[\[Beta]+ 1, n],(n)!] Failure Failure Error
Fail
1.5 <- {Rule[n, 1], Rule[Ξ², Rational[1, 2]]}
1.875 <- {Rule[n, 2], Rule[Ξ², Rational[1, 2]]}
2.1875 <- {Rule[n, 3], Rule[Ξ², Rational[1, 2]]}
18.14.E4 | C n ( Ξ» ) ⁑ ( x ) | ≀ C n ( Ξ» ) ⁑ ( 1 ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ ultraspherical-Gegenbauer-polynomial πœ† 𝑛 1 {\displaystyle{\displaystyle|C^{(\lambda)}_{n}\left(x\right)|<=C^{(\lambda)}_{% n}\left(1\right)}} abs(GegenbauerC(n, lambda, x))< = GegenbauerC(n, lambda, 1) Abs[GegenbauerC[n, \[Lambda], x]]< = GegenbauerC[n, \[Lambda], 1] Failure Failure
Fail
2.000000000 <= 1.000000000 <- {n = 1, x = 2, lambda = 1/2}
3.000000000 <= 1.000000000 <- {n = 1, x = 3, lambda = 1/2}
5.500000000 <= 1.000000000 <- {n = 2, x = 2, lambda = 1/2}
13.00000000 <= 1.000000000 <- {n = 2, x = 3, lambda = 1/2}
... skip entries to safe data
Successful
18.14.E4 C n ( Ξ» ) ⁑ ( 1 ) = ( 2 ⁒ Ξ» ) n n ! ultraspherical-Gegenbauer-polynomial πœ† 𝑛 1 Pochhammer 2 πœ† 𝑛 𝑛 {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(1\right)=\frac{{\left(2% \lambda\right)_{n}}}{n!}}} GegenbauerC(n, lambda, 1)=(pochhammer(2*lambda, n))/(factorial(n)) GegenbauerC[n, \[Lambda], 1]=Divide[Pochhammer[2*\[Lambda], n],(n)!] Successful Successful - -
18.14.E5 | C 2 ⁒ m ( Ξ» ) ⁑ ( x ) | ≀ | C 2 ⁒ m ( Ξ» ) ⁑ ( 0 ) | = | ( Ξ» ) m m ! | ultraspherical-Gegenbauer-polynomial πœ† 2 π‘š π‘₯ ultraspherical-Gegenbauer-polynomial πœ† 2 π‘š 0 Pochhammer πœ† π‘š π‘š {\displaystyle{\displaystyle|C^{(\lambda)}_{2m}\left(x\right)|<=|C^{(\lambda)}% _{2m}\left(0\right)|=\left|\frac{{\left(\lambda\right)_{m}}}{m!}\right|}} abs(GegenbauerC(2*m, lambda, x))< =abs(GegenbauerC(2*m, lambda, 0))=abs((pochhammer(lambda, m))/(factorial(m))) Abs[GegenbauerC[2*m, \[Lambda], x]]< =Abs[GegenbauerC[2*m, \[Lambda], 0]]=Abs[Divide[Pochhammer[\[Lambda], m],(m)!]] Failure Failure Error Successful
18.14.E6 | C 2 ⁒ m + 1 ( Ξ» ) ⁑ ( x ) | < - 2 ⁒ ( Ξ» ) m + 1 ( ( 2 ⁒ m + 1 ) ⁒ ( 2 ⁒ Ξ» + 2 ⁒ m + 1 ) ) 1 2 ⁒ m ! ultraspherical-Gegenbauer-polynomial πœ† 2 π‘š 1 π‘₯ 2 Pochhammer πœ† π‘š 1 superscript 2 π‘š 1 2 πœ† 2 π‘š 1 1 2 π‘š {\displaystyle{\displaystyle|C^{(\lambda)}_{2m+1}\left(x\right)|<\frac{-2{% \left(\lambda\right)_{m+1}}}{\left((2m+1)(2\lambda+2m+1)\right)^{\frac{1}{2}}m% !}}} abs(GegenbauerC(2*m + 1, lambda, x))<(- 2*pochhammer(lambda, m + 1))/(((2*m + 1)*(2*lambda + 2*m + 1))^((1)/(2))* factorial(m)) Abs[GegenbauerC[2*m + 1, \[Lambda], x]]<Divide[- 2*Pochhammer[\[Lambda], m + 1],((2*m + 1)*(2*\[Lambda]+ 2*m + 1))^(Divide[1,2])* (m)!] Failure Failure Skip Successful
18.14.E9 1 ( 2 n ⁒ n ! ) 1 2 ⁒ e - 1 2 ⁒ x 2 ⁒ | H n ⁑ ( x ) | ≀ 1 1 superscript superscript 2 𝑛 𝑛 1 2 superscript 𝑒 1 2 superscript π‘₯ 2 Hermite-polynomial-H 𝑛 π‘₯ 1 {\displaystyle{\displaystyle\frac{1}{(2^{n}n!)^{\frac{1}{2}}}e^{-\frac{1}{2}x^% {2}}|H_{n}\left(x\right)|<=1}} (1)/(((2)^(n)* factorial(n))^((1)/(2)))*exp(-(1)/(2)*(x)^(2))*abs(HermiteH(n, x))< = 1 Divide[1,((2)^(n)* (n)!)^(Divide[1,2])]*Exp[-Divide[1,2]*(x)^(2)]*Abs[HermiteH[n, x]]< = 1 Failure Failure Skip Successful
18.14.E10 ( P n ⁑ ( x ) ) 2 β‰₯ P n - 1 ⁑ ( x ) ⁒ P n + 1 ⁑ ( x ) superscript Legendre-spherical-polynomial 𝑛 π‘₯ 2 Legendre-spherical-polynomial 𝑛 1 π‘₯ Legendre-spherical-polynomial 𝑛 1 π‘₯ {\displaystyle{\displaystyle(P_{n}\left(x\right))^{2}>=P_{n-1}\left(x\right)P_% {n+1}\left(x\right)}} (LegendreP(n, x))^(2)> = LegendreP(n - 1, x)*LegendreP(n + 1, x) (LegendreP[n, x])^(2)> = LegendreP[n - 1, x]*LegendreP[n + 1, x] Failure Failure Skip Successful
18.14.E13 ( H n ⁑ ( x ) ) 2 β‰₯ H n - 1 ⁑ ( x ) ⁒ H n + 1 ⁑ ( x ) superscript Hermite-polynomial-H 𝑛 π‘₯ 2 Hermite-polynomial-H 𝑛 1 π‘₯ Hermite-polynomial-H 𝑛 1 π‘₯ {\displaystyle{\displaystyle(H_{n}\left(x\right))^{2}>=H_{n-1}\left(x\right)H_% {n+1}\left(x\right)}} (HermiteH(n, x))^(2)> = HermiteH(n - 1, x)*HermiteH(n + 1, x) (HermiteH[n, x])^(2)> = HermiteH[n - 1, x]*HermiteH[n + 1, x] Failure Failure Skip Successful
18.14#Ex1 | P n ( Ξ± , Ξ² ) ⁑ ( x n , 0 ) | > | P n ( Ξ± , Ξ² ) ⁑ ( x n , 1 ) | Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 0 Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 1 {\displaystyle{\displaystyle|P^{(\alpha,\beta)}_{n}\left(x_{n,0}\right)|>|P^{(% \alpha,\beta)}_{n}\left(x_{n,1}\right)|}} abs(JacobiP(n, alpha, beta, x[n , 0]))>abs(JacobiP(n, alpha, beta, x[n , 1])) Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]]>Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]] Failure Failure Skip Successful
18.14#Ex2 | P n ( Ξ± , Ξ² ) ⁑ ( x n , n ) | > | P n ( Ξ± , Ξ² ) ⁑ ( x n , n - 1 ) | Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 𝑛 Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 𝑛 1 {\displaystyle{\displaystyle|P^{(\alpha,\beta)}_{n}\left(x_{n,n}\right)|>|P^{(% \alpha,\beta)}_{n}\left(x_{n,n-1}\right)|}} abs(JacobiP(n, alpha, beta, x[n , n]))>abs(JacobiP(n, alpha, beta, x[n , n - 1])) Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n]]]>Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - 1]]] Failure Failure Skip Successful
18.14#Ex3 | P n ( Ξ± , Ξ² ) ⁑ ( x n , 0 ) | < | P n ( Ξ± , Ξ² ) ⁑ ( x n , 1 ) | Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 0 Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 1 {\displaystyle{\displaystyle|P^{(\alpha,\beta)}_{n}\left(x_{n,0}\right)|<|P^{(% \alpha,\beta)}_{n}\left(x_{n,1}\right)|}} abs(JacobiP(n, alpha, beta, x[n , 0]))<abs(JacobiP(n, alpha, beta, x[n , 1])) Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]]<Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]] Failure Failure Skip Successful
18.14#Ex4 | P n ( Ξ± , Ξ² ) ⁑ ( x n , n ) | < | P n ( Ξ± , Ξ² ) ⁑ ( x n , n - 1 ) | Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 𝑛 Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 𝑛 1 {\displaystyle{\displaystyle|P^{(\alpha,\beta)}_{n}\left(x_{n,n}\right)|<|P^{(% \alpha,\beta)}_{n}\left(x_{n,n-1}\right)|}} abs(JacobiP(n, alpha, beta, x[n , n]))<abs(JacobiP(n, alpha, beta, x[n , n - 1])) Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n]]]<Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - 1]]] Failure Failure Skip Successful
18.14.E18 | P n ( Ξ± , Ξ² ) ⁑ ( x n , 0 ) | < | P n ( Ξ± , Ξ² ) ⁑ ( x n , 1 ) | Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 0 Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 1 {\displaystyle{\displaystyle|P^{(\alpha,\beta)}_{n}\left(x_{n,0}\right)|<|P^{(% \alpha,\beta)}_{n}\left(x_{n,1}\right)|}} abs(JacobiP(n, alpha, beta, x[n , 0]))<abs(JacobiP(n, alpha, beta, x[n , 1])) Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]]<Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]] Failure Failure Skip Successful
18.14.E19 | P n ( Ξ± , Ξ² ) ⁑ ( x n , 0 ) | > | P n ( Ξ± , Ξ² ) ⁑ ( x n , 1 ) | Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 0 Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 1 {\displaystyle{\displaystyle|P^{(\alpha,\beta)}_{n}\left(x_{n,0}\right)|>|P^{(% \alpha,\beta)}_{n}\left(x_{n,1}\right)|}} abs(JacobiP(n, alpha, beta, x[n , 0]))>abs(JacobiP(n, alpha, beta, x[n , 1])) Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 0]]]>Abs[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , 1]]] Failure Failure Skip Successful
18.14.E20 | P n ( Ξ± , Ξ² ) ⁑ ( x n , n - m ) P n ( Ξ± , Ξ² ) ⁑ ( 1 ) | > | P n + 1 ( Ξ± , Ξ² ) ⁑ ( x n + 1 , n - m + 1 ) P n + 1 ( Ξ± , Ξ² ) ⁑ ( 1 ) | Jacobi-polynomial-P 𝛼 𝛽 𝑛 subscript π‘₯ 𝑛 𝑛 π‘š Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 subscript π‘₯ 𝑛 1 𝑛 π‘š 1 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 1 {\displaystyle{\displaystyle\left|\frac{P^{(\alpha,\beta)}_{n}\left(x_{n,n-m}% \right)}{P^{(\alpha,\beta)}_{n}\left(1\right)}\right|>\left|\frac{P^{(\alpha,% \beta)}_{n+1}\left(x_{n+1,n-m+1}\right)}{P^{(\alpha,\beta)}_{n+1}\left(1\right% )}\right|}} abs((JacobiP(n, alpha, beta, x[n , n - m]))/(JacobiP(n, alpha, beta, 1)))>abs((JacobiP(n + 1, alpha, beta, x[n + 1 , n - m + 1]))/(JacobiP(n + 1, alpha, beta, 1))) Abs[Divide[JacobiP[n, \[Alpha], \[Beta], Subscript[x, n , n - m]],JacobiP[n, \[Alpha], \[Beta], 1]]]>Abs[Divide[JacobiP[n + 1, \[Alpha], \[Beta], Subscript[x, n + 1 , n - m + 1]],JacobiP[n + 1, \[Alpha], \[Beta], 1]]] Failure Failure Skip Skip
18.15.E6 ( sin ⁑ 1 2 ⁒ ΞΈ ) Ξ± + 1 2 ⁒ ( cos ⁑ 1 2 ⁒ ΞΈ ) Ξ² + 1 2 ⁒ P n ( Ξ± , Ξ² ) ⁑ ( cos ⁑ ΞΈ ) = Ξ“ ⁑ ( n + Ξ± + 1 ) 2 1 2 ⁒ ρ Ξ± ⁒ n ! ⁒ ( ΞΈ 1 2 ⁒ J Ξ± ⁑ ( ρ ⁒ ΞΈ ) ⁒ βˆ‘ m = 0 M A m ⁒ ( ΞΈ ) ρ 2 ⁒ m + ΞΈ 3 2 ⁒ J Ξ± + 1 ⁑ ( ρ ⁒ ΞΈ ) ⁒ βˆ‘ m = 0 M - 1 B m ⁒ ( ΞΈ ) ρ 2 ⁒ m + 1 + Ξ΅ M ⁒ ( ρ , ΞΈ ) ) superscript 1 2 πœƒ 𝛼 1 2 superscript 1 2 πœƒ 𝛽 1 2 Jacobi-polynomial-P 𝛼 𝛽 𝑛 πœƒ Euler-Gamma 𝑛 𝛼 1 superscript 2 1 2 superscript 𝜌 𝛼 𝑛 superscript πœƒ 1 2 Bessel-J 𝛼 𝜌 πœƒ superscript subscript π‘š 0 𝑀 subscript 𝐴 π‘š πœƒ superscript 𝜌 2 π‘š superscript πœƒ 3 2 Bessel-J 𝛼 1 𝜌 πœƒ superscript subscript π‘š 0 𝑀 1 subscript 𝐡 π‘š πœƒ superscript 𝜌 2 π‘š 1 subscript πœ€ 𝑀 𝜌 πœƒ {\displaystyle{\displaystyle(\sin\tfrac{1}{2}\theta)^{\alpha+\frac{1}{2}}(\cos% \tfrac{1}{2}\theta)^{\beta+\frac{1}{2}}P^{(\alpha,\beta)}_{n}\left(\cos\theta% \right)=\frac{\Gamma\left(n+\alpha+1\right)}{2^{\frac{1}{2}}\rho^{\alpha}n!}\*% \left(\theta^{\frac{1}{2}}J_{\alpha}\left(\rho\theta\right)\sum_{m=0}^{M}% \dfrac{A_{m}(\theta)}{\rho^{2m}}+\theta^{\frac{3}{2}}J_{\alpha+1}\left(\rho% \theta\right)\sum_{m=0}^{M-1}\dfrac{B_{m}(\theta)}{\rho^{2m+1}}+\varepsilon_{M% }(\rho,\theta)\right)}} (sin((1)/(2)*theta))^(alpha +(1)/(2))*(cos((1)/(2)*theta))^(beta +(1)/(2))* JacobiP(n, alpha, beta, cos(theta))=(GAMMA(n + alpha + 1))/((2)^((1)/(2))* (rho)^(alpha)* factorial(n))*((theta)^((1)/(2))* BesselJ(alpha, rho*theta)*sum((A[m]*(theta))/((rho)^(2*m)), m = 0..M)+ (theta)^((3)/(2))* BesselJ(alpha + 1, rho*theta)*sum((B[m]*(theta))/((rho)^(2*m + 1)), m = 0..M - 1)+ varepsilon[M]*(rho , theta)) (Sin[Divide[1,2]*\[Theta]])^(\[Alpha]+Divide[1,2])*(Cos[Divide[1,2]*\[Theta]])^(\[Beta]+Divide[1,2])* JacobiP[n, \[Alpha], \[Beta], Cos[\[Theta]]]=Divide[Gamma[n + \[Alpha]+ 1],(2)^(Divide[1,2])* (\[Rho])^(\[Alpha])* (n)!]*((\[Theta])^(Divide[1,2])* BesselJ[\[Alpha], \[Rho]*\[Theta]]*Sum[Divide[Subscript[A, m]*(\[Theta]),(\[Rho])^(2*m)], {m, 0, M}]+ (\[Theta])^(Divide[3,2])* BesselJ[\[Alpha]+ 1, \[Rho]*\[Theta]]*Sum[Divide[Subscript[B, m]*(\[Theta]),(\[Rho])^(2*m + 1)], {m, 0, M - 1}]+ Subscript[\[CurlyEpsilon], M]*(\[Rho], \[Theta])) Failure Failure Skip Error
18.15.E28 H n ⁑ ( x ) = 2 1 4 ⁒ ( ΞΌ 2 - 1 ) ⁒ e 1 2 ⁒ ΞΌ 2 ⁒ t 2 ⁒ U ⁑ ( - 1 2 ⁒ ΞΌ 2 , ΞΌ ⁒ t ⁒ 2 ) Hermite-polynomial-H 𝑛 π‘₯ superscript 2 1 4 superscript πœ‡ 2 1 superscript 𝑒 1 2 superscript πœ‡ 2 superscript 𝑑 2 parabolic-U 1 2 superscript πœ‡ 2 πœ‡ 𝑑 2 {\displaystyle{\displaystyle H_{n}\left(x\right)=2^{\frac{1}{4}(\mu^{2}-1)}e^{% \frac{1}{2}\mu^{2}t^{2}}U\left(-\tfrac{1}{2}\mu^{2},\mu t\sqrt{2}\right)}} HermiteH(n, x)= (2)^((1)/(4)*((mu)^(2)- 1))* exp((1)/(2)*(mu)^(2)* (t)^(2))*CylinderU(-(1)/(2)*(mu)^(2), mu*t*sqrt(2)) HermiteH[n, x]= (2)^(Divide[1,4]*((\[Mu])^(2)- 1))* Exp[Divide[1,2]*(\[Mu])^(2)* (t)^(2)]*ParabolicCylinderD[--Divide[1,2]*(\[Mu])^(2) - 1/2, \[Mu]*t*Sqrt[2]] Failure Failure
Fail
2.014197760+.2431743734e-2*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
4.014197760+.2431743734e-2*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), n = 1, x = 2}
6.014197760+.2431743734e-2*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), n = 1, x = 3}
2.014197760+.2431743734e-2*I <- {mu = 2^(1/2)+I*2^(1/2), t = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
... skip entries to safe data
Skip
18.16.E16 ( 2 ⁒ n + 1 ) 1 2 > x n , 1 superscript 2 𝑛 1 1 2 subscript π‘₯ 𝑛 1 {\displaystyle{\displaystyle(2n+1)^{\frac{1}{2}}>x_{n,1}}} (2*n + 1)^((1)/(2))> x[n , 1] (2*n + 1)^(Divide[1,2])> Subscript[x, n , 1] Failure Failure Successful Successful
18.16.E16 x n , 1 > x n , 2 subscript π‘₯ 𝑛 1 subscript π‘₯ 𝑛 2 {\displaystyle{\displaystyle x_{n,1}>x_{n,2}}} x[n , 1]> x[n , 2] Subscript[x, n , 1]> Subscript[x, n , 2] Failure Failure
Fail
1.414213562+1.414213562*I < 1.414213562+1.414213562*I <- {x[n,1] = 2^(1/2)+I*2^(1/2), x[n,2] = 2^(1/2)+I*2^(1/2)}
1.414213562-1.414213562*I < 1.414213562-1.414213562*I <- {x[n,1] = 2^(1/2)-I*2^(1/2), x[n,2] = 2^(1/2)-I*2^(1/2)}
-1.414213562-1.414213562*I < -1.414213562-1.414213562*I <- {x[n,1] = -2^(1/2)-I*2^(1/2), x[n,2] = -2^(1/2)-I*2^(1/2)}
-1.414213562+1.414213562*I < -1.414213562+1.414213562*I <- {x[n,1] = -2^(1/2)+I*2^(1/2), x[n,2] = -2^(1/2)+I*2^(1/2)}
Successful
18.16.E16 x n , 2 > β‹― subscript π‘₯ 𝑛 2 β‹― {\displaystyle{\displaystyle x_{n,2}>\cdots}} x[n , 2]> .. Subscript[x, n , 2]> ... Failure Failure Skip Successful
18.17.E1 2 ⁒ n ⁒ ∫ 0 x ( 1 - y ) Ξ± ⁒ ( 1 + y ) Ξ² ⁒ P n ( Ξ± , Ξ² ) ⁑ ( y ) ⁒ d y = P n - 1 ( Ξ± + 1 , Ξ² + 1 ) ⁑ ( 0 ) - ( 1 - x ) Ξ± + 1 ⁒ ( 1 + x ) Ξ² + 1 ⁒ P n - 1 ( Ξ± + 1 , Ξ² + 1 ) ⁑ ( x ) 2 𝑛 superscript subscript 0 π‘₯ superscript 1 𝑦 𝛼 superscript 1 𝑦 𝛽 Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑦 𝑦 Jacobi-polynomial-P 𝛼 1 𝛽 1 𝑛 1 0 superscript 1 π‘₯ 𝛼 1 superscript 1 π‘₯ 𝛽 1 Jacobi-polynomial-P 𝛼 1 𝛽 1 𝑛 1 π‘₯ {\displaystyle{\displaystyle 2n\int_{0}^{x}(1-y)^{\alpha}(1+y)^{\beta}P^{(% \alpha,\beta)}_{n}\left(y\right)\mathrm{d}y=P^{(\alpha+1,\beta+1)}_{n-1}\left(% 0\right)-(1-x)^{\alpha+1}(1+x)^{\beta+1}P^{(\alpha+1,\beta+1)}_{n-1}\left(x% \right)}} 2*n*int((1 - y)^(alpha)*(1 + y)^(beta)* JacobiP(n, alpha, beta, y), y = 0..x)= JacobiP(n - 1, alpha + 1, beta + 1, 0)-(1 - x)^(alpha + 1)*(1 + x)^(beta + 1)* JacobiP(n - 1, alpha + 1, beta + 1, x) 2*n*Integrate[(1 - y)^(\[Alpha])*(1 + y)^(\[Beta])* JacobiP[n, \[Alpha], \[Beta], y], {y, 0, x}]= JacobiP[n - 1, \[Alpha]+ 1, \[Beta]+ 1, 0]-(1 - x)^(\[Alpha]+ 1)*(1 + x)^(\[Beta]+ 1)* JacobiP[n - 1, \[Alpha]+ 1, \[Beta]+ 1, x] Failure Failure Skip Skip
18.17.E2 ∫ 0 x L m ⁑ ( y ) ⁒ L n ⁑ ( x - y ) ⁒ d y = ∫ 0 x L m + n ⁑ ( y ) ⁒ d y superscript subscript 0 π‘₯ shorthand-Laguerre-polynomial-L π‘š 𝑦 shorthand-Laguerre-polynomial-L 𝑛 π‘₯ 𝑦 𝑦 superscript subscript 0 π‘₯ shorthand-Laguerre-polynomial-L π‘š 𝑛 𝑦 𝑦 {\displaystyle{\displaystyle\int_{0}^{x}L_{m}\left(y\right)L_{n}\left(x-y% \right)\mathrm{d}y=\int_{0}^{x}L_{m+n}\left(y\right)\mathrm{d}y}} int(LaguerreL(m, y)*LaguerreL(n, x - y), y = 0..x)= int(LaguerreL(m + n, y), y = 0..x) Error Failure Error - -
18.17.E2 ∫ 0 x L m + n ⁑ ( y ) ⁒ d y = L m + n ⁑ ( x ) - L m + n + 1 ⁑ ( x ) superscript subscript 0 π‘₯ shorthand-Laguerre-polynomial-L π‘š 𝑛 𝑦 𝑦 shorthand-Laguerre-polynomial-L π‘š 𝑛 π‘₯ shorthand-Laguerre-polynomial-L π‘š 𝑛 1 π‘₯ {\displaystyle{\displaystyle\int_{0}^{x}L_{m+n}\left(y\right)\mathrm{d}y=L_{m+% n}\left(x\right)-L_{m+n+1}\left(x\right)}} int(LaguerreL(m + n, y), y = 0..x)= LaguerreL(m + n, x)- LaguerreL(m + n + 1, x) Error Successful Error - -
18.17.E3 ∫ 0 x H n ⁑ ( y ) ⁒ d y = 1 2 ⁒ ( n + 1 ) ⁒ ( H n + 1 ⁑ ( x ) - H n + 1 ⁑ ( 0 ) ) superscript subscript 0 π‘₯ Hermite-polynomial-H 𝑛 𝑦 𝑦 1 2 𝑛 1 Hermite-polynomial-H 𝑛 1 π‘₯ Hermite-polynomial-H 𝑛 1 0 {\displaystyle{\displaystyle\int_{0}^{x}H_{n}\left(y\right)\mathrm{d}y=\frac{1% }{2(n+1)}(H_{n+1}\left(x\right)-H_{n+1}\left(0\right))}} int(HermiteH(n, y), y = 0..x)=(1)/(2*(n + 1))*(HermiteH(n + 1, x)- HermiteH(n + 1, 0)) Integrate[HermiteH[n, y], {y, 0, x}]=Divide[1,2*(n + 1)]*(HermiteH[n + 1, x]- HermiteH[n + 1, 0]) Failure Successful Skip -
18.17.E4 ∫ 0 x e - y 2 ⁒ H n ⁑ ( y ) ⁒ d y = H n - 1 ⁑ ( 0 ) - e - x 2 ⁒ H n - 1 ⁑ ( x ) superscript subscript 0 π‘₯ superscript 𝑒 superscript 𝑦 2 Hermite-polynomial-H 𝑛 𝑦 𝑦 Hermite-polynomial-H 𝑛 1 0 superscript 𝑒 superscript π‘₯ 2 Hermite-polynomial-H 𝑛 1 π‘₯ {\displaystyle{\displaystyle\int_{0}^{x}e^{-y^{2}}H_{n}\left(y\right)\mathrm{d% }y=H_{n-1}\left(0\right)-e^{-x^{2}}H_{n-1}\left(x\right)}} int(exp(- (y)^(2))*HermiteH(n, y), y = 0..x)= HermiteH(n - 1, 0)- exp(- (x)^(2))*HermiteH(n - 1, x) Integrate[Exp[- (y)^(2)]*HermiteH[n, y], {y, 0, x}]= HermiteH[n - 1, 0]- Exp[- (x)^(2)]*HermiteH[n - 1, x] Failure Successful Skip -
18.17.E6 P n ⁑ ( cos ⁑ ΞΈ 1 ) ⁒ P n ⁑ ( cos ⁑ ΞΈ 2 ) = 1 Ο€ ⁒ ∫ 0 Ο€ P n ⁑ ( cos ⁑ ΞΈ 1 ⁒ cos ⁑ ΞΈ 2 + sin ⁑ ΞΈ 1 ⁒ sin ⁑ ΞΈ 2 ⁒ cos ⁑ Ο• ) ⁒ d Ο• Legendre-spherical-polynomial 𝑛 subscript πœƒ 1 Legendre-spherical-polynomial 𝑛 subscript πœƒ 2 1 πœ‹ superscript subscript 0 πœ‹ Legendre-spherical-polynomial 𝑛 subscript πœƒ 1 subscript πœƒ 2 subscript πœƒ 1 subscript πœƒ 2 italic-Ο• italic-Ο• {\displaystyle{\displaystyle P_{n}\left(\cos\theta_{1}\right)P_{n}\left(\cos% \theta_{2}\right)=\frac{1}{\pi}\int_{0}^{\pi}P_{n}\left(\cos\theta_{1}\cos% \theta_{2}+\sin\theta_{1}\sin\theta_{2}\cos\phi\right)\mathrm{d}\phi}} LegendreP(n, cos(theta[1]))*LegendreP(n, cos(theta[2]))=(1)/(Pi)*int(LegendreP(n, cos(theta[1])*cos(theta[2])+ sin(theta[1])*sin(theta[2])*cos(phi)), phi = 0..Pi) LegendreP[n, Cos[Subscript[\[Theta], 1]]]*LegendreP[n, Cos[Subscript[\[Theta], 2]]]=Divide[1,Pi]*Integrate[LegendreP[n, Cos[Subscript[\[Theta], 1]]*Cos[Subscript[\[Theta], 2]]+ Sin[Subscript[\[Theta], 1]]*Sin[Subscript[\[Theta], 2]]*Cos[\[Phi]]], {\[Phi], 0, Pi}] Failure Failure Skip Skip
18.17.E7 ( P n ⁑ ( x ) ) 2 + 4 ⁒ Ο€ - 2 ⁒ ( 𝖰 n ⁑ ( x ) ) 2 = 4 ⁒ Ο€ - 2 ⁒ ∫ 1 ∞ Q n ⁑ ( x 2 + ( 1 - x 2 ) ⁒ t ) ⁒ ( t 2 - 1 ) - 1 2 ⁒ d t superscript Legendre-spherical-polynomial 𝑛 π‘₯ 2 4 superscript πœ‹ 2 superscript shorthand-Ferrers-Legendre-Q-first-kind 𝑛 π‘₯ 2 4 superscript πœ‹ 2 superscript subscript 1 shorthand-Legendre-Q-second-kind 𝑛 superscript π‘₯ 2 1 superscript π‘₯ 2 𝑑 superscript superscript 𝑑 2 1 1 2 𝑑 {\displaystyle{\displaystyle\left(P_{n}\left(x\right)\right)^{2}+4\pi^{-2}% \left(\mathsf{Q}_{n}\left(x\right)\right)^{2}=4\pi^{-2}\*\int_{1}^{\infty}Q_{n% }\left(x^{2}+(1-x^{2})t\right)(t^{2}-1)^{-\frac{1}{2}}\mathrm{d}t}} (LegendreP(n, x))^(2)+ 4*(Pi)^(- 2)*(LegendreQ(n, x))^(2)= 4*(Pi)^(- 2)* int(LegendreQ(n, (x)^(2)+(1 - (x)^(2))* t)*((t)^(2)- 1)^(-(1)/(2)), t = 1..infinity) (LegendreP[n, x])^(2)+ 4*(Pi)^(- 2)*(LegendreQ[n, x])^(2)= 4*(Pi)^(- 2)* Integrate[LegendreQ[n, 0, 3, (x)^(2)+(1 - (x)^(2))* t]*((t)^(2)- 1)^(-Divide[1,2]), {t, 1, Infinity}] Failure Failure - -
18.17.E8 ( H n ⁑ ( x ) ) 2 + 2 n ⁒ ( n ! ) 2 ⁒ e x 2 ⁒ ( V ⁑ ( - n - 1 2 , 2 1 2 ⁒ x ) ) 2 = 2 n + 3 2 ⁒ n ! ⁒ e x 2 Ο€ ⁒ ∫ 0 ∞ e - ( 2 ⁒ n + 1 ) ⁒ t + x 2 ⁒ tanh ⁑ t ( sinh ⁑ 2 ⁒ t ) 1 2 ⁒ d t superscript Hermite-polynomial-H 𝑛 π‘₯ 2 superscript 2 𝑛 superscript 𝑛 2 superscript 𝑒 superscript π‘₯ 2 superscript parabolic-V 𝑛 1 2 superscript 2 1 2 π‘₯ 2 superscript 2 𝑛 3 2 𝑛 superscript 𝑒 superscript π‘₯ 2 πœ‹ superscript subscript 0 superscript 𝑒 2 𝑛 1 𝑑 superscript π‘₯ 2 𝑑 superscript 2 𝑑 1 2 𝑑 {\displaystyle{\displaystyle\left(H_{n}\left(x\right)\right)^{2}+2^{n}(n!)^{2}% e^{x^{2}}\left(V\left(-n-\tfrac{1}{2},2^{\frac{1}{2}}x\right)\right)^{2}=\frac% {2^{n+\frac{3}{2}}n!\,e^{x^{2}}}{\pi}\int_{0}^{\infty}\frac{e^{-(2n+1)t+x^{2}% \tanh t}}{(\sinh 2t)^{\frac{1}{2}}}\mathrm{d}t}} (HermiteH(n, x))^(2)+ (2)^(n)*(factorial(n))^(2)* exp((x)^(2))*(CylinderV(- n -(1)/(2), (2)^((1)/(2))* x))^(2)=((2)^(n +(3)/(2))* factorial(n)*exp((x)^(2)))/(Pi)*int((exp(-(2*n + 1)* t + (x)^(2)* tanh(t)))/((sinh(2*t))^((1)/(2))), t = 0..infinity) Error Failure Error Skip -
18.17.E9 ( 1 - x ) Ξ± + ΞΌ ⁒ P n ( Ξ± + ΞΌ , Ξ² - ΞΌ ) ⁑ ( x ) Ξ“ ⁑ ( Ξ± + ΞΌ + n + 1 ) = ∫ x 1 ( 1 - y ) Ξ± ⁒ P n ( Ξ± , Ξ² ) ⁑ ( y ) Ξ“ ⁑ ( Ξ± + n + 1 ) ⁒ ( y - x ) ΞΌ - 1 Ξ“ ⁑ ( ΞΌ ) ⁒ d y superscript 1 π‘₯ 𝛼 πœ‡ Jacobi-polynomial-P 𝛼 πœ‡ 𝛽 πœ‡ 𝑛 π‘₯ Euler-Gamma 𝛼 πœ‡ 𝑛 1 superscript subscript π‘₯ 1 superscript 1 𝑦 𝛼 Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑦 Euler-Gamma 𝛼 𝑛 1 superscript 𝑦 π‘₯ πœ‡ 1 Euler-Gamma πœ‡ 𝑦 {\displaystyle{\displaystyle\frac{(1-x)^{\alpha+\mu}P^{(\alpha+\mu,\beta-\mu)}% _{n}\left(x\right)}{\Gamma\left(\alpha+\mu+n+1\right)}=\int_{x}^{1}\frac{(1-y)% ^{\alpha}P^{(\alpha,\beta)}_{n}\left(y\right)}{\Gamma\left(\alpha+n+1\right)}% \frac{(y-x)^{\mu-1}}{\Gamma\left(\mu\right)}\mathrm{d}y}} ((1 - x)^(alpha + mu)* JacobiP(n, alpha + mu, beta - mu, x))/(GAMMA(alpha + mu + n + 1))= int(((1 - y)^(alpha)* JacobiP(n, alpha, beta, y))/(GAMMA(alpha + n + 1))*((y - x)^(mu - 1))/(GAMMA(mu)), y = x..1) Divide[(1 - x)^(\[Alpha]+ \[Mu])* JacobiP[n, \[Alpha]+ \[Mu], \[Beta]- \[Mu], x],Gamma[\[Alpha]+ \[Mu]+ n + 1]]= Integrate[Divide[(1 - y)^(\[Alpha])* JacobiP[n, \[Alpha], \[Beta], y],Gamma[\[Alpha]+ n + 1]]*Divide[(y - x)^(\[Mu]- 1),Gamma[\[Mu]]], {y, x, 1}] Failure Failure Skip Error
18.17.E10 x Ξ² + ΞΌ ⁒ ( x + 1 ) n Ξ“ ⁑ ( Ξ² + ΞΌ + n + 1 ) ⁒ P n ( Ξ± , Ξ² + ΞΌ ) ⁑ ( x - 1 x + 1 ) = ∫ 0 x y Ξ² ⁒ ( y + 1 ) n Ξ“ ⁑ ( Ξ² + n + 1 ) ⁒ P n ( Ξ± , Ξ² ) ⁑ ( y - 1 y + 1 ) ⁒ ( x - y ) ΞΌ - 1 Ξ“ ⁑ ( ΞΌ ) ⁒ d y superscript π‘₯ 𝛽 πœ‡ superscript π‘₯ 1 𝑛 Euler-Gamma 𝛽 πœ‡ 𝑛 1 Jacobi-polynomial-P 𝛼 𝛽 πœ‡ 𝑛 π‘₯ 1 π‘₯ 1 superscript subscript 0 π‘₯ superscript 𝑦 𝛽 superscript 𝑦 1 𝑛 Euler-Gamma 𝛽 𝑛 1 Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑦 1 𝑦 1 superscript π‘₯ 𝑦 πœ‡ 1 Euler-Gamma πœ‡ 𝑦 {\displaystyle{\displaystyle\frac{x^{\beta+\mu}(x+1)^{n}}{\Gamma\left(\beta+% \mu+n+1\right)}P^{(\alpha,\beta+\mu)}_{n}\left(\frac{x-1}{x+1}\right)=\int_{0}% ^{x}\frac{y^{\beta}(y+1)^{n}}{\Gamma\left(\beta+n+1\right)}P^{(\alpha,\beta)}_% {n}\left(\frac{y-1}{y+1}\right)\*\frac{(x-y)^{\mu-1}}{\Gamma\left(\mu\right)}% \mathrm{d}y}} ((x)^(beta + mu)*(x + 1)^(n))/(GAMMA(beta + mu + n + 1))*JacobiP(n, alpha, beta + mu, (x - 1)/(x + 1))= int(((y)^(beta)*(y + 1)^(n))/(GAMMA(beta + n + 1))*JacobiP(n, alpha, beta, (y - 1)/(y + 1))*((x - y)^(mu - 1))/(GAMMA(mu)), y = 0..x) Divide[(x)^(\[Beta]+ \[Mu])*(x + 1)^(n),Gamma[\[Beta]+ \[Mu]+ n + 1]]*JacobiP[n, \[Alpha], \[Beta]+ \[Mu], Divide[x - 1,x + 1]]= Integrate[Divide[(y)^(\[Beta])*(y + 1)^(n),Gamma[\[Beta]+ n + 1]]*JacobiP[n, \[Alpha], \[Beta], Divide[y - 1,y + 1]]*Divide[(x - y)^(\[Mu]- 1),Gamma[\[Mu]]], {y, 0, x}] Failure Failure Skip Error
18.17.E11 Ξ“ ⁑ ( n + Ξ± + Ξ² - ΞΌ + 1 ) x n + Ξ± + Ξ² - ΞΌ + 1 ⁒ P n ( Ξ± , Ξ² - ΞΌ ) ⁑ ( 1 - 2 ⁒ x - 1 ) = ∫ x ∞ Ξ“ ⁑ ( n + Ξ± + Ξ² + 1 ) y n + Ξ± + Ξ² + 1 ⁒ P n ( Ξ± , Ξ² ) ⁑ ( 1 - 2 ⁒ y - 1 ) ⁒ ( y - x ) ΞΌ - 1 Ξ“ ⁑ ( ΞΌ ) ⁒ d y Euler-Gamma 𝑛 𝛼 𝛽 πœ‡ 1 superscript π‘₯ 𝑛 𝛼 𝛽 πœ‡ 1 Jacobi-polynomial-P 𝛼 𝛽 πœ‡ 𝑛 1 2 superscript π‘₯ 1 superscript subscript π‘₯ Euler-Gamma 𝑛 𝛼 𝛽 1 superscript 𝑦 𝑛 𝛼 𝛽 1 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 2 superscript 𝑦 1 superscript 𝑦 π‘₯ πœ‡ 1 Euler-Gamma πœ‡ 𝑦 {\displaystyle{\displaystyle\frac{\Gamma\left(n+\alpha+\beta-\mu+1\right)}{x^{% n+\alpha+\beta-\mu+1}}P^{(\alpha,\beta-\mu)}_{n}\left(1-2x^{-1}\right)=\int_{x% }^{\infty}\frac{\Gamma\left(n+\alpha+\beta+1\right)}{y^{n+\alpha+\beta+1}}P^{(% \alpha,\beta)}_{n}\left(1-2y^{-1}\right)\*\frac{(y-x)^{\mu-1}}{\Gamma\left(\mu% \right)}\mathrm{d}y}} (GAMMA(n + alpha + beta - mu + 1))/((x)^(n + alpha + beta - mu + 1))*JacobiP(n, alpha, beta - mu, 1 - 2*(x)^(- 1))= int((GAMMA(n + alpha + beta + 1))/((y)^(n + alpha + beta + 1))*JacobiP(n, alpha, beta, 1 - 2*(y)^(- 1))*((y - x)^(mu - 1))/(GAMMA(mu)), y = x..infinity) Divide[Gamma[n + \[Alpha]+ \[Beta]- \[Mu]+ 1],(x)^(n + \[Alpha]+ \[Beta]- \[Mu]+ 1)]*JacobiP[n, \[Alpha], \[Beta]- \[Mu], 1 - 2*(x)^(- 1)]= Integrate[Divide[Gamma[n + \[Alpha]+ \[Beta]+ 1],(y)^(n + \[Alpha]+ \[Beta]+ 1)]*JacobiP[n, \[Alpha], \[Beta], 1 - 2*(y)^(- 1)]*Divide[(y - x)^(\[Mu]- 1),Gamma[\[Mu]]], {y, x, Infinity}] Failure Failure Skip Error
18.17.E12 Ξ“ ⁑ ( Ξ» - ΞΌ ) ⁒ C n ( Ξ» - ΞΌ ) ⁑ ( x - 1 2 ) x Ξ» - ΞΌ + 1 2 ⁒ n = ∫ x ∞ Ξ“ ⁑ ( Ξ» ) ⁒ C n ( Ξ» ) ⁑ ( y - 1 2 ) y Ξ» + 1 2 ⁒ n ⁒ ( y - x ) ΞΌ - 1 Ξ“ ⁑ ( ΞΌ ) ⁒ d y Euler-Gamma πœ† πœ‡ ultraspherical-Gegenbauer-polynomial πœ† πœ‡ 𝑛 superscript π‘₯ 1 2 superscript π‘₯ πœ† πœ‡ 1 2 𝑛 superscript subscript π‘₯ Euler-Gamma πœ† ultraspherical-Gegenbauer-polynomial πœ† 𝑛 superscript 𝑦 1 2 superscript 𝑦 πœ† 1 2 𝑛 superscript 𝑦 π‘₯ πœ‡ 1 Euler-Gamma πœ‡ 𝑦 {\displaystyle{\displaystyle\frac{\Gamma\left(\lambda-\mu\right)C^{(\lambda-% \mu)}_{n}\left(x^{-\frac{1}{2}}\right)}{x^{\lambda-\mu+\frac{1}{2}n}}=\int_{x}% ^{\infty}\frac{\Gamma\left(\lambda\right)C^{(\lambda)}_{n}\left(y^{-\frac{1}{2% }}\right)}{y^{\lambda+\frac{1}{2}n}}\frac{(y-x)^{\mu-1}}{\Gamma\left(\mu\right% )}\mathrm{d}y}} (GAMMA(lambda - mu)*GegenbauerC(n, lambda - mu, (x)^(-(1)/(2))))/((x)^(lambda - mu +(1)/(2)*n))= int((GAMMA(lambda)*GegenbauerC(n, lambda, (y)^(-(1)/(2))))/((y)^(lambda +(1)/(2)*n))*((y - x)^(mu - 1))/(GAMMA(mu)), y = x..infinity) Divide[Gamma[\[Lambda]- \[Mu]]*GegenbauerC[n, \[Lambda]- \[Mu], (x)^(-Divide[1,2])],(x)^(\[Lambda]- \[Mu]+Divide[1,2]*n)]= Integrate[Divide[Gamma[\[Lambda]]*GegenbauerC[n, \[Lambda], (y)^(-Divide[1,2])],(y)^(\[Lambda]+Divide[1,2]*n)]*Divide[(y - x)^(\[Mu]- 1),Gamma[\[Mu]]], {y, x, Infinity}] Failure Failure Skip Error
18.17.E13 x 1 2 ⁒ n ⁒ ( x - 1 ) Ξ» + ΞΌ - 1 2 Ξ“ ⁑ ( Ξ» + ΞΌ + 1 2 ) ⁒ C n ( Ξ» + ΞΌ ) ⁑ ( x - 1 2 ) C n ( Ξ» + ΞΌ ) ⁑ ( 1 ) = ∫ 1 x y 1 2 ⁒ n ⁒ ( y - 1 ) Ξ» - 1 2 Ξ“ ⁑ ( Ξ» + 1 2 ) ⁒ C n ( Ξ» ) ⁑ ( y - 1 2 ) C n ( Ξ» ) ⁑ ( 1 ) ⁒ ( x - y ) ΞΌ - 1 Ξ“ ⁑ ( ΞΌ ) ⁒ d y superscript π‘₯ 1 2 𝑛 superscript π‘₯ 1 πœ† πœ‡ 1 2 Euler-Gamma πœ† πœ‡ 1 2 ultraspherical-Gegenbauer-polynomial πœ† πœ‡ 𝑛 superscript π‘₯ 1 2 ultraspherical-Gegenbauer-polynomial πœ† πœ‡ 𝑛 1 superscript subscript 1 π‘₯ superscript 𝑦 1 2 𝑛 superscript 𝑦 1 πœ† 1 2 Euler-Gamma πœ† 1 2 ultraspherical-Gegenbauer-polynomial πœ† 𝑛 superscript 𝑦 1 2 ultraspherical-Gegenbauer-polynomial πœ† 𝑛 1 superscript π‘₯ 𝑦 πœ‡ 1 Euler-Gamma πœ‡ 𝑦 {\displaystyle{\displaystyle\frac{x^{\frac{1}{2}n}(x-1)^{\lambda+\mu-\frac{1}{% 2}}}{\Gamma\left(\lambda+\mu+\tfrac{1}{2}\right)}\frac{C^{(\lambda+\mu)}_{n}% \left(x^{-\frac{1}{2}}\right)}{C^{(\lambda+\mu)}_{n}\left(1\right)}=\int_{1}^{% x}\frac{y^{\frac{1}{2}n}(y-1)^{\lambda-\frac{1}{2}}}{\Gamma\left(\lambda+% \tfrac{1}{2}\right)}\frac{C^{(\lambda)}_{n}\left(y^{-\frac{1}{2}}\right)}{C^{(% \lambda)}_{n}\left(1\right)}\frac{(x-y)^{\mu-1}}{\Gamma\left(\mu\right)}% \mathrm{d}y}} ((x)^((1)/(2)*n)*(x - 1)^(lambda + mu -(1)/(2)))/(GAMMA(lambda + mu +(1)/(2)))*(GegenbauerC(n, lambda + mu, (x)^(-(1)/(2))))/(GegenbauerC(n, lambda + mu, 1))= int(((y)^((1)/(2)*n)*(y - 1)^(lambda -(1)/(2)))/(GAMMA(lambda +(1)/(2)))*(GegenbauerC(n, lambda, (y)^(-(1)/(2))))/(GegenbauerC(n, lambda, 1))*((x - y)^(mu - 1))/(GAMMA(mu)), y = 1..x) Divide[(x)^(Divide[1,2]*n)*(x - 1)^(\[Lambda]+ \[Mu]-Divide[1,2]),Gamma[\[Lambda]+ \[Mu]+Divide[1,2]]]*Divide[GegenbauerC[n, \[Lambda]+ \[Mu], (x)^(-Divide[1,2])],GegenbauerC[n, \[Lambda]+ \[Mu], 1]]= Integrate[Divide[(y)^(Divide[1,2]*n)*(y - 1)^(\[Lambda]-Divide[1,2]),Gamma[\[Lambda]+Divide[1,2]]]*Divide[GegenbauerC[n, \[Lambda], (y)^(-Divide[1,2])],GegenbauerC[n, \[Lambda], 1]]*Divide[(x - y)^(\[Mu]- 1),Gamma[\[Mu]]], {y, 1, x}] Failure Failure Skip Error
18.17.E16 ∫ - 1 1 ( 1 - x ) Ξ± ⁒ ( 1 + x ) Ξ² ⁒ P n ( Ξ± , Ξ² ) ⁑ ( x ) ⁒ e i ⁒ x ⁒ y ⁒ d x = ( i ⁒ y ) n ⁒ e i ⁒ y n ! ⁒ 2 n + Ξ± + Ξ² + 1 ⁒ B ⁑ ( n + Ξ± + 1 , n + Ξ² + 1 ) ⁒ F 1 1 ⁑ ( n + Ξ± + 1 ; 2 ⁒ n + Ξ± + Ξ² + 2 ; - 2 ⁒ i ⁒ y ) superscript subscript 1 1 superscript 1 π‘₯ 𝛼 superscript 1 π‘₯ 𝛽 Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ superscript 𝑒 𝑖 π‘₯ 𝑦 π‘₯ superscript 𝑖 𝑦 𝑛 superscript 𝑒 𝑖 𝑦 𝑛 superscript 2 𝑛 𝛼 𝛽 1 Euler-Beta 𝑛 𝛼 1 𝑛 𝛽 1 Kummer-confluent-hypergeometric-M-as-1F1 𝑛 𝛼 1 2 𝑛 𝛼 𝛽 2 2 𝑖 𝑦 {\displaystyle{\displaystyle\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta}P^{(\alpha% ,\beta)}_{n}\left(x\right)e^{ixy}\mathrm{d}x=\frac{(iy)^{n}e^{iy}}{n!}2^{n+% \alpha+\beta+1}\mathrm{B}\left(n+\alpha+1,n+\beta+1\right){{}_{1}F_{1}}\left(n% +\alpha+1;2n+\alpha+\beta+2;-2iy\right)}} int((1 - x)^(alpha)*(1 + x)^(beta)* JacobiP(n, alpha, beta, x)*exp(I*x*y), x = - 1..1)=((I*y)^(n)* exp(I*y))/(factorial(n))*(2)^(n + alpha + beta + 1)* Beta(n + alpha + 1, n + beta + 1)*hypergeom([n + alpha + 1], [2*n + alpha + beta + 2], - 2*I*y) Integrate[(1 - x)^(\[Alpha])*(1 + x)^(\[Beta])* JacobiP[n, \[Alpha], \[Beta], x]*Exp[I*x*y], {x, - 1, 1}]=Divide[(I*y)^(n)* Exp[I*y],(n)!]*(2)^(n + \[Alpha]+ \[Beta]+ 1)* Beta[n + \[Alpha]+ 1, n + \[Beta]+ 1]*HypergeometricPFQ[{n + \[Alpha]+ 1}, {2*n + \[Alpha]+ \[Beta]+ 2}, - 2*I*y] Failure Failure Skip Error
18.17.E17 ∫ 0 1 ( 1 - x 2 ) Ξ» - 1 2 ⁒ C 2 ⁒ n ( Ξ» ) ⁑ ( x ) ⁒ cos ⁑ ( x ⁒ y ) ⁒ d x = ( - 1 ) n ⁒ Ο€ ⁒ Ξ“ ⁑ ( 2 ⁒ n + 2 ⁒ Ξ» ) ⁒ J Ξ» + 2 ⁒ n ⁑ ( y ) ( 2 ⁒ n ) ! ⁒ Ξ“ ⁑ ( Ξ» ) ⁒ ( 2 ⁒ y ) Ξ» superscript subscript 0 1 superscript 1 superscript π‘₯ 2 πœ† 1 2 ultraspherical-Gegenbauer-polynomial πœ† 2 𝑛 π‘₯ π‘₯ 𝑦 π‘₯ superscript 1 𝑛 πœ‹ Euler-Gamma 2 𝑛 2 πœ† Bessel-J πœ† 2 𝑛 𝑦 2 𝑛 Euler-Gamma πœ† superscript 2 𝑦 πœ† {\displaystyle{\displaystyle\int_{0}^{1}(1-x^{2})^{\lambda-\frac{1}{2}}C^{(% \lambda)}_{2n}\left(x\right)\cos\left(xy\right)\mathrm{d}x=\frac{(-1)^{n}\pi% \Gamma\left(2n+2\lambda\right)J_{\lambda+2n}\left(y\right)}{(2n)!\Gamma\left(% \lambda\right)(2y)^{\lambda}}}} int((1 - (x)^(2))^(lambda -(1)/(2))* GegenbauerC(2*n, lambda, x)*cos(x*y), x = 0..1)=((- 1)^(n)* Pi*GAMMA(2*n + 2*lambda)*BesselJ(lambda + 2*n, y))/(factorial(2*n)*GAMMA(lambda)*(2*y)^(lambda)) Integrate[(1 - (x)^(2))^(\[Lambda]-Divide[1,2])* GegenbauerC[2*n, \[Lambda], x]*Cos[x*y], {x, 0, 1}]=Divide[(- 1)^(n)* Pi*Gamma[2*n + 2*\[Lambda]]*BesselJ[\[Lambda]+ 2*n, y],(2*n)!*Gamma[\[Lambda]]*(2*y)^(\[Lambda])] Failure Failure Skip Error
18.17.E18 ∫ 0 1 ( 1 - x 2 ) Ξ» - 1 2 ⁒ C 2 ⁒ n + 1 ( Ξ» ) ⁑ ( x ) ⁒ sin ⁑ ( x ⁒ y ) ⁒ d x = ( - 1 ) n ⁒ Ο€ ⁒ Ξ“ ⁑ ( 2 ⁒ n + 2 ⁒ Ξ» + 1 ) ⁒ J 2 ⁒ n + Ξ» + 1 ⁑ ( y ) ( 2 ⁒ n + 1 ) ! ⁒ Ξ“ ⁑ ( Ξ» ) ⁒ ( 2 ⁒ y ) Ξ» superscript subscript 0 1 superscript 1 superscript π‘₯ 2 πœ† 1 2 ultraspherical-Gegenbauer-polynomial πœ† 2 𝑛 1 π‘₯ π‘₯ 𝑦 π‘₯ superscript 1 𝑛 πœ‹ Euler-Gamma 2 𝑛 2 πœ† 1 Bessel-J 2 𝑛 πœ† 1 𝑦 2 𝑛 1 Euler-Gamma πœ† superscript 2 𝑦 πœ† {\displaystyle{\displaystyle\int_{0}^{1}(1-x^{2})^{\lambda-\frac{1}{2}}C^{(% \lambda)}_{2n+1}\left(x\right)\sin\left(xy\right)\mathrm{d}x=\frac{(-1)^{n}\pi% \Gamma\left(2n+2\lambda+1\right)J_{2n+\lambda+1}\left(y\right)}{(2n+1)!\Gamma% \left(\lambda\right)(2y)^{\lambda}}}} int((1 - (x)^(2))^(lambda -(1)/(2))* GegenbauerC(2*n + 1, lambda, x)*sin(x*y), x = 0..1)=((- 1)^(n)* Pi*GAMMA(2*n + 2*lambda + 1)*BesselJ(2*n + lambda + 1, y))/(factorial(2*n + 1)*GAMMA(lambda)*(2*y)^(lambda)) Integrate[(1 - (x)^(2))^(\[Lambda]-Divide[1,2])* GegenbauerC[2*n + 1, \[Lambda], x]*Sin[x*y], {x, 0, 1}]=Divide[(- 1)^(n)* Pi*Gamma[2*n + 2*\[Lambda]+ 1]*BesselJ[2*n + \[Lambda]+ 1, y],(2*n + 1)!*Gamma[\[Lambda]]*(2*y)^(\[Lambda])] Failure Failure Skip Skip
18.17.E19 ∫ - 1 1 P n ⁑ ( x ) ⁒ e i ⁒ x ⁒ y ⁒ d x = i n ⁒ 2 ⁒ Ο€ y ⁒ J n + 1 2 ⁑ ( y ) superscript subscript 1 1 Legendre-spherical-polynomial 𝑛 π‘₯ superscript 𝑒 𝑖 π‘₯ 𝑦 π‘₯ superscript 𝑖 𝑛 2 πœ‹ 𝑦 Bessel-J 𝑛 1 2 𝑦 {\displaystyle{\displaystyle\int_{-1}^{1}P_{n}\left(x\right)e^{ixy}\mathrm{d}x% =i^{n}\sqrt{\frac{2\pi}{y}}J_{n+\frac{1}{2}}\left(y\right)}} int(LegendreP(n, x)*exp(I*x*y), x = - 1..1)= (I)^(n)*sqrt((2*Pi)/(y))*BesselJ(n +(1)/(2), y) Integrate[LegendreP[n, x]*Exp[I*x*y], {x, - 1, 1}]= (I)^(n)*Sqrt[Divide[2*Pi,y]]*BesselJ[n +Divide[1,2], y] Failure Failure Skip Error
18.17.E20 ∫ 0 1 P n ⁑ ( 1 - 2 ⁒ x 2 ) ⁒ cos ⁑ ( x ⁒ y ) ⁒ d x = ( - 1 ) n ⁒ 1 2 ⁒ Ο€ ⁒ J n + 1 2 ⁑ ( 1 2 ⁒ y ) ⁒ J - n - 1 2 ⁑ ( 1 2 ⁒ y ) superscript subscript 0 1 Legendre-spherical-polynomial 𝑛 1 2 superscript π‘₯ 2 π‘₯ 𝑦 π‘₯ superscript 1 𝑛 1 2 πœ‹ Bessel-J 𝑛 1 2 1 2 𝑦 Bessel-J 𝑛 1 2 1 2 𝑦 {\displaystyle{\displaystyle\int_{0}^{1}P_{n}\left(1-2x^{2}\right)\cos\left(xy% \right)\mathrm{d}x=(-1)^{n}\tfrac{1}{2}\pi J_{n+\frac{1}{2}}\left(\tfrac{1}{2}% y\right)J_{-n-\frac{1}{2}}\left(\tfrac{1}{2}y\right)}} int(LegendreP(n, 1 - 2*(x)^(2))*cos(x*y), x = 0..1)=(- 1)^(n)*(1)/(2)*Pi*BesselJ(n +(1)/(2), (1)/(2)*y)*BesselJ(- n -(1)/(2), (1)/(2)*y) Integrate[LegendreP[n, 1 - 2*(x)^(2)]*Cos[x*y], {x, 0, 1}]=(- 1)^(n)*Divide[1,2]*Pi*BesselJ[n +Divide[1,2], Divide[1,2]*y]*BesselJ[- n -Divide[1,2], Divide[1,2]*y] Failure Failure Skip Successful
18.17.E21 ∫ 0 1 P n ⁑ ( 1 - 2 ⁒ x 2 ) ⁒ sin ⁑ ( x ⁒ y ) ⁒ d x = 1 2 ⁒ Ο€ ⁒ ( J n + 1 2 ⁑ ( 1 2 ⁒ y ) ) 2 superscript subscript 0 1 Legendre-spherical-polynomial 𝑛 1 2 superscript π‘₯ 2 π‘₯ 𝑦 π‘₯ 1 2 πœ‹ superscript Bessel-J 𝑛 1 2 1 2 𝑦 2 {\displaystyle{\displaystyle\int_{0}^{1}P_{n}\left(1-2x^{2}\right)\sin\left(xy% \right)\mathrm{d}x=\tfrac{1}{2}\pi\left(J_{n+\frac{1}{2}}\left(\tfrac{1}{2}y% \right)\right)^{2}}} int(LegendreP(n, 1 - 2*(x)^(2))*sin(x*y), x = 0..1)=(1)/(2)*Pi*(BesselJ(n +(1)/(2), (1)/(2)*y))^(2) Integrate[LegendreP[n, 1 - 2*(x)^(2)]*Sin[x*y], {x, 0, 1}]=Divide[1,2]*Pi*(BesselJ[n +Divide[1,2], Divide[1,2]*y])^(2) Failure Failure Skip Successful
18.17.E33 ∫ - 1 1 e - ( x + 1 ) ⁒ z ⁒ P n ( Ξ± , Ξ² ) ⁑ ( x ) ⁒ ( 1 - x ) Ξ± ⁒ ( 1 + x ) Ξ² ⁒ d x = ( - 1 ) n ⁒ 2 Ξ± + Ξ² + n + 1 ⁒ Ξ“ ⁑ ( Ξ± + n + 1 ) ⁒ Ξ“ ⁑ ( Ξ² + n + 1 ) Ξ“ ⁑ ( Ξ± + Ξ² + 2 ⁒ n + 2 ) ⁒ n ! ⁒ z n ⁒ F 1 1 ⁑ ( Ξ² + n + 1 Ξ± + Ξ² + 2 ⁒ n + 2 ; - 2 ⁒ z ) superscript subscript 1 1 superscript 𝑒 π‘₯ 1 𝑧 Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ superscript 1 π‘₯ 𝛼 superscript 1 π‘₯ 𝛽 π‘₯ superscript 1 𝑛 superscript 2 𝛼 𝛽 𝑛 1 Euler-Gamma 𝛼 𝑛 1 Euler-Gamma 𝛽 𝑛 1 Euler-Gamma 𝛼 𝛽 2 𝑛 2 𝑛 superscript 𝑧 𝑛 Kummer-confluent-hypergeometric-M-as-1F1 𝛽 𝑛 1 𝛼 𝛽 2 𝑛 2 2 𝑧 {\displaystyle{\displaystyle\int_{-1}^{1}e^{-(x+1)z}P^{(\alpha,\beta)}_{n}% \left(x\right)(1-x)^{\alpha}(1+x)^{\beta}\mathrm{d}x=\frac{(-1)^{n}2^{\alpha+% \beta+n+1}\Gamma\left(\alpha+n+1\right)\Gamma\left(\beta+n+1\right)}{\Gamma% \left(\alpha+\beta+2n+2\right)n!}z^{n}{{}_{1}F_{1}}\left({\beta+n+1\atop\alpha% +\beta+2n+2};-2z\right)}} int(exp(-(x + 1)* z)*JacobiP(n, alpha, beta, x)*(1 - x)^(alpha)*(1 + x)^(beta), x = - 1..1)=((- 1)^(n)* (2)^(alpha + beta + n + 1)* GAMMA(alpha + n + 1)*GAMMA(beta + n + 1))/(GAMMA(alpha + beta + 2*n + 2)*factorial(n))*(z)^(n)* hypergeom([beta + n + 1], [alpha + beta + 2*n + 2], - 2*z) Integrate[Exp[-(x + 1)* z]*JacobiP[n, \[Alpha], \[Beta], x]*(1 - x)^(\[Alpha])*(1 + x)^(\[Beta]), {x, - 1, 1}]=Divide[(- 1)^(n)* (2)^(\[Alpha]+ \[Beta]+ n + 1)* Gamma[\[Alpha]+ n + 1]*Gamma[\[Beta]+ n + 1],Gamma[\[Alpha]+ \[Beta]+ 2*n + 2]*(n)!]*(z)^(n)* HypergeometricPFQ[{\[Beta]+ n + 1}, {\[Alpha]+ \[Beta]+ 2*n + 2}, - 2*z] Failure Failure Skip Error
18.17.E35 ∫ - ∞ ∞ e - x ⁒ z ⁒ H n ⁑ ( x ) ⁒ e - x 2 ⁒ d x = Ο€ 1 2 ⁒ ( - z ) n ⁒ e 1 4 ⁒ z 2 superscript subscript superscript 𝑒 π‘₯ 𝑧 Hermite-polynomial-H 𝑛 π‘₯ superscript 𝑒 superscript π‘₯ 2 π‘₯ superscript πœ‹ 1 2 superscript 𝑧 𝑛 superscript 𝑒 1 4 superscript 𝑧 2 {\displaystyle{\displaystyle\int_{-\infty}^{\infty}e^{-xz}H_{n}\left(x\right)e% ^{-x^{2}}\mathrm{d}x=\pi^{\frac{1}{2}}(-z)^{n}e^{\frac{1}{4}z^{2}}}} int(exp(- x*z)*HermiteH(n, x)*exp(- (x)^(2)), x = - infinity..infinity)= (Pi)^((1)/(2))*(- z)^(n)* exp((1)/(4)*(z)^(2)) Integrate[Exp[- x*z]*HermiteH[n, x]*Exp[- (x)^(2)], {x, - Infinity, Infinity}]= (Pi)^(Divide[1,2])*(- z)^(n)* Exp[Divide[1,4]*(z)^(2)] Failure Failure Skip Error
18.17.E36 ∫ - 1 1 ( 1 - x ) z - 1 ⁒ ( 1 + x ) Ξ² ⁒ P n ( Ξ± , Ξ² ) ⁑ ( x ) ⁒ d x = 2 Ξ² + z ⁒ Ξ“ ⁑ ( z ) ⁒ Ξ“ ⁑ ( 1 + Ξ² + n ) ⁒ ( 1 + Ξ± - z ) n n ! ⁒ Ξ“ ⁑ ( 1 + Ξ² + z + n ) superscript subscript 1 1 superscript 1 π‘₯ 𝑧 1 superscript 1 π‘₯ 𝛽 Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ π‘₯ superscript 2 𝛽 𝑧 Euler-Gamma 𝑧 Euler-Gamma 1 𝛽 𝑛 Pochhammer 1 𝛼 𝑧 𝑛 𝑛 Euler-Gamma 1 𝛽 𝑧 𝑛 {\displaystyle{\displaystyle\int_{-1}^{1}(1-x)^{z-1}(1+x)^{\beta}P^{(\alpha,% \beta)}_{n}\left(x\right)\mathrm{d}x=\frac{2^{\beta+z}\Gamma\left(z\right)% \Gamma\left(1+\beta+n\right){\left(1+\alpha-z\right)_{n}}}{n!\Gamma\left(1+% \beta+z+n\right)}}} int((1 - x)^(z - 1)*(1 + x)^(beta)* JacobiP(n, alpha, beta, x), x = - 1..1)=((2)^(beta + z)* GAMMA(z)*GAMMA(1 + beta + n)*pochhammer(1 + alpha - z, n))/(factorial(n)*GAMMA(1 + beta + z + n)) Integrate[(1 - x)^(z - 1)*(1 + x)^(\[Beta])* JacobiP[n, \[Alpha], \[Beta], x], {x, - 1, 1}]=Divide[(2)^(\[Beta]+ z)* Gamma[z]*Gamma[1 + \[Beta]+ n]*Pochhammer[1 + \[Alpha]- z, n],(n)!*Gamma[1 + \[Beta]+ z + n]] Failure Failure Skip Error
18.17.E37 ∫ 0 1 ( 1 - x 2 ) Ξ» - 1 2 ⁒ C n ( Ξ» ) ⁑ ( x ) ⁒ x z - 1 ⁒ d x = Ο€ ⁒  2 1 - 2 ⁒ Ξ» - z ⁒ Ξ“ ⁑ ( n + 2 ⁒ Ξ» ) ⁒ Ξ“ ⁑ ( z ) n ! ⁒ Ξ“ ⁑ ( Ξ» ) ⁒ Ξ“ ⁑ ( 1 2 + 1 2 ⁒ n + Ξ» + 1 2 ⁒ z ) ⁒ Ξ“ ⁑ ( 1 2 + 1 2 ⁒ z - 1 2 ⁒ n ) superscript subscript 0 1 superscript 1 superscript π‘₯ 2 πœ† 1 2 ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ superscript π‘₯ 𝑧 1 π‘₯ πœ‹ superscript  2 1 2 πœ† 𝑧 Euler-Gamma 𝑛 2 πœ† Euler-Gamma 𝑧 𝑛 Euler-Gamma πœ† Euler-Gamma 1 2 1 2 𝑛 πœ† 1 2 𝑧 Euler-Gamma 1 2 1 2 𝑧 1 2 𝑛 {\displaystyle{\displaystyle\int_{0}^{1}(1-x^{2})^{\lambda-\frac{1}{2}}C^{(% \lambda)}_{n}\left(x\right)x^{z-1}\mathrm{d}x=\frac{\pi\,2^{1-2\lambda-z}% \Gamma\left(n+2\lambda\right)\Gamma\left(z\right)}{n!\Gamma\left(\lambda\right% )\Gamma\left(\frac{1}{2}+\frac{1}{2}n+\lambda+\frac{1}{2}z\right)\Gamma\left(% \frac{1}{2}+\frac{1}{2}z-\frac{1}{2}n\right)}}} int((1 - (x)^(2))^(lambda -(1)/(2))* GegenbauerC(n, lambda, x)*(x)^(z - 1), x = 0..1)=(Pi*(2)^(1 - 2*lambda - z)* GAMMA(n + 2*lambda)*GAMMA(z))/(factorial(n)*GAMMA(lambda)*GAMMA((1)/(2)+(1)/(2)*n + lambda +(1)/(2)*z)*GAMMA((1)/(2)+(1)/(2)*z -(1)/(2)*n)) Integrate[(1 - (x)^(2))^(\[Lambda]-Divide[1,2])* GegenbauerC[n, \[Lambda], x]*(x)^(z - 1), {x, 0, 1}]=Divide[Pi*(2)^(1 - 2*\[Lambda]- z)* Gamma[n + 2*\[Lambda]]*Gamma[z],(n)!*Gamma[\[Lambda]]*Gamma[Divide[1,2]+Divide[1,2]*n + \[Lambda]+Divide[1,2]*z]*Gamma[Divide[1,2]+Divide[1,2]*z -Divide[1,2]*n]] Failure Failure Skip Error
18.17.E38 ∫ 0 1 P 2 ⁒ n ⁑ ( x ) ⁒ x z - 1 ⁒ d x = ( - 1 ) n ⁒ ( 1 2 - 1 2 ⁒ z ) n 2 ⁒ ( 1 2 ⁒ z ) n + 1 superscript subscript 0 1 Legendre-spherical-polynomial 2 𝑛 π‘₯ superscript π‘₯ 𝑧 1 π‘₯ superscript 1 𝑛 Pochhammer 1 2 1 2 𝑧 𝑛 2 Pochhammer 1 2 𝑧 𝑛 1 {\displaystyle{\displaystyle\int_{0}^{1}P_{2n}\left(x\right)x^{z-1}\mathrm{d}x% =\frac{(-1)^{n}{\left(\frac{1}{2}-\frac{1}{2}z\right)_{n}}}{2{\left(\frac{1}{2% }z\right)_{n+1}}}}} int(LegendreP(2*n, x)*(x)^(z - 1), x = 0..1)=((- 1)^(n)* pochhammer((1)/(2)-(1)/(2)*z, n))/(2*pochhammer((1)/(2)*z, n + 1)) Integrate[LegendreP[2*n, x]*(x)^(z - 1), {x, 0, 1}]=Divide[(- 1)^(n)* Pochhammer[Divide[1,2]-Divide[1,2]*z, n],2*Pochhammer[Divide[1,2]*z, n + 1]] Failure Failure Skip Successful
18.17.E39 ∫ 0 1 P 2 ⁒ n + 1 ⁑ ( x ) ⁒ x z - 1 ⁒ d x = ( - 1 ) n ⁒ ( 1 - 1 2 ⁒ z ) n 2 ⁒ ( 1 2 + 1 2 ⁒ z ) n + 1 superscript subscript 0 1 Legendre-spherical-polynomial 2 𝑛 1 π‘₯ superscript π‘₯ 𝑧 1 π‘₯ superscript 1 𝑛 Pochhammer 1 1 2 𝑧 𝑛 2 Pochhammer 1 2 1 2 𝑧 𝑛 1 {\displaystyle{\displaystyle\int_{0}^{1}P_{2n+1}\left(x\right)x^{z-1}\mathrm{d% }x=\frac{(-1)^{n}{\left(1-\frac{1}{2}z\right)_{n}}}{2{\left(\frac{1}{2}+\frac{% 1}{2}z\right)_{n+1}}}}} int(LegendreP(2*n + 1, x)*(x)^(z - 1), x = 0..1)=((- 1)^(n)* pochhammer(1 -(1)/(2)*z, n))/(2*pochhammer((1)/(2)+(1)/(2)*z, n + 1)) Integrate[LegendreP[2*n + 1, x]*(x)^(z - 1), {x, 0, 1}]=Divide[(- 1)^(n)* Pochhammer[1 -Divide[1,2]*z, n],2*Pochhammer[Divide[1,2]+Divide[1,2]*z, n + 1]] Failure Failure Skip Successful
18.17.E45 ( n + 1 2 ) ⁒ ( 1 + x ) 1 2 ⁒ ∫ - 1 x ( x - t ) - 1 2 ⁒ P n ⁑ ( t ) ⁒ d t = T n ⁑ ( x ) + T n + 1 ⁑ ( x ) 𝑛 1 2 superscript 1 π‘₯ 1 2 superscript subscript 1 π‘₯ superscript π‘₯ 𝑑 1 2 Legendre-spherical-polynomial 𝑛 𝑑 𝑑 Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ Chebyshev-polynomial-first-kind-T 𝑛 1 π‘₯ {\displaystyle{\displaystyle(n+\tfrac{1}{2})(1+x)^{\frac{1}{2}}\int_{-1}^{x}(x% -t)^{-\frac{1}{2}}P_{n}\left(t\right)\mathrm{d}t=T_{n}\left(x\right)+T_{n+1}% \left(x\right)}} (n +(1)/(2))*(1 + x)^((1)/(2))* int((x - t)^(-(1)/(2))* LegendreP(n, t), t = - 1..x)= ChebyshevT(n, x)+ ChebyshevT(n + 1, x) (n +Divide[1,2])*(1 + x)^(Divide[1,2])* Integrate[(x - t)^(-Divide[1,2])* LegendreP[n, t], {t, - 1, x}]= ChebyshevT[n, x]+ ChebyshevT[n + 1, x] Failure Failure Skip Skip
18.17.E46 ( n + 1 2 ) ⁒ ( 1 - x ) 1 2 ⁒ ∫ x 1 ( t - x ) - 1 2 ⁒ P n ⁑ ( t ) ⁒ d t = T n ⁑ ( x ) - T n + 1 ⁑ ( x ) 𝑛 1 2 superscript 1 π‘₯ 1 2 superscript subscript π‘₯ 1 superscript 𝑑 π‘₯ 1 2 Legendre-spherical-polynomial 𝑛 𝑑 𝑑 Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ Chebyshev-polynomial-first-kind-T 𝑛 1 π‘₯ {\displaystyle{\displaystyle(n+\tfrac{1}{2})(1-x)^{\frac{1}{2}}\int_{x}^{1}(t-% x)^{-\frac{1}{2}}P_{n}\left(t\right)\mathrm{d}t=T_{n}\left(x\right)-T_{n+1}% \left(x\right)}} (n +(1)/(2))*(1 - x)^((1)/(2))* int((t - x)^(-(1)/(2))* LegendreP(n, t), t = x..1)= ChebyshevT(n, x)- ChebyshevT(n + 1, x) (n +Divide[1,2])*(1 - x)^(Divide[1,2])* Integrate[(t - x)^(-Divide[1,2])* LegendreP[n, t], {t, x, 1}]= ChebyshevT[n, x]- ChebyshevT[n + 1, x] Failure Failure Skip Successful
18.17.E48 ∫ - ∞ ∞ H m ⁑ ( y ) ⁒ e - y 2 ⁒ H n ⁑ ( x - y ) ⁒ e - ( x - y ) 2 ⁒ d y = Ο€ 1 2 ⁒ 2 - 1 2 ⁒ ( m + n + 1 ) ⁒ H m + n ⁑ ( 2 - 1 2 ⁒ x ) ⁒ e - 1 2 ⁒ x 2 superscript subscript Hermite-polynomial-H π‘š 𝑦 superscript 𝑒 superscript 𝑦 2 Hermite-polynomial-H 𝑛 π‘₯ 𝑦 superscript 𝑒 superscript π‘₯ 𝑦 2 𝑦 superscript πœ‹ 1 2 superscript 2 1 2 π‘š 𝑛 1 Hermite-polynomial-H π‘š 𝑛 superscript 2 1 2 π‘₯ superscript 𝑒 1 2 superscript π‘₯ 2 {\displaystyle{\displaystyle\int_{-\infty}^{\infty}H_{m}\left(y\right)e^{-y^{2% }}H_{n}\left(x-y\right)e^{-(x-y)^{2}}\mathrm{d}y=\pi^{\frac{1}{2}}2^{-\frac{1}% {2}(m+n+1)}H_{m+n}\left(2^{-\frac{1}{2}}x\right)e^{-\frac{1}{2}x^{2}}}} int(HermiteH(m, y)*exp(- (y)^(2))*HermiteH(n, x - y)*exp(-(x - y)^(2)), y = - infinity..infinity)= (Pi)^((1)/(2))* (2)^(-(1)/(2)*(m + n + 1))* HermiteH(m + n, (2)^(-(1)/(2))* x)*exp(-(1)/(2)*(x)^(2)) Integrate[HermiteH[m, y]*Exp[- (y)^(2)]*HermiteH[n, x - y]*Exp[-(x - y)^(2)], {y, - Infinity, Infinity}]= (Pi)^(Divide[1,2])* (2)^(-Divide[1,2]*(m + n + 1))* HermiteH[m + n, (2)^(-Divide[1,2])* x]*Exp[-Divide[1,2]*(x)^(2)] Failure Failure Skip Error
18.17.E49 ∫ - ∞ ∞ H β„“ ⁑ ( x ) ⁒ H m ⁑ ( x ) ⁒ H n ⁑ ( x ) ⁒ e - x 2 ⁒ d x = 2 1 2 ⁒ ( β„“ + m + n ) ⁒ β„“ ! ⁒ m ! ⁒ n ! ⁒ Ο€ ( 1 2 ⁒ β„“ + 1 2 ⁒ m - 1 2 ⁒ n ) ! ⁒ ( 1 2 ⁒ m + 1 2 ⁒ n - 1 2 ⁒ β„“ ) ! ⁒ ( 1 2 ⁒ n + 1 2 ⁒ β„“ - 1 2 ⁒ m ) ! superscript subscript Hermite-polynomial-H β„“ π‘₯ Hermite-polynomial-H π‘š π‘₯ Hermite-polynomial-H 𝑛 π‘₯ superscript 𝑒 superscript π‘₯ 2 π‘₯ superscript 2 1 2 β„“ π‘š 𝑛 β„“ π‘š 𝑛 πœ‹ 1 2 β„“ 1 2 π‘š 1 2 𝑛 1 2 π‘š 1 2 𝑛 1 2 β„“ 1 2 𝑛 1 2 β„“ 1 2 π‘š {\displaystyle{\displaystyle\int_{-\infty}^{\infty}H_{\ell}\left(x\right)H_{m}% \left(x\right)H_{n}\left(x\right)e^{-x^{2}}\mathrm{d}x=\frac{2^{\frac{1}{2}(% \ell+m+n)}\ell\,!\,m\,!\,n\,!\,\sqrt{\pi}}{(\tfrac{1}{2}\ell+\tfrac{1}{2}m-% \tfrac{1}{2}n)\,!\,(\tfrac{1}{2}m+\tfrac{1}{2}n-\tfrac{1}{2}\ell\,)\,!\,(% \tfrac{1}{2}n+\tfrac{1}{2}\ell-\tfrac{1}{2}m\,)\,!}}} int(HermiteH(ell, x)*HermiteH(m, x)*HermiteH(n, x)*exp(- (x)^(2)), x = - infinity..infinity)=((2)^((1)/(2)*(ell + m + n))* factorial(ell)*factorial(m)*factorial(n)*sqrt(Pi))/(factorial((1)/(2)*ell +(1)/(2)*m -(1)/(2)*n)*factorial((1)/(2)*m +(1)/(2)*n -(1)/(2)*ell)*factorial((1)/(2)*n +(1)/(2)*ell -(1)/(2)*m)) Integrate[HermiteH[\[ScriptL], x]*HermiteH[m, x]*HermiteH[n, x]*Exp[- (x)^(2)], {x, - Infinity, Infinity}]=Divide[(2)^(Divide[1,2]*(\[ScriptL]+ m + n))* (\[ScriptL])!*(m)!*(n)!*Sqrt[Pi],(Divide[1,2]*\[ScriptL]+Divide[1,2]*m -Divide[1,2]*n)!*(Divide[1,2]*m +Divide[1,2]*n -Divide[1,2]*\[ScriptL])!*(Divide[1,2]*n +Divide[1,2]*\[ScriptL]-Divide[1,2]*m)!] Failure Failure Skip Error
18.18.E8 C n ( Ξ» ) ⁑ ( cos ⁑ ΞΈ 1 ⁒ cos ⁑ ΞΈ 2 + sin ⁑ ΞΈ 1 ⁒ sin ⁑ ΞΈ 2 ⁒ cos ⁑ Ο• ) = βˆ‘ β„“ = 0 n 2 2 ⁒ β„“ ⁒ ( n - β„“ ) ! ⁒ 2 ⁒ Ξ» + 2 ⁒ β„“ - 1 2 ⁒ Ξ» - 1 ⁒ ( ( Ξ» ) β„“ ) 2 ( 2 ⁒ Ξ» ) n + β„“ ⁒ ( sin ⁑ ΞΈ 1 ) β„“ ⁒ C n - β„“ ( Ξ» + β„“ ) ⁑ ( cos ⁑ ΞΈ 1 ) ⁒ ( sin ⁑ ΞΈ 2 ) β„“ ⁒ C n - β„“ ( Ξ» + β„“ ) ⁑ ( cos ⁑ ΞΈ 2 ) ⁒ C β„“ ( Ξ» - 1 2 ) ⁑ ( cos ⁑ Ο• ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 subscript πœƒ 1 subscript πœƒ 2 subscript πœƒ 1 subscript πœƒ 2 italic-Ο• superscript subscript β„“ 0 𝑛 superscript 2 2 β„“ 𝑛 β„“ 2 πœ† 2 β„“ 1 2 πœ† 1 superscript Pochhammer πœ† β„“ 2 Pochhammer 2 πœ† 𝑛 β„“ superscript subscript πœƒ 1 β„“ ultraspherical-Gegenbauer-polynomial πœ† β„“ 𝑛 β„“ subscript πœƒ 1 superscript subscript πœƒ 2 β„“ ultraspherical-Gegenbauer-polynomial πœ† β„“ 𝑛 β„“ subscript πœƒ 2 ultraspherical-Gegenbauer-polynomial πœ† 1 2 β„“ italic-Ο• {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(\cos\theta_{1}\cos\theta_{% 2}+\sin\theta_{1}\sin\theta_{2}\cos\phi\right)=\sum_{\ell=0}^{n}2^{2\ell}(n-% \ell)!\frac{2\lambda+2\ell-1}{2\lambda-1}\frac{({\left(\lambda\right)_{\ell}})% ^{2}}{{\left(2\lambda\right)_{n+\ell}}}(\sin\theta_{1})^{\ell}C^{(\lambda+\ell% )}_{n-\ell}\left(\cos\theta_{1}\right)(\sin\theta_{2})^{\ell}C^{(\lambda+\ell)% }_{n-\ell}\left(\cos\theta_{2}\right)C^{(\lambda-\frac{1}{2})}_{\ell}\left(% \cos\phi\right)}} GegenbauerC(n, lambda, cos(theta[1])*cos(theta[2])+ sin(theta[1])*sin(theta[2])*cos(phi))= sum((2)^(2*ell)*factorial(n - ell)*(2*lambda + 2*ell - 1)/(2*lambda - 1)*((pochhammer(lambda, ell))^(2))/(pochhammer(2*lambda, n + ell))*(sin(theta[1]))^(ell)* GegenbauerC(n - ell, lambda + ell, cos(theta[1]))*(sin(theta[2]))^(ell)* GegenbauerC(n - ell, lambda + ell, cos(theta[2]))*GegenbauerC(ell, lambda -(1)/(2), cos(phi)), ell = 0..n) GegenbauerC[n, \[Lambda], Cos[Subscript[\[Theta], 1]]*Cos[Subscript[\[Theta], 2]]+ Sin[Subscript[\[Theta], 1]]*Sin[Subscript[\[Theta], 2]]*Cos[\[Phi]]]= Sum[(2)^(2*\[ScriptL])*(n - \[ScriptL])!*Divide[2*\[Lambda]+ 2*\[ScriptL]- 1,2*\[Lambda]- 1]*Divide[(Pochhammer[\[Lambda], \[ScriptL]])^(2),Pochhammer[2*\[Lambda], n + \[ScriptL]]]*(Sin[Subscript[\[Theta], 1]])^(\[ScriptL])* GegenbauerC[n - \[ScriptL], \[Lambda]+ \[ScriptL], Cos[Subscript[\[Theta], 1]]]*(Sin[Subscript[\[Theta], 2]])^(\[ScriptL])* GegenbauerC[n - \[ScriptL], \[Lambda]+ \[ScriptL], Cos[Subscript[\[Theta], 2]]]*GegenbauerC[\[ScriptL], \[Lambda]-Divide[1,2], Cos[\[Phi]]], {\[ScriptL], 0, n}] Failure Failure Skip Error
18.18.E9 P n ⁑ ( cos ⁑ ΞΈ 1 ⁒ cos ⁑ ΞΈ 2 + sin ⁑ ΞΈ 1 ⁒ sin ⁑ ΞΈ 2 ⁒ cos ⁑ Ο• ) = P n ⁑ ( cos ⁑ ΞΈ 1 ) ⁒ P n ⁑ ( cos ⁑ ΞΈ 2 ) + 2 ⁒ βˆ‘ β„“ = 1 n ( n - β„“ ) ! ⁒ ( n + β„“ ) ! 2 2 ⁒ β„“ ⁒ ( n ! ) 2 ⁒ ( sin ⁑ ΞΈ 1 ) β„“ ⁒ P n - β„“ ( β„“ , β„“ ) ⁑ ( cos ⁑ ΞΈ 1 ) ⁒ ( sin ⁑ ΞΈ 2 ) β„“ ⁒ P n - β„“ ( β„“ , β„“ ) ⁑ ( cos ⁑ ΞΈ 2 ) ⁒ cos ⁑ ( β„“ ⁒ Ο• ) Legendre-spherical-polynomial 𝑛 subscript πœƒ 1 subscript πœƒ 2 subscript πœƒ 1 subscript πœƒ 2 italic-Ο• Legendre-spherical-polynomial 𝑛 subscript πœƒ 1 Legendre-spherical-polynomial 𝑛 subscript πœƒ 2 2 superscript subscript β„“ 1 𝑛 𝑛 β„“ 𝑛 β„“ superscript 2 2 β„“ superscript 𝑛 2 superscript subscript πœƒ 1 β„“ Jacobi-polynomial-P β„“ β„“ 𝑛 β„“ subscript πœƒ 1 superscript subscript πœƒ 2 β„“ Jacobi-polynomial-P β„“ β„“ 𝑛 β„“ subscript πœƒ 2 β„“ italic-Ο• {\displaystyle{\displaystyle P_{n}\left(\cos\theta_{1}\cos\theta_{2}+\sin% \theta_{1}\sin\theta_{2}\cos\phi\right)={P_{n}\left(\cos\theta_{1}\right)P_{n}% \left(\cos\theta_{2}\right)+2\sum_{\ell=1}^{n}\frac{(n-\ell)!\;(n+\ell)!}{2^{2% \ell}(n!)^{2}}(\sin\theta_{1})^{\ell}P^{(\ell,\ell)}_{n-\ell}\left(\cos\theta_% {1}\right)(\sin\theta_{2})^{\ell}P^{(\ell,\ell)}_{n-\ell}\left(\cos\theta_{2}% \right)\cos\left(\ell\phi\right)}}} LegendreP(n, cos(theta[1])*cos(theta[2])+ sin(theta[1])*sin(theta[2])*cos(phi))=LegendreP(n, cos(theta[1]))*LegendreP(n, cos(theta[2]))+ 2*sum((factorial(n - ell)*factorial(n + ell))/((2)^(2*ell)*(factorial(n))^(2))*(sin(theta[1]))^(ell)* JacobiP(n - ell, ell, ell, cos(theta[1]))*(sin(theta[2]))^(ell)* JacobiP(n - ell, ell, ell, cos(theta[2]))*cos(ell*phi), ell = 1..n) LegendreP[n, Cos[Subscript[\[Theta], 1]]*Cos[Subscript[\[Theta], 2]]+ Sin[Subscript[\[Theta], 1]]*Sin[Subscript[\[Theta], 2]]*Cos[\[Phi]]]=LegendreP[n, Cos[Subscript[\[Theta], 1]]]*LegendreP[n, Cos[Subscript[\[Theta], 2]]]+ 2*Sum[Divide[(n - \[ScriptL])!*(n + \[ScriptL])!,(2)^(2*\[ScriptL])*((n)!)^(2)]*(Sin[Subscript[\[Theta], 1]])^(\[ScriptL])* JacobiP[n - \[ScriptL], \[ScriptL], \[ScriptL], Cos[Subscript[\[Theta], 1]]]*(Sin[Subscript[\[Theta], 2]])^(\[ScriptL])* JacobiP[n - \[ScriptL], \[ScriptL], \[ScriptL], Cos[Subscript[\[Theta], 2]]]*Cos[\[ScriptL]*\[Phi]], {\[ScriptL], 1, n}] Failure Failure Skip Error
18.18.E13 H n ⁑ ( Ξ» ⁒ x ) = Ξ» n ⁒ βˆ‘ β„“ = 0 ⌊ n / 2 βŒ‹ ( - n ) 2 ⁒ β„“ β„“ ! ⁒ ( 1 - Ξ» - 2 ) β„“ ⁒ H n - 2 ⁒ β„“ ⁑ ( x ) Hermite-polynomial-H 𝑛 πœ† π‘₯ superscript πœ† 𝑛 superscript subscript β„“ 0 𝑛 2 Pochhammer 𝑛 2 β„“ β„“ superscript 1 superscript πœ† 2 β„“ Hermite-polynomial-H 𝑛 2 β„“ π‘₯ {\displaystyle{\displaystyle H_{n}\left(\lambda x\right)=\lambda^{n}\sum_{\ell% =0}^{\left\lfloor n/2\right\rfloor}\frac{{\left(-n\right)_{2\ell}}}{\ell!}(1-% \lambda^{-2})^{\ell}H_{n-2\ell}\left(x\right)}} HermiteH(n, lambda*x)= (lambda)^(n)* sum((pochhammer(- n, 2*ell))/(factorial(ell))*(1 - (lambda)^(- 2))^(ell)* HermiteH(n - 2*ell, x), ell = 0..floor(n/ 2)) HermiteH[n, \[Lambda]*x]= (\[Lambda])^(n)* Sum[Divide[Pochhammer[- n, 2*\[ScriptL]],(\[ScriptL])!]*(1 - (\[Lambda])^(- 2))^(\[ScriptL])* HermiteH[n - 2*\[ScriptL], x], {\[ScriptL], 0, Floor[n/ 2]}] Failure Failure Skip
Fail
Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[n, 1], Rule[x, 1], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[5.656854249492381, 5.656854249492381] <- {Rule[n, 1], Rule[x, 2], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[8.485281374238571, 8.485281374238571] <- {Rule[n, 1], Rule[x, 3], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[-2.0, 16.0] <- {Rule[n, 2], Rule[x, 1], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
18.18.E20 ( 2 ⁒ x ) n = βˆ‘ β„“ = 0 ⌊ n / 2 βŒ‹ ( - n ) 2 ⁒ β„“ β„“ ! ⁒ H n - 2 ⁒ β„“ ⁑ ( x ) superscript 2 π‘₯ 𝑛 superscript subscript β„“ 0 𝑛 2 Pochhammer 𝑛 2 β„“ β„“ Hermite-polynomial-H 𝑛 2 β„“ π‘₯ {\displaystyle{\displaystyle(2x)^{n}=\sum_{\ell=0}^{\left\lfloor n/2\right% \rfloor}\frac{{\left(-n\right)_{2\ell}}}{\ell!}H_{n-2\ell}\left(x\right)}} (2*x)^(n)= sum((pochhammer(- n, 2*ell))/(factorial(ell))*HermiteH(n - 2*ell, x), ell = 0..floor(n/ 2)) (2*x)^(n)= Sum[Divide[Pochhammer[- n, 2*\[ScriptL]],(\[ScriptL])!]*HermiteH[n - 2*\[ScriptL], x], {\[ScriptL], 0, Floor[n/ 2]}] Failure Failure Skip
Fail
2.0 <- {Rule[n, 1], Rule[x, 1]}
4.0 <- {Rule[n, 1], Rule[x, 2]}
6.0 <- {Rule[n, 1], Rule[x, 3]}
4.0 <- {Rule[n, 2], Rule[x, 1]}
... skip entries to safe data
18.18.E21 T m ⁑ ( x ) ⁒ T n ⁑ ( x ) = 1 2 ⁒ ( T m + n ⁑ ( x ) + T m - n ⁑ ( x ) ) Chebyshev-polynomial-first-kind-T π‘š π‘₯ Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ 1 2 Chebyshev-polynomial-first-kind-T π‘š 𝑛 π‘₯ Chebyshev-polynomial-first-kind-T π‘š 𝑛 π‘₯ {\displaystyle{\displaystyle T_{m}\left(x\right)T_{n}\left(x\right)=\tfrac{1}{% 2}(T_{m+n}\left(x\right)+T_{m-n}\left(x\right))}} ChebyshevT(m, x)*ChebyshevT(n, x)=(1)/(2)*(ChebyshevT(m + n, x)+ ChebyshevT(m - n, x)) ChebyshevT[m, x]*ChebyshevT[n, x]=Divide[1,2]*(ChebyshevT[m + n, x]+ ChebyshevT[m - n, x]) Failure Failure Successful Successful
18.18.E24 b n , β„“ = ( n β„“ ) ⁒ ( n + Ξ± + Ξ² + 1 ) β„“ ⁒ ( - Ξ² - n ) n - β„“ 2 β„“ ⁒ ( Ξ± + 1 ) n subscript 𝑏 𝑛 β„“ binomial 𝑛 β„“ Pochhammer 𝑛 𝛼 𝛽 1 β„“ Pochhammer 𝛽 𝑛 𝑛 β„“ superscript 2 β„“ Pochhammer 𝛼 1 𝑛 {\displaystyle{\displaystyle b_{n,\ell}=\genfrac{(}{)}{0.0pt}{}{n}{\ell}\frac{% {\left(n+\alpha+\beta+1\right)_{\ell}}{\left(-\beta-n\right)_{n-\ell}}}{2^{% \ell}{\left(\alpha+1\right)_{n}}}}} b[n , ell]=binomial(n,ell)*(pochhammer(n + alpha + beta + 1, ell)*pochhammer(- beta - n, n - ell))/((2)^(ell)* pochhammer(alpha + 1, n)) Subscript[b, n , \[ScriptL]]=Binomial[n,\[ScriptL]]*Divide[Pochhammer[n + \[Alpha]+ \[Beta]+ 1, \[ScriptL]]*Pochhammer[- \[Beta]- n, n - \[ScriptL]],(2)^(\[ScriptL])* Pochhammer[\[Alpha]+ 1, n]] Failure Failure
Fail
.414213562+1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), b[n,ell] = 2^(1/2)+I*2^(1/2), ell = 1, n = 1}
3.722604190+1.233562514*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), b[n,ell] = 2^(1/2)+I*2^(1/2), ell = 1, n = 2}
-2.510958325+1.956166705*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), b[n,ell] = 2^(1/2)+I*2^(1/2), ell = 1, n = 3}
1.414213562+1.414213562*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), b[n,ell] = 2^(1/2)+I*2^(1/2), ell = 2, n = 1}
... skip entries to safe data
Skip
18.18.E25 P n ( Ξ± , Ξ² ) ⁑ ( x ) P n ( Ξ± , Ξ² ) ⁑ ( 1 ) ⁒ P n ( Ξ± , Ξ² ) ⁑ ( y ) P n ( Ξ± , Ξ² ) ⁑ ( 1 ) = βˆ‘ β„“ = 0 n b n , β„“ ⁒ ( x + y ) β„“ ⁒ P β„“ ( Ξ± , Ξ² ) ⁑ ( ( 1 + x ⁒ y ) / ( x + y ) ) P β„“ ( Ξ± , Ξ² ) ⁑ ( 1 ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑦 Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 superscript subscript β„“ 0 𝑛 subscript 𝑏 𝑛 β„“ superscript π‘₯ 𝑦 β„“ Jacobi-polynomial-P 𝛼 𝛽 β„“ 1 π‘₯ 𝑦 π‘₯ 𝑦 Jacobi-polynomial-P 𝛼 𝛽 β„“ 1 {\displaystyle{\displaystyle\frac{P^{(\alpha,\beta)}_{n}\left(x\right)}{P^{(% \alpha,\beta)}_{n}\left(1\right)}\frac{P^{(\alpha,\beta)}_{n}\left(y\right)}{P% ^{(\alpha,\beta)}_{n}\left(1\right)}=\sum_{\ell=0}^{n}b_{n,\ell}(x+y)^{\ell}\*% \frac{P^{(\alpha,\beta)}_{\ell}\left(\ifrac{(1+xy)}{(x+y)}\right)}{P^{(\alpha,% \beta)}_{\ell}\left(1\right)}}} (JacobiP(n, alpha, beta, x))/(JacobiP(n, alpha, beta, 1))*(JacobiP(n, alpha, beta, y))/(JacobiP(n, alpha, beta, 1))= sum(b[n , ell]*(x + y)^(ell)*(JacobiP(ell, alpha, beta, (1 + x*y)/(x + y)))/(JacobiP(ell, alpha, beta, 1)), ell = 0..n) Divide[JacobiP[n, \[Alpha], \[Beta], x],JacobiP[n, \[Alpha], \[Beta], 1]]*Divide[JacobiP[n, \[Alpha], \[Beta], y],JacobiP[n, \[Alpha], \[Beta], 1]]= Sum[Subscript[b, n , \[ScriptL]]*(x + y)^(\[ScriptL])*Divide[JacobiP[\[ScriptL], \[Alpha], \[Beta], Divide[1 + x*y,x + y]],JacobiP[\[ScriptL], \[Alpha], \[Beta], 1]], {\[ScriptL], 0, n}] Failure Failure Skip Skip
18.18.E26 P n ( Ξ± , Ξ² ) ⁑ ( x ) P n ( Ξ± , Ξ² ) ⁑ ( 1 ) = βˆ‘ β„“ = 0 n b n , β„“ ⁒ ( x + 1 ) β„“ Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ Jacobi-polynomial-P 𝛼 𝛽 𝑛 1 superscript subscript β„“ 0 𝑛 subscript 𝑏 𝑛 β„“ superscript π‘₯ 1 β„“ {\displaystyle{\displaystyle\frac{P^{(\alpha,\beta)}_{n}\left(x\right)}{P^{(% \alpha,\beta)}_{n}\left(1\right)}=\sum_{\ell=0}^{n}b_{n,\ell}(x+1)^{\ell}}} (JacobiP(n, alpha, beta, x))/(JacobiP(n, alpha, beta, 1))= sum(b[n , ell]*(x + 1)^(ell), ell = 0..n) Divide[JacobiP[n, \[Alpha], \[Beta], x],JacobiP[n, \[Alpha], \[Beta], 1]]= Sum[Subscript[b, n , \[ScriptL]]*(x + 1)^(\[ScriptL]), {\[ScriptL], 0, n}] Failure Failure Skip Skip
18.18.E28 βˆ‘ n = 0 ∞ H n ⁑ ( x ) ⁒ H n ⁑ ( y ) 2 n ⁒ n ! ⁒ z n = ( 1 - z 2 ) - 1 2 ⁒ exp ⁑ ( 2 ⁒ x ⁒ y ⁒ z - ( x 2 + y 2 ) ⁒ z 2 1 - z 2 ) superscript subscript 𝑛 0 Hermite-polynomial-H 𝑛 π‘₯ Hermite-polynomial-H 𝑛 𝑦 superscript 2 𝑛 𝑛 superscript 𝑧 𝑛 superscript 1 superscript 𝑧 2 1 2 2 π‘₯ 𝑦 𝑧 superscript π‘₯ 2 superscript 𝑦 2 superscript 𝑧 2 1 superscript 𝑧 2 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}\frac{H_{n}\left(x\right)H_{n}% \left(y\right)}{2^{n}n!}z^{n}=(1-z^{2})^{-\frac{1}{2}}\exp\left(\frac{2xyz-(x^% {2}+y^{2})z^{2}}{1-z^{2}}\right)}} sum((HermiteH(n, x)*HermiteH(n, y))/((2)^(n)* factorial(n))*(z)^(n), n = 0..infinity)=(1 - (z)^(2))^(-(1)/(2))* exp((2*x*y*z -((x)^(2)+ (y)^(2))* (z)^(2))/(1 - (z)^(2))) Sum[Divide[HermiteH[n, x]*HermiteH[n, y],(2)^(n)* (n)!]*(z)^(n), {n, 0, Infinity}]=(1 - (z)^(2))^(-Divide[1,2])* Exp[Divide[2*x*y*z -((x)^(2)+ (y)^(2))* (z)^(2),1 - (z)^(2)]] Error Failure - Skip
18.18.E29 βˆ‘ β„“ = 0 n C β„“ ( Ξ» ) ⁑ ( x ) ⁒ C n - β„“ ( ΞΌ ) ⁑ ( x ) = C n ( Ξ» + ΞΌ ) ⁑ ( x ) superscript subscript β„“ 0 𝑛 ultraspherical-Gegenbauer-polynomial πœ† β„“ π‘₯ ultraspherical-Gegenbauer-polynomial πœ‡ 𝑛 β„“ π‘₯ ultraspherical-Gegenbauer-polynomial πœ† πœ‡ 𝑛 π‘₯ {\displaystyle{\displaystyle\sum_{\ell=0}^{n}C^{(\lambda)}_{\ell}\left(x\right% )C^{(\mu)}_{n-\ell}\left(x\right)=C^{(\lambda+\mu)}_{n}\left(x\right)}} sum(GegenbauerC(ell, lambda, x)*GegenbauerC(n - ell, mu, x), ell = 0..n)= GegenbauerC(n, lambda + mu, x) Sum[GegenbauerC[\[ScriptL], \[Lambda], x]*GegenbauerC[n - \[ScriptL], \[Mu], x], {\[ScriptL], 0, n}]= GegenbauerC[n, \[Lambda]+ \[Mu], x] Failure Successful Skip -
18.18.E30 βˆ‘ β„“ = 0 n β„“ + 2 ⁒ Ξ» 2 ⁒ Ξ» ⁒ C β„“ ( Ξ» ) ⁑ ( x ) ⁒ x n - β„“ = C n ( Ξ» + 1 ) ⁑ ( x ) superscript subscript β„“ 0 𝑛 β„“ 2 πœ† 2 πœ† ultraspherical-Gegenbauer-polynomial πœ† β„“ π‘₯ superscript π‘₯ 𝑛 β„“ ultraspherical-Gegenbauer-polynomial πœ† 1 𝑛 π‘₯ {\displaystyle{\displaystyle\sum_{\ell=0}^{n}\frac{\ell+2\lambda}{2\lambda}C^{% (\lambda)}_{\ell}\left(x\right)x^{n-\ell}=C^{(\lambda+1)}_{n}\left(x\right)}} sum((ell + 2*lambda)/(2*lambda)*GegenbauerC(ell, lambda, x)*(x)^(n - ell), ell = 0..n)= GegenbauerC(n, lambda + 1, x) Sum[Divide[\[ScriptL]+ 2*\[Lambda],2*\[Lambda]]*GegenbauerC[\[ScriptL], \[Lambda], x]*(x)^(n - \[ScriptL]), {\[ScriptL], 0, n}]= GegenbauerC[n, \[Lambda]+ 1, x] Failure Failure Skip Error
18.18.E31 βˆ‘ β„“ = 0 n T β„“ ⁑ ( x ) ⁒ x n - β„“ = U n ⁑ ( x ) superscript subscript β„“ 0 𝑛 Chebyshev-polynomial-first-kind-T β„“ π‘₯ superscript π‘₯ 𝑛 β„“ Chebyshev-polynomial-second-kind-U 𝑛 π‘₯ {\displaystyle{\displaystyle\sum_{\ell=0}^{n}T_{\ell}\left(x\right)x^{n-\ell}=% U_{n}\left(x\right)}} sum(ChebyshevT(ell, x)*(x)^(n - ell), ell = 0..n)= ChebyshevU(n, x) Sum[ChebyshevT[\[ScriptL], x]*(x)^(n - \[ScriptL]), {\[ScriptL], 0, n}]= ChebyshevU[n, x] Failure Failure Skip Error
18.18.E32 2 ⁒ βˆ‘ β„“ = 0 n T 2 ⁒ β„“ ⁑ ( x ) = 1 + U 2 ⁒ n ⁑ ( x ) 2 superscript subscript β„“ 0 𝑛 Chebyshev-polynomial-first-kind-T 2 β„“ π‘₯ 1 Chebyshev-polynomial-second-kind-U 2 𝑛 π‘₯ {\displaystyle{\displaystyle 2\sum_{\ell=0}^{n}T_{2\ell}\left(x\right)=1+U_{2n% }\left(x\right)}} 2*sum(ChebyshevT(2*ell, x), ell = 0..n)= 1 + ChebyshevU(2*n, x) 2*Sum[ChebyshevT[2*\[ScriptL], x], {\[ScriptL], 0, n}]= 1 + ChebyshevU[2*n, x] Failure Successful Skip -
18.18.E33 2 ⁒ βˆ‘ β„“ = 0 n T 2 ⁒ β„“ + 1 ⁑ ( x ) = U 2 ⁒ n + 1 ⁑ ( x ) 2 superscript subscript β„“ 0 𝑛 Chebyshev-polynomial-first-kind-T 2 β„“ 1 π‘₯ Chebyshev-polynomial-second-kind-U 2 𝑛 1 π‘₯ {\displaystyle{\displaystyle 2\sum_{\ell=0}^{n}T_{2\ell+1}\left(x\right)=U_{2n% +1}\left(x\right)}} 2*sum(ChebyshevT(2*ell + 1, x), ell = 0..n)= ChebyshevU(2*n + 1, x) 2*Sum[ChebyshevT[2*\[ScriptL]+ 1, x], {\[ScriptL], 0, n}]= ChebyshevU[2*n + 1, x] Failure Successful Skip -
18.18.E34 2 ⁒ ( 1 - x 2 ) ⁒ βˆ‘ β„“ = 0 n U 2 ⁒ β„“ ⁑ ( x ) = 1 - T 2 ⁒ n + 2 ⁑ ( x ) 2 1 superscript π‘₯ 2 superscript subscript β„“ 0 𝑛 Chebyshev-polynomial-second-kind-U 2 β„“ π‘₯ 1 Chebyshev-polynomial-first-kind-T 2 𝑛 2 π‘₯ {\displaystyle{\displaystyle 2(1-x^{2})\sum_{\ell=0}^{n}U_{2\ell}\left(x\right% )=1-T_{2n+2}\left(x\right)}} 2*(1 - (x)^(2))* sum(ChebyshevU(2*ell, x), ell = 0..n)= 1 - ChebyshevT(2*n + 2, x) 2*(1 - (x)^(2))* Sum[ChebyshevU[2*\[ScriptL], x], {\[ScriptL], 0, n}]= 1 - ChebyshevT[2*n + 2, x] Failure Successful Skip -
18.18.E35 2 ⁒ ( 1 - x 2 ) ⁒ βˆ‘ β„“ = 0 n U 2 ⁒ β„“ + 1 ⁑ ( x ) = x - T 2 ⁒ n + 3 ⁑ ( x ) 2 1 superscript π‘₯ 2 superscript subscript β„“ 0 𝑛 Chebyshev-polynomial-second-kind-U 2 β„“ 1 π‘₯ π‘₯ Chebyshev-polynomial-first-kind-T 2 𝑛 3 π‘₯ {\displaystyle{\displaystyle 2(1-x^{2})\sum_{\ell=0}^{n}U_{2\ell+1}\left(x% \right)=x-T_{2n+3}\left(x\right)}} 2*(1 - (x)^(2))* sum(ChebyshevU(2*ell + 1, x), ell = 0..n)= x - ChebyshevT(2*n + 3, x) 2*(1 - (x)^(2))* Sum[ChebyshevU[2*\[ScriptL]+ 1, x], {\[ScriptL], 0, n}]= x - ChebyshevT[2*n + 3, x] Failure Successful Skip -
18.18.E36 βˆ‘ β„“ = 0 n P β„“ ⁑ ( x ) ⁒ P n - β„“ ⁑ ( x ) = U n ⁑ ( x ) superscript subscript β„“ 0 𝑛 Legendre-spherical-polynomial β„“ π‘₯ Legendre-spherical-polynomial 𝑛 β„“ π‘₯ Chebyshev-polynomial-second-kind-U 𝑛 π‘₯ {\displaystyle{\displaystyle\sum_{\ell=0}^{n}P_{\ell}\left(x\right)P_{n-\ell}% \left(x\right)=U_{n}\left(x\right)}} sum(LegendreP(ell, x)*LegendreP(n - ell, x), ell = 0..n)= ChebyshevU(n, x) Sum[LegendreP[\[ScriptL], x]*LegendreP[n - \[ScriptL], x], {\[ScriptL], 0, n}]= ChebyshevU[n, x] Failure Successful Skip -
18.18.E40 βˆ‘ β„“ = 0 n ( n β„“ ) ⁒ H 2 ⁒ β„“ ⁑ ( x ) ⁒ H 2 ⁒ n - 2 ⁒ β„“ ⁑ ( y ) = ( - 1 ) n ⁒ 2 2 ⁒ n ⁒ n ! ⁒ L n ⁑ ( x 2 + y 2 ) superscript subscript β„“ 0 𝑛 binomial 𝑛 β„“ Hermite-polynomial-H 2 β„“ π‘₯ Hermite-polynomial-H 2 𝑛 2 β„“ 𝑦 superscript 1 𝑛 superscript 2 2 𝑛 𝑛 shorthand-Laguerre-polynomial-L 𝑛 superscript π‘₯ 2 superscript 𝑦 2 {\displaystyle{\displaystyle\sum_{\ell=0}^{n}\genfrac{(}{)}{0.0pt}{}{n}{\ell}H% _{2\ell}\left(x\right)H_{2n-2\ell}\left(y\right)=(-1)^{n}2^{2n}n!L_{n}\left(x^% {2}+y^{2}\right)}} sum(binomial(n,ell)*HermiteH(2*ell, x)*HermiteH(2*n - 2*ell, y), ell = 0..n)=(- 1)^(n)* (2)^(2*n)* factorial(n)*LaguerreL(n, (x)^(2)+ (y)^(2)) Error Failure Error - -
18.19.E4 h n = 2 ⁒ Ο€ ⁒ Ξ“ ⁑ ( n + a + a Β― ) ⁒ Ξ“ ⁑ ( n + b + b Β― ) ⁒ | Ξ“ ⁑ ( n + a + b Β― ) | 2 ( 2 ⁒ n + 2 ⁒ β„œ ⁑ ( a + b ) - 1 ) ⁒ Ξ“ ⁑ ( n + 2 ⁒ β„œ ⁑ ( a + b ) - 1 ) ⁒ n ! subscript β„Ž 𝑛 2 πœ‹ Euler-Gamma 𝑛 π‘Ž π‘Ž Euler-Gamma 𝑛 𝑏 𝑏 superscript Euler-Gamma 𝑛 π‘Ž 𝑏 2 2 𝑛 2 π‘Ž 𝑏 1 Euler-Gamma 𝑛 2 π‘Ž 𝑏 1 𝑛 {\displaystyle{\displaystyle h_{n}=\frac{2\pi\Gamma\left(n+a+\overline{a}% \right)\Gamma\left(n+b+\overline{b}\right)|\Gamma\left(n+a+\overline{b}\right)% |^{2}}{\left(2n+2\Re(a+b)-1\right)\Gamma\left(n+2\Re(a+b)-1\right)n!}}} h[n]=(2*Pi*GAMMA(n + a + conjugate(a))*GAMMA(n + b + conjugate(b))*(abs(GAMMA(n + a + conjugate(b))))^(2))/((2*n + 2*Re(a + b)- 1)* GAMMA(n + 2*Re(a + b)- 1)*factorial(n)) Subscript[h, n]=Divide[2*Pi*Gamma[n + a + Conjugate[a]]*Gamma[n + b + Conjugate[b]]*(Abs[Gamma[n + a + Conjugate[b]]])^(2),(2*n + 2*Re[a + b]- 1)* Gamma[n + 2*Re[a + b]- 1]*(n)!] Failure Failure
Fail
-6.363350679+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)+I*2^(1/2), n = 1}
-112.1467589+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)+I*2^(1/2), n = 2}
-2509.272955+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)+I*2^(1/2), n = 3}
-6.363350679-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
18.19.E5 k n = ( n + 2 ⁒ β„œ ⁑ ( a + b ) - 1 ) n n ! subscript π‘˜ 𝑛 Pochhammer 𝑛 2 π‘Ž 𝑏 1 𝑛 𝑛 {\displaystyle{\displaystyle k_{n}=\frac{{\left(n+2\Re(a+b)-1\right)_{n}}}{n!}}} k[n]=(pochhammer(n + 2*Re(a + b)- 1, n))/(factorial(n)) Subscript[k, n]=Divide[Pochhammer[n + 2*Re[a + b]- 1, n],(n)!] Failure Failure
Fail
-4.242640686+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), k[n] = 2^(1/2)+I*2^(1/2), n = 1}
-24.07106780+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), k[n] = 2^(1/2)+I*2^(1/2), n = 2}
-105.2687108+1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), k[n] = 2^(1/2)+I*2^(1/2), n = 3}
-4.242640686-1.414213562*I <- {a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), k[n] = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Successful
18.19#Ex1 h n = 2 ⁒ Ο€ ⁒ Ξ“ ⁑ ( n + 2 ⁒ Ξ» ) ( 2 ⁒ sin ⁑ Ο• ) 2 ⁒ Ξ» ⁒ n ! subscript β„Ž 𝑛 2 πœ‹ Euler-Gamma 𝑛 2 πœ† superscript 2 italic-Ο• 2 πœ† 𝑛 {\displaystyle{\displaystyle h_{n}=\frac{2\pi\Gamma\left(n+2\lambda\right)}{(2% \sin\phi)^{2\lambda}n!}}} h[n]=(2*Pi*GAMMA(n + 2*lambda))/((2*sin(phi))^(2*lambda)* factorial(n)) Subscript[h, n]=Divide[2*Pi*Gamma[n + 2*\[Lambda]],(2*Sin[\[Phi]])^(2*\[Lambda])* (n)!] Failure Failure
Fail
1.256815617+1.596021436*I <- {lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)+I*2^(1/2), n = 1}
.8558051203+1.539638353*I <- {lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)+I*2^(1/2), n = 2}
.397217113+1.089609188*I <- {lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)+I*2^(1/2), n = 3}
1.256815617-1.232405688*I <- {lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
18.19#Ex2 k n = ( 2 ⁒ sin ⁑ Ο• ) n n ! subscript π‘˜ 𝑛 superscript 2 italic-Ο• 𝑛 𝑛 {\displaystyle{\displaystyle k_{n}=\frac{(2\sin\phi)^{n}}{n!}}} k[n]=((2*sin(phi))^(n))/(factorial(n)) Subscript[k, n]=Divide[(2*Sin[\[Phi]])^(n),(n)!] Failure Failure
Fail
-2.888857518+.8106906210*I <- {phi = 2^(1/2)+I*2^(1/2), k[n] = 2^(1/2)+I*2^(1/2), n = 1}
-7.661876828-1.182788552*I <- {phi = 2^(1/2)+I*2^(1/2), k[n] = 2^(1/2)+I*2^(1/2), n = 2}
-11.08169034-4.136690922*I <- {phi = 2^(1/2)+I*2^(1/2), k[n] = 2^(1/2)+I*2^(1/2), n = 3}
-2.888857518-2.017736503*I <- {phi = 2^(1/2)+I*2^(1/2), k[n] = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Successful
18.20#Ex2 ΞΊ n = ( - N ) n ⁒ ( Ξ± + 1 ) n subscript πœ… 𝑛 Pochhammer 𝑁 𝑛 Pochhammer 𝛼 1 𝑛 {\displaystyle{\displaystyle\kappa_{n}={\left(-N\right)_{n}}{\left(\alpha+1% \right)_{n}}}} kappa[n]= pochhammer(- N, n)*pochhammer(alpha + 1, n) Subscript[\[Kappa], n]= Pochhammer[- N, n]*Pochhammer[\[Alpha]+ 1, n] Failure Failure
Fail
2.828427124+6.828427122*I <- {N = 2^(1/2)+I*2^(1/2), alpha = 2^(1/2)+I*2^(1/2), kappa[n] = 2^(1/2)+I*2^(1/2), n = 1}
31.55634916-3.071067807*I <- {N = 2^(1/2)+I*2^(1/2), alpha = 2^(1/2)+I*2^(1/2), kappa[n] = 2^(1/2)+I*2^(1/2), n = 2}
115.3553390-182.3502881*I <- {N = 2^(1/2)+I*2^(1/2), alpha = 2^(1/2)+I*2^(1/2), kappa[n] = 2^(1/2)+I*2^(1/2), n = 3}
2.828427124+3.999999998*I <- {N = 2^(1/2)+I*2^(1/2), alpha = 2^(1/2)+I*2^(1/2), kappa[n] = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Successful
18.22.E8 ( n + 1 ) ⁒ p n + 1 ⁒ ( x ) = 2 ⁒ ( x ⁒ sin ⁑ Ο• + ( n + Ξ» ) ⁒ cos ⁑ Ο• ) ⁒ p n ⁒ ( x ) - ( n + 2 ⁒ Ξ» - 1 ) ⁒ p n - 1 ⁒ ( x ) 𝑛 1 subscript 𝑝 𝑛 1 π‘₯ 2 π‘₯ italic-Ο• 𝑛 πœ† italic-Ο• subscript 𝑝 𝑛 π‘₯ 𝑛 2 πœ† 1 subscript 𝑝 𝑛 1 π‘₯ {\displaystyle{\displaystyle(n+1)p_{n+1}(x)=2\left(x\sin\phi+(n+\lambda)\cos% \phi\right)p_{n}(x)-(n+2\lambda-1)p_{n-1}(x)}} (n + 1)* p[n + 1]*(x)= 2*(x*sin(phi)+(n + lambda)*cos(phi))* p[n]*(x)-(n + 2*lambda - 1)* p[n - 1]*(x) (n + 1)* Subscript[p, n + 1]*(x)= 2*(x*Sin[\[Phi]]+(n + \[Lambda])*Cos[\[Phi]])* Subscript[p, n]*(x)-(n + 2*\[Lambda]- 1)* Subscript[p, n - 1]*(x) Failure Failure Skip Skip
18.22.E14 A ⁒ ( x ) ⁒ p n ⁒ ( x + i ) - ( A ⁒ ( x ) + C ⁒ ( x ) ) ⁒ p n ⁒ ( x ) + C ⁒ ( x ) ⁒ p n ⁒ ( x - i ) + n ⁒ ( n + 2 ⁒ β„œ ⁑ ( a + b ) - 1 ) ⁒ p n ⁒ ( x ) = 0 𝐴 π‘₯ subscript 𝑝 𝑛 π‘₯ 𝑖 𝐴 π‘₯ 𝐢 π‘₯ subscript 𝑝 𝑛 π‘₯ 𝐢 π‘₯ subscript 𝑝 𝑛 π‘₯ 𝑖 𝑛 𝑛 2 π‘Ž 𝑏 1 subscript 𝑝 𝑛 π‘₯ 0 {\displaystyle{\displaystyle A(x)p_{n}(x+i)-\left(A(x)+C(x)\right)p_{n}(x)+C(x% )p_{n}(x-i)+n(n+2\Re(a+b)-1)p_{n}(x)=0}} A*(x)* p[n]*(x + I)-(A*(x)+ C*(x))* p[n]*(x)+ C*(x)* p[n]*(x - I)+ n*(n + 2*Re(a + b)- 1)* p[n]*(x)= 0 A*(x)* Subscript[p, n]*(x + I)-(A*(x)+ C*(x))* Subscript[p, n]*(x)+ C*(x)* Subscript[p, n]*(x - I)+ n*(n + 2*Re[a + b]- 1)* Subscript[p, n]*(x)= 0 Failure Failure Skip Skip
18.22#Ex7 A ⁒ ( x ) = ( x + i ⁒ a Β― ) ⁒ ( x + i ⁒ b Β― ) 𝐴 π‘₯ π‘₯ imaginary-unit π‘Ž π‘₯ imaginary-unit 𝑏 {\displaystyle{\displaystyle A(x)=(x+\mathrm{i}\overline{a})(x+\mathrm{i}% \overline{b})}} A*(x)=(x + I*conjugate(a))*(x + I*conjugate(b)) A*(x)=(x + I*Conjugate[a])*(x + I*Conjugate[b]) Failure Failure
Fail
-2.414213562-5.414213560*I <- {A = 2^(1/2)+I*2^(1/2), a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), x = 1}
-6.828427124-6.828427122*I <- {A = 2^(1/2)+I*2^(1/2), a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), x = 2}
-13.24264068-8.242640684*I <- {A = 2^(1/2)+I*2^(1/2), a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), x = 3}
4.414213560-1.414213562*I <- {A = 2^(1/2)+I*2^(1/2), a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[-2.414213562373094, -5.414213562373095] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[A, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-6.82842712474619, -6.82842712474619] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[A, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-13.242640687119282, -8.242640687119286] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[A, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[4.414213562373096, -1.4142135623730947] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[A, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
... skip entries to safe data
18.22#Ex8 C ⁒ ( x ) = ( x - i ⁒ a ) ⁒ ( x - i ⁒ b ) 𝐢 π‘₯ π‘₯ imaginary-unit π‘Ž π‘₯ imaginary-unit 𝑏 {\displaystyle{\displaystyle C(x)=(x-\mathrm{i}a)(x-\mathrm{i}b)}} C*(x)=(x - I*a)*(x - I*b) C*(x)=(x - I*a)*(x - I*b) Failure Failure
Fail
-2.414213562+8.242640684*I <- {C = 2^(1/2)+I*2^(1/2), a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), x = 1}
-6.828427124+12.48528137*I <- {C = 2^(1/2)+I*2^(1/2), a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), x = 2}
-13.24264068+16.72792206*I <- {C = 2^(1/2)+I*2^(1/2), a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)+I*2^(1/2), x = 3}
4.414213560+4.242640686*I <- {C = 2^(1/2)+I*2^(1/2), a = 2^(1/2)+I*2^(1/2), b = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[-2.414213562373094, 8.242640687119286] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[C, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
Complex[-6.82842712474619, 12.48528137423857] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[C, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2]}
Complex[-13.242640687119282, 16.72792206135786] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[C, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3]}
Complex[-2.414213562373094, 5.414213562373095] <- {Rule[a, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[b, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[C, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
... skip entries to safe data
18.22.E17 A ⁒ ( x ) ⁒ p n ⁒ ( x + i ) - ( A ⁒ ( x ) + C ⁒ ( x ) ) ⁒ p n ⁒ ( x ) + C ⁒ ( x ) ⁒ p n ⁒ ( x - i ) + 2 ⁒ n ⁒ sin ⁑ Ο• ⁒ p n ⁒ ( x ) = 0 𝐴 π‘₯ subscript 𝑝 𝑛 π‘₯ 𝑖 𝐴 π‘₯ 𝐢 π‘₯ subscript 𝑝 𝑛 π‘₯ 𝐢 π‘₯ subscript 𝑝 𝑛 π‘₯ 𝑖 2 𝑛 italic-Ο• subscript 𝑝 𝑛 π‘₯ 0 {\displaystyle{\displaystyle A(x)p_{n}(x+i)-\left(A(x)+C(x)\right)p_{n}(x)+C(x% )p_{n}(x-i)+2n\sin\phi\,p_{n}(x)=0}} A*(x)* p[n]*(x + I)-(A*(x)+ C*(x))* p[n]*(x)+ C*(x)* p[n]*(x - I)+ 2*n*sin(phi)*p[n]*(x)= 0 A*(x)* Subscript[p, n]*(x + I)-(A*(x)+ C*(x))* Subscript[p, n]*(x)+ C*(x)* Subscript[p, n]*(x - I)+ 2*n*Sin[\[Phi]]*Subscript[p, n]*(x)= 0 Failure Failure Skip Skip
18.22#Ex9 A ⁒ ( x ) = e i ⁒ Ο• ⁒ ( x + i ⁒ Ξ» ) 𝐴 π‘₯ superscript 𝑒 imaginary-unit italic-Ο• π‘₯ imaginary-unit πœ† {\displaystyle{\displaystyle A(x)=e^{\mathrm{i}\phi}(x+\mathrm{i}\lambda)}} A*(x)= exp(I*phi)*(x + I*lambda) A*(x)= Exp[I*\[Phi]]*(x + I*\[Lambda]) Failure Failure
Fail
1.769530126+1.460067411*I <- {A = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), x = 1}
3.145831166+2.634138542*I <- {A = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), x = 2}
4.522132206+3.808209673*I <- {A = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), x = 3}
7.425753628+2.190006980*I <- {A = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[1.7695301261666299, 1.4600674117156012] <- {Rule[A, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Ο•, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[3.145831166712761, 2.6341385429136204] <- {Rule[A, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Ο•, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[4.522132207258893, 3.808209674111639] <- {Rule[A, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Ο•, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[7.425753631849798, 2.190006983651361] <- {Rule[A, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Ο•, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
18.22#Ex10 C ⁒ ( x ) = e - i ⁒ Ο• ⁒ ( x - i ⁒ Ξ» ) 𝐢 π‘₯ superscript 𝑒 imaginary-unit italic-Ο• π‘₯ imaginary-unit πœ† {\displaystyle{\displaystyle C(x)=e^{-\mathrm{i}\phi}(x-\mathrm{i}\lambda)}} C*(x)= exp(- I*phi)*(x - I*lambda) C*(x)= Exp[- I*\[Phi]]*(x - I*\[Lambda]) Failure Failure
Fail
5.611500167+12.13011774*I <- {C = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), x = 1}
6.384278266+17.60725995*I <- {C = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), x = 2}
7.157056365+23.08440217*I <- {C = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)+I*2^(1/2), x = 3}
1.662297320+2.047585079*I <- {C = 2^(1/2)+I*2^(1/2), lambda = 2^(1/2)+I*2^(1/2), phi = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
Complex[5.611500173592372, 12.13011774491578] <- {Rule[C, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Ο•, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[6.384278274402982, 17.607259958792373] <- {Rule[C, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 2], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Ο•, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[7.1570563752135925, 23.084402172668966] <- {Rule[C, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 3], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Ο•, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.662297321063714, 2.0475850791686696] <- {Rule[C, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1], Rule[Ξ», Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Ο•, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
18.25.E2 ∫ 0 ∞ p n ⁒ ( x ) ⁒ p m ⁒ ( x ) ⁒ w ⁒ ( x ) ⁒ d x = h n ⁒ Ξ΄ n , m superscript subscript 0 subscript 𝑝 𝑛 π‘₯ subscript 𝑝 π‘š π‘₯ 𝑀 π‘₯ π‘₯ subscript β„Ž 𝑛 Kronecker 𝑛 π‘š {\displaystyle{\displaystyle\int_{0}^{\infty}p_{n}(x)p_{m}(x)w(x)\mathrm{d}x=h% _{n}\delta_{n,m}}} int(p[n]*(x)* p[m]*(x)* w*(x), x = 0..infinity)= h[n]*KroneckerDelta[n, m] Integrate[Subscript[p, n]*(x)* Subscript[p, m]*(x)* w*(x), {x, 0, Infinity}]= Subscript[h, n]*KroneckerDelta[n, m] Failure Failure Skip Skip
18.25.E4 w ⁒ ( y 2 ) = 1 2 ⁒ y ⁒ | ∏ j Ξ“ ⁑ ( a j + i ⁒ y ) Ξ“ ⁑ ( 2 ⁒ i ⁒ y ) | 2 𝑀 superscript 𝑦 2 1 2 𝑦 superscript subscript product 𝑗 Euler-Gamma subscript π‘Ž 𝑗 𝑖 𝑦 Euler-Gamma 2 𝑖 𝑦 2 {\displaystyle{\displaystyle w(y^{2})=\frac{1}{2y}\left|\frac{\prod_{j}\Gamma% \left(a_{j}+iy\right)}{\Gamma\left(2iy\right)}\right|^{2}}} w*((y)^(2))=(1)/(2*y)*(abs((product(GAMMA(a[j]+ I*y), j = - infinity..infinity))/(GAMMA(2*I*y))))^(2) w*((y)^(2))=Divide[1,2*y]*(Abs[Divide[Product[Gamma[Subscript[a, j]+ I*y], {j, - Infinity, Infinity}],Gamma[2*I*y]]])^(2) Failure Failure Skip Skip
18.25.E5 h n = n ! ⁒  2 ⁒ Ο€ ⁒ ∏ j < β„“ Ξ“ ⁑ ( n + a j + a β„“ ) ( 2 ⁒ n - 1 + βˆ‘ j a j ) ⁒ Ξ“ ⁑ ( n - 1 + βˆ‘ j a j ) subscript β„Ž 𝑛 𝑛  2 πœ‹ subscript product 𝑗 β„“ Euler-Gamma 𝑛 subscript π‘Ž 𝑗 subscript π‘Ž β„“ 2 𝑛 1 subscript 𝑗 subscript π‘Ž 𝑗 Euler-Gamma 𝑛 1 subscript 𝑗 subscript π‘Ž 𝑗 {\displaystyle{\displaystyle h_{n}=\frac{n!\,2\pi\prod_{j<\ell}\Gamma\left(n+a% _{j}+a_{\ell}\right)}{(2n-1+\sum_{j}a_{j})\Gamma\left(n-1+\sum_{j}a_{j}\right)% }}} h[n]=(factorial(n)*2*Pi*product(GAMMA(n + a[j]+ a[ell]), j = - infinity..ell - 1))/((2*n - 1 + sum(a[j], j = - infinity..infinity))* GAMMA(n - 1 + sum(a[j], j = - infinity..infinity))) Subscript[h, n]=Divide[(n)!*2*Pi*Product[Gamma[n + Subscript[a, j]+ Subscript[a, \[ScriptL]]], {j, - Infinity, \[ScriptL] - 1}],(2*n - 1 + Sum[Subscript[a, j], {j, - Infinity, Infinity}])* Gamma[n - 1 + Sum[Subscript[a, j], {j, - Infinity, Infinity}]]] Error Error - -
18.25.E7 w ⁒ ( y 2 ) = 1 2 ⁒ y ⁒ | ∏ j Ξ“ ⁑ ( a j + i ⁒ y ) Ξ“ ⁑ ( 2 ⁒ i ⁒ y ) | 2 𝑀 superscript 𝑦 2 1 2 𝑦 superscript subscript product 𝑗 Euler-Gamma subscript π‘Ž 𝑗 𝑖 𝑦 Euler-Gamma 2 𝑖 𝑦 2 {\displaystyle{\displaystyle w(y^{2})=\frac{1}{2y}\left|\frac{\prod_{j}\Gamma% \left(a_{j}+iy\right)}{\Gamma\left(2iy\right)}\right|^{2}}} w*((y)^(2))=(1)/(2*y)*(abs((product(GAMMA(a[j]+ I*y), j = - infinity..infinity))/(GAMMA(2*I*y))))^(2) w*((y)^(2))=Divide[1,2*y]*(Abs[Divide[Product[Gamma[Subscript[a, j]+ I*y], {j, - Infinity, Infinity}],Gamma[2*I*y]]])^(2) Failure Failure Skip Skip
18.25.E8 h n = n ! ⁒  2 ⁒ Ο€ ⁒ ∏ j < β„“ Ξ“ ⁑ ( n + a j + a β„“ ) subscript β„Ž 𝑛 𝑛  2 πœ‹ subscript product 𝑗 β„“ Euler-Gamma 𝑛 subscript π‘Ž 𝑗 subscript π‘Ž β„“ {\displaystyle{\displaystyle h_{n}=n!\,2\pi\prod_{j<\ell}\Gamma\left(n+a_{j}+a% _{\ell}\right)}} h[n]= factorial(n)*2*Pi*product(GAMMA(n + a[j]+ a[ell]), j = - infinity..ell - 1) Subscript[h, n]= (n)!*2*Pi*Product[Gamma[n + Subscript[a, j]+ Subscript[a, \[ScriptL]]], {j, - Infinity, \[ScriptL] - 1}] Error Error - -
18.25.E9 βˆ‘ y = 0 N p n ⁒ ( y ⁒ ( y + Ξ³ + Ξ΄ + 1 ) ) ⁒ p m ⁒ ( y ⁒ ( y + Ξ³ + Ξ΄ + 1 ) ) ⁒ Ξ³ + Ξ΄ + 1 + 2 ⁒ y Ξ³ + Ξ΄ + 1 + y ⁒ Ο‰ y = h n ⁒ Ξ΄ n , m superscript subscript 𝑦 0 𝑁 subscript 𝑝 𝑛 𝑦 𝑦 𝛾 𝛿 1 subscript 𝑝 π‘š 𝑦 𝑦 𝛾 𝛿 1 𝛾 𝛿 1 2 𝑦 𝛾 𝛿 1 𝑦 subscript πœ” 𝑦 subscript β„Ž 𝑛 Kronecker 𝑛 π‘š {\displaystyle{\displaystyle\sum_{y=0}^{N}p_{n}(y(y+\gamma+\delta+1))p_{m}(y(y% +\gamma+\delta+1))\*\frac{\gamma+\delta+1+2y}{\gamma+\delta+1+y}\omega_{y}=h_{% n}\delta_{n,m}}} sum(p[n]*(y*(y + gamma + delta + 1))* p[m]*(y*(y + gamma + delta + 1))*(gamma + delta + 1 + 2*y)/(gamma + delta + 1 + y)*omega[y], y = 0..N)= h[n]*KroneckerDelta[n, m] Sum[Subscript[p, n]*(y*(y + \[Gamma]+ \[Delta]+ 1))* Subscript[p, m]*(y*(y + \[Gamma]+ \[Delta]+ 1))*Divide[\[Gamma]+ \[Delta]+ 1 + 2*y,\[Gamma]+ \[Delta]+ 1 + y]*Subscript[\[Omega], y], {y, 0, N}]= Subscript[h, n]*KroneckerDelta[n, m] Failure Failure Skip Skip
18.25.E11 Ο‰ y = ( Ξ± + 1 ) y ⁒ ( Ξ² + Ξ΄ + 1 ) y ⁒ ( Ξ³ + 1 ) y ⁒ ( Ξ³ + Ξ΄ + 2 ) y ( - Ξ± + Ξ³ + Ξ΄ + 1 ) y ⁒ ( - Ξ² + Ξ³ + 1 ) y ⁒ ( Ξ΄ + 1 ) y ⁒ y ! subscript πœ” 𝑦 Pochhammer 𝛼 1 𝑦 Pochhammer 𝛽 𝛿 1 𝑦 Pochhammer 𝛾 1 𝑦 Pochhammer 𝛾 𝛿 2 𝑦 Pochhammer 𝛼 𝛾 𝛿 1 𝑦 Pochhammer 𝛽 𝛾 1 𝑦 Pochhammer 𝛿 1 𝑦 𝑦 {\displaystyle{\displaystyle\omega_{y}=\frac{{\left(\alpha+1\right)_{y}}{\left% (\beta+\delta+1\right)_{y}}{\left(\gamma+1\right)_{y}}{\left(\gamma+\delta+2% \right)_{y}}}{{\left(-\alpha+\gamma+\delta+1\right)_{y}}{\left(-\beta+\gamma+1% \right)_{y}}{\left(\delta+1\right)_{y}}y!}}} omega[y]=(pochhammer(alpha + 1, y)*pochhammer(beta + delta + 1, y)*pochhammer(gamma + 1, y)*pochhammer(gamma + delta + 2, y))/(pochhammer(- alpha + gamma + delta + 1, y)*pochhammer(- beta + gamma + 1, y)*pochhammer(delta + 1, y)*factorial(y)) Subscript[\[Omega], y]=Divide[Pochhammer[\[Alpha]+ 1, y]*Pochhammer[\[Beta]+ \[Delta]+ 1, y]*Pochhammer[\[Gamma]+ 1, y]*Pochhammer[\[Gamma]+ \[Delta]+ 2, y],Pochhammer[- \[Alpha]+ \[Gamma]+ \[Delta]+ 1, y]*Pochhammer[- \[Beta]+ \[Gamma]+ 1, y]*Pochhammer[\[Delta]+ 1, y]*(y)!] Failure Failure
Fail
12.16329441-7.801522345*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), omega[y] = 2^(1/2)+I*2^(1/2), y = 1}
63.95461927+94.62189224*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), omega[y] = 2^(1/2)+I*2^(1/2), y = 2}
-357.9031707+453.3958173*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), omega[y] = 2^(1/2)+I*2^(1/2), y = 3}
12.16329441-10.62994947*I <- {alpha = 2^(1/2)+I*2^(1/2), beta = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), omega[y] = 2^(1/2)-I*2^(1/2), y = 1}
... skip entries to safe data
Skip
18.25.E12 h n = ( - Ξ² ) N ⁒ ( Ξ³ + Ξ΄ + 2 ) N ( - Ξ² + Ξ³ + 1 ) N ⁒ ( Ξ΄ + 1 ) N ⁒ ( n + Ξ± + Ξ² + 1 ) n ⁒ n ! ( Ξ± + Ξ² + 2 ) 2 ⁒ n ⁒ ( Ξ± + Ξ² - Ξ³ + 1 ) n ⁒ ( Ξ± - Ξ΄ + 1 ) n ⁒ ( Ξ² + 1 ) n ( Ξ± + 1 ) n ⁒ ( Ξ² + Ξ΄ + 1 ) n ⁒ ( Ξ³ + 1 ) n subscript β„Ž 𝑛 Pochhammer 𝛽 𝑁 Pochhammer 𝛾 𝛿 2 𝑁 Pochhammer 𝛽 𝛾 1 𝑁 Pochhammer 𝛿 1 𝑁 Pochhammer 𝑛 𝛼 𝛽 1 𝑛 𝑛 Pochhammer 𝛼 𝛽 2 2 𝑛 Pochhammer 𝛼 𝛽 𝛾 1 𝑛 Pochhammer 𝛼 𝛿 1 𝑛 Pochhammer 𝛽 1 𝑛 Pochhammer 𝛼 1 𝑛 Pochhammer 𝛽 𝛿 1 𝑛 Pochhammer 𝛾 1 𝑛 {\displaystyle{\displaystyle h_{n}=\frac{{\left(-\beta\right)_{N}}{\left(% \gamma+\delta+2\right)_{N}}}{{\left(-\beta+\gamma+1\right)_{N}}{\left(\delta+1% \right)_{N}}}\frac{{\left(n+\alpha+\beta+1\right)_{n}}n!}{{\left(\alpha+\beta+% 2\right)_{2n}}}\*\frac{{\left(\alpha+\beta-\gamma+1\right)_{n}}{\left(\alpha-% \delta+1\right)_{n}}{\left(\beta+1\right)_{n}}}{{\left(\alpha+1\right)_{n}}{% \left(\beta+\delta+1\right)_{n}}{\left(\gamma+1\right)_{n}}}}} h[n]=(pochhammer(- beta, N)*pochhammer(gamma + delta + 2, N))/(pochhammer(- beta + gamma + 1, N)*pochhammer(delta + 1, N))*(pochhammer(n + alpha + beta + 1, n)*factorial(n))/(pochhammer(alpha + beta + 2, 2*n))*(pochhammer(alpha + beta - gamma + 1, n)*pochhammer(alpha - delta + 1, n)*pochhammer(beta + 1, n))/(pochhammer(alpha + 1, n)*pochhammer(beta + delta + 1, n)*pochhammer(gamma + 1, n)) Subscript[h, n]=Divide[Pochhammer[- \[Beta], N]*Pochhammer[\[Gamma]+ \[Delta]+ 2, N],Pochhammer[- \[Beta]+ \[Gamma]+ 1, N]*Pochhammer[\[Delta]+ 1, N]]*Divide[Pochhammer[n + \[Alpha]+ \[Beta]+ 1, n]*(n)!,Pochhammer[\[Alpha]+ \[Beta]+ 2, 2*n]]*Divide[Pochhammer[\[Alpha]+ \[Beta]- \[Gamma]+ 1, n]*Pochhammer[\[Alpha]- \[Delta]+ 1, n]*Pochhammer[\[Beta]+ 1, n],Pochhammer[\[Alpha]+ 1, n]*Pochhammer[\[Beta]+ \[Delta]+ 1, n]*Pochhammer[\[Gamma]+ 1, n]] Failure Failure Skip Skip
18.25.E14 Ο‰ y = ( - 1 ) y ⁒ ( - N ) y ⁒ ( Ξ³ + 1 ) y ⁒ ( Ξ³ + Ξ΄ + 1 ) 2 ( N + Ξ³ + Ξ΄ + 2 ) y ⁒ ( Ξ΄ + 1 ) y ⁒ y ! subscript πœ” 𝑦 superscript 1 𝑦 Pochhammer 𝑁 𝑦 Pochhammer 𝛾 1 𝑦 Pochhammer 𝛾 𝛿 1 2 Pochhammer 𝑁 𝛾 𝛿 2 𝑦 Pochhammer 𝛿 1 𝑦 𝑦 {\displaystyle{\displaystyle\omega_{y}=\frac{(-1)^{y}{\left(-N\right)_{y}}{% \left(\gamma+1\right)_{y}}{\left(\gamma+\delta+1\right)_{2}}}{{\left(N+\gamma+% \delta+2\right)_{y}}{\left(\delta+1\right)_{y}}y!}}} omega[y]=((- 1)^(y)* pochhammer(- N, y)*pochhammer(gamma + 1, y)*pochhammer(gamma + delta + 1, 2))/(pochhammer(N + gamma + delta + 2, y)*pochhammer(delta + 1, y)*factorial(y)) Subscript[\[Omega], y]=Divide[(- 1)^(y)* Pochhammer[- N, y]*Pochhammer[\[Gamma]+ 1, y]*Pochhammer[\[Gamma]+ \[Delta]+ 1, 2],Pochhammer[N + \[Gamma]+ \[Delta]+ 2, y]*Pochhammer[\[Delta]+ 1, y]*(y)!] Failure Failure
Fail
-.785651684+.48581315e-1*I <- {N = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), omega[y] = 2^(1/2)+I*2^(1/2), y = 1}
1.316871147+1.251035041*I <- {N = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), omega[y] = 2^(1/2)+I*2^(1/2), y = 2}
1.420652225+1.407312490*I <- {N = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), omega[y] = 2^(1/2)+I*2^(1/2), y = 3}
-.785651684-2.779845809*I <- {N = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), omega[y] = 2^(1/2)-I*2^(1/2), y = 1}
... skip entries to safe data
Skip
18.25.E15 h n = n ! ⁒ ( N - n ) ! ⁒ ( Ξ³ + Ξ΄ + 2 ) N N ! ⁒ ( Ξ³ + 1 ) n ⁒ ( Ξ΄ + 1 ) N - n subscript β„Ž 𝑛 𝑛 𝑁 𝑛 Pochhammer 𝛾 𝛿 2 𝑁 𝑁 Pochhammer 𝛾 1 𝑛 Pochhammer 𝛿 1 𝑁 𝑛 {\displaystyle{\displaystyle h_{n}=\frac{n!\,(N-n)!\,{\left(\gamma+\delta+2% \right)_{N}}}{N!\,{\left(\gamma+1\right)_{n}}{\left(\delta+1\right)_{N-n}}}}} h[n]=(factorial(n)*factorial(N - n)*pochhammer(gamma + delta + 2, N))/(factorial(N)*pochhammer(gamma + 1, n)*pochhammer(delta + 1, N - n)) Subscript[h, n]=Divide[(n)!*(N - n)!*Pochhammer[\[Gamma]+ \[Delta]+ 2, N],(N)!*Pochhammer[\[Gamma]+ 1, n]*Pochhammer[\[Delta]+ 1, N - n]] Failure Failure
Fail
-1.311749265+.9066027273*I <- {N = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)+I*2^(1/2), n = 1}
-3.476693885+1.928884423*I <- {N = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)+I*2^(1/2), n = 2}
-4.217343867+7.012858818*I <- {N = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)+I*2^(1/2), n = 3}
-1.311749265-1.921824397*I <- {N = 2^(1/2)+I*2^(1/2), delta = 2^(1/2)+I*2^(1/2), h[n] = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Skip
18.28.E2 ∫ - 1 1 p n ⁒ ( x ) ⁒ p m ⁒ ( x ) ⁒ w ⁒ ( x ) ⁒ d x = h n ⁒ Ξ΄ n , m superscript subscript 1 1 subscript 𝑝 𝑛 π‘₯ subscript 𝑝 π‘š π‘₯ 𝑀 π‘₯ π‘₯ subscript β„Ž 𝑛 Kronecker 𝑛 π‘š {\displaystyle{\displaystyle\int_{-1}^{1}p_{n}(x)p_{m}(x)w(x)\mathrm{d}x=h_{n}% \delta_{n,m}}} int(p[n]*(x)* p[m]*(x)* w*(x), x = - 1..1)= h[n]*KroneckerDelta[n, m] Integrate[Subscript[p, n]*(x)* Subscript[p, m]*(x)* w*(x), {x, - 1, 1}]= Subscript[h, n]*KroneckerDelta[n, m] Failure Failure Skip Successful
18.28.E6 ∫ - 1 1 p n ⁒ ( x ) ⁒ p m ⁒ ( x ) ⁒ w ⁒ ( x ) ⁒ d x + βˆ‘ β„“ p n ⁒ ( x β„“ ) ⁒ p m ⁒ ( x β„“ ) ⁒ Ο‰ β„“ = h n ⁒ Ξ΄ n , m superscript subscript 1 1 subscript 𝑝 𝑛 π‘₯ subscript 𝑝 π‘š π‘₯ 𝑀 π‘₯ π‘₯ subscript β„“ subscript 𝑝 𝑛 subscript π‘₯ β„“ subscript 𝑝 π‘š subscript π‘₯ β„“ subscript πœ” β„“ subscript β„Ž 𝑛 Kronecker 𝑛 π‘š {\displaystyle{\displaystyle\int_{-1}^{1}p_{n}(x)p_{m}(x)w(x)\mathrm{d}x+\sum_% {\ell}p_{n}(x_{\ell})p_{m}(x_{\ell})\omega_{\ell}=h_{n}\delta_{n,m}}} int(p[n]*(x)* p[m]*(x)* w*(x), x = - 1..1)+ sum(p[n]*(x[ell])* p[m]*(x[ell])* omega[ell], ell = - infinity..infinity)= h[n]*KroneckerDelta[n, m] Integrate[Subscript[p, n]*(x)* Subscript[p, m]*(x)* w*(x), {x, - 1, 1}]+ Sum[Subscript[p, n]*(Subscript[x, \[ScriptL]])* Subscript[p, m]*(Subscript[x, \[ScriptL]])* Subscript[\[Omega], \[ScriptL]], {\[ScriptL], - Infinity, Infinity}]= Subscript[h, n]*KroneckerDelta[n, m] Failure Failure Skip Error
18.28.E11 0 < q 0 π‘ž {\displaystyle{\displaystyle 0<q}} 0 < q 0 < q Failure Failure Successful Successful
18.28.E11 q < 1 , a , b ∈ ℝ , a ⁒ b formulae-sequence π‘ž 1 π‘Ž 𝑏 π‘Ž 𝑏 {\displaystyle{\displaystyle q<1,a,b\in\mathbb{R},ab}} q < 1 , a , b in real , a*b q < 1 , a , b \[Element]*Reals , a*b Failure Failure Successful Error
18.28.E11 1 , a , b ∈ ℝ , a ⁒ b > 1 , a - 1 ⁒ b formulae-sequence 1 π‘Ž 𝑏 π‘Ž 𝑏 1 superscript π‘Ž 1 𝑏 {\displaystyle{\displaystyle 1,a,b\in\mathbb{R},ab>1,a^{-1}b}} 1 , a , b in real , a*b > 1 , (a)^(- 1)* b 1 , a , b \[Element]*Reals , a*b > 1 , (a)^(- 1)* b Error Failure - Error
18.28.E11 1 , a - 1 ⁒ b < q - 1 1 superscript π‘Ž 1 𝑏 superscript π‘ž 1 {\displaystyle{\displaystyle 1,a^{-1}b<q^{-1}}} 1 , (a)^(- 1)* b < (q)^(- 1) 1 , (a)^(- 1)* b < (q)^(- 1) Failure Failure Skip -
18.28.E12 0 < q 0 π‘ž {\displaystyle{\displaystyle 0<q}} 0 < q 0 < q Failure Failure Successful Successful
18.28.E12 q < 1 , a / i , b / i ∈ ℝ , ( β„‘ ⁑ a ) ⁒ ( β„‘ ⁑ b ) formulae-sequence π‘ž 1 π‘Ž imaginary-unit 𝑏 imaginary-unit π‘Ž 𝑏 {\displaystyle{\displaystyle q<1,\ifrac{a}{\mathrm{i}},\ifrac{b}{\mathrm{i}}% \in\mathbb{R},(\Im a)(\Im b)}} q < 1 ,(a)/(I),(b)/(I)in real ,(Im(a))*(Im(b)) q < 1 ,Divide[a,I],Divide[b,I]\[Element]*Reals ,(Im[a])*(Im[b]) Failure Failure Successful Error
18.28.E12 1 , a / i , b / i ∈ ℝ , ( β„‘ ⁑ a ) ⁒ ( β„‘ ⁑ b ) > 0 , a - 1 ⁒ b formulae-sequence 1 π‘Ž imaginary-unit 𝑏 imaginary-unit π‘Ž 𝑏 0 superscript π‘Ž 1 𝑏 {\displaystyle{\displaystyle 1,\ifrac{a}{\mathrm{i}},\ifrac{b}{\mathrm{i}}\in% \mathbb{R},(\Im a)(\Im b)>0,a^{-1}b}} 1 ,(a)/(I),(b)/(I)in real ,(Im(a))*(Im(b))> 0 , (a)^(- 1)* b 1 ,Divide[a,I],Divide[b,I]\[Element]*Reals ,(Im[a])*(Im[b])> 0 , (a)^(- 1)* b Error Failure - Error
18.28.E12 0 , a - 1 ⁒ b < q - 1 0 superscript π‘Ž 1 𝑏 superscript π‘ž 1 {\displaystyle{\displaystyle 0,a^{-1}b<q^{-1}}} 0 , (a)^(- 1)* b < (q)^(- 1) 0 , (a)^(- 1)* b < (q)^(- 1) Failure Failure Skip -
18.28.E20 βˆ‘ y = 0 N R n ⁒ ( q - y + Ξ³ ⁒ Ξ΄ ⁒ q y + 1 ) ⁒ R m ⁒ ( q - y + Ξ³ ⁒ Ξ΄ ⁒ q y + 1 ) ⁒ Ο‰ y = h n ⁒ Ξ΄ n , m superscript subscript 𝑦 0 𝑁 subscript 𝑅 𝑛 superscript π‘ž 𝑦 𝛾 𝛿 superscript π‘ž 𝑦 1 subscript 𝑅 π‘š superscript π‘ž 𝑦 𝛾 𝛿 superscript π‘ž 𝑦 1 subscript πœ” 𝑦 subscript β„Ž 𝑛 Kronecker 𝑛 π‘š {\displaystyle{\displaystyle\sum_{y=0}^{N}R_{n}(q^{-y}+\gamma\delta q^{y+1})R_% {m}(q^{-y}+\gamma\delta q^{y+1})\omega_{y}=h_{n}\delta_{n,m}}} sum(R[n]*((q)^(- y)+ gamma*delta*(q)^(y + 1))* R[m]*((q)^(- y)+ gamma*delta*(q)^(y + 1))* omega[y], y = 0..N)= h[n]*KroneckerDelta[n, m] Sum[Subscript[R, n]*((q)^(- y)+ \[Gamma]*\[Delta]*(q)^(y + 1))* Subscript[R, m]*((q)^(- y)+ \[Gamma]*\[Delta]*(q)^(y + 1))* Subscript[\[Omega], y], {y, 0, N}]= Subscript[h, n]*KroneckerDelta[n, m] Failure Failure Skip Skip
18.33.E3 Ο• n * ⁒ ( z ) = z n ⁒ Ο• n ⁒ ( z Β― - 1 ) Β― superscript subscript italic-Ο• 𝑛 𝑧 superscript 𝑧 𝑛 subscript italic-Ο• 𝑛 𝑧 1 {\displaystyle{\displaystyle\phi_{n}^{*}(z)=z^{n}\overline{\phi_{n}({\overline% {z}^{-1}})}}} (phi[n])^(*)*(z)= (z)^(n)* conjugate(phi[n]*((conjugate(z))^(- 1))) (Subscript[\[Phi], n])^(*)*(z)= (z)^(n)* Conjugate[Subscript[\[Phi], n]*((Conjugate[z])^(- 1))] Error Failure - Error
18.33.E3 z n ⁒ Ο• n ⁒ ( z Β― - 1 ) Β― = ΞΊ n + βˆ‘ β„“ = 1 n ΞΊ Β― n , n - β„“ ⁒ z β„“ superscript 𝑧 𝑛 subscript italic-Ο• 𝑛 𝑧 1 subscript πœ… 𝑛 superscript subscript β„“ 1 𝑛 subscript πœ… 𝑛 𝑛 β„“ superscript 𝑧 β„“ {\displaystyle{\displaystyle z^{n}\overline{\phi_{n}({\overline{z}^{-1}})}={% \kappa_{n}}+\sum_{\ell=1}^{n}\overline{\kappa}_{n,n-\ell}z^{\ell}}} (z)^(n)* conjugate(phi[n]*((conjugate(z))^(- 1)))=kappa[n]+ sum(conjugate(kappa)[n , n - ell]*(z)^(ell), ell = 1..n) (z)^(n)* Conjugate[Subscript[\[Phi], n]*((Conjugate[z])^(- 1))]=Subscript[\[Kappa], n]+ Sum[Subscript[Conjugate[\[Kappa]], n , n - \[ScriptL]]*(z)^(\[ScriptL]), {\[ScriptL], 1, n}] Failure Failure Skip Skip
18.33#Ex1 w 1 ⁒ ( x ) = ( 1 - x 2 ) - 1 2 ⁒ w ⁒ ( x + i ⁒ ( 1 - x 2 ) 1 2 ) subscript 𝑀 1 π‘₯ superscript 1 superscript π‘₯ 2 1 2 𝑀 π‘₯ imaginary-unit superscript 1 superscript π‘₯ 2 1 2 {\displaystyle{\displaystyle w_{1}(x)=(1-x^{2})^{-\frac{1}{2}}w\left(x+\mathrm% {i}(1-x^{2})^{\frac{1}{2}}\right)}} w[1]*(x)=(1 - (x)^(2))^(-(1)/(2))* w*(x + I*(1 - (x)^(2))^((1)/(2))) Subscript[w, 1]*(x)=(1 - (x)^(2))^(-Divide[1,2])* w*(x + I*(1 - (x)^(2))^(Divide[1,2])) Failure Failure
Fail
Float(infinity)+Float(infinity)*I <- {w = 2^(1/2)+I*2^(1/2), w[1] = 2^(1/2)+I*2^(1/2), x = 1}
2.609647525+3.047206723*I <- {w = 2^(1/2)+I*2^(1/2), w[1] = 2^(1/2)+I*2^(1/2), x = 2}
4.156854249+4.328427123*I <- {w = 2^(1/2)+I*2^(1/2), w[1] = 2^(1/2)+I*2^(1/2), x = 3}
Float(infinity)+Float(infinity)*I <- {w = 2^(1/2)+I*2^(1/2), w[1] = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Fail
DirectedInfinity[] <- {Rule[w, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
DirectedInfinity[] <- {Rule[w, Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
DirectedInfinity[] <- {Rule[w, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
DirectedInfinity[] <- {Rule[w, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]], Rule[x, 1]}
18.33#Ex2 w 2 ⁒ ( x ) = ( 1 - x 2 ) 1 2 ⁒ w ⁒ ( x + i ⁒ ( 1 - x 2 ) 1 2 ) subscript 𝑀 2 π‘₯ superscript 1 superscript π‘₯ 2 1 2 𝑀 π‘₯ imaginary-unit superscript 1 superscript π‘₯ 2 1 2 {\displaystyle{\displaystyle w_{2}(x)=(1-x^{2})^{\frac{1}{2}}w\left(x+\mathrm{% i}(1-x^{2})^{\frac{1}{2}}\right)}} w[2]*(x)=(1 - (x)^(2))^((1)/(2))* w*(x + I*(1 - (x)^(2))^((1)/(2))) Subscript[w, 2]*(x)=(1 - (x)^(2))^(Divide[1,2])* w*(x + I*(1 - (x)^(2))^(Divide[1,2])) Failure Failure
Fail
1.414213562+1.414213562*I <- {w = 2^(1/2)+I*2^(1/2), w[2] = 2^(1/2)+I*2^(1/2), x = 1}
3.484765921+2.172088327*I <- {w = 2^(1/2)+I*2^(1/2), w[2] = 2^(1/2)+I*2^(1/2), x = 2}
4.928932186+3.556349186*I <- {w = 2^(1/2)+I*2^(1/2), w[2] = 2^(1/2)+I*2^(1/2), x = 3}
1.414213562-1.414213562*I <- {w = 2^(1/2)+I*2^(1/2), w[2] = 2^(1/2)-I*2^(1/2), x = 1}
... skip entries to safe data
Successful
18.33.E13 Ο• n ⁒ ( z ) = βˆ‘ β„“ = 0 n ( Ξ» + 1 ) β„“ ⁒ ( Ξ» ) n - β„“ β„“ ! ⁒ ( n - β„“ ) ! ⁒ z β„“ subscript italic-Ο• 𝑛 𝑧 superscript subscript β„“ 0 𝑛 Pochhammer πœ† 1 β„“ Pochhammer πœ† 𝑛 β„“ β„“ 𝑛 β„“ superscript 𝑧 β„“ {\displaystyle{\displaystyle\phi_{n}(z)=\sum_{\ell=0}^{n}\frac{{\left(\lambda+% 1\right)_{\ell}}{\left(\lambda\right)_{n-\ell}}}{\ell!\,(n-\ell)!}\,z^{\ell}}} phi[n]*(z)= sum((pochhammer(lambda + 1, ell)*pochhammer(lambda, n - ell))/(factorial(ell)*factorial(n - ell))*(z)^(ell), ell = 0..n) Subscript[\[Phi], n]*(z)= Sum[Divide[Pochhammer[\[Lambda]+ 1, \[ScriptL]]*Pochhammer[\[Lambda], n - \[ScriptL]],(\[ScriptL])!*(n - \[ScriptL])!]*(z)^(\[ScriptL]), {\[ScriptL], 0, n}] Failure Failure Skip Skip
18.33.E13 βˆ‘ β„“ = 0 n ( Ξ» + 1 ) β„“ ⁒ ( Ξ» ) n - β„“ β„“ ! ⁒ ( n - β„“ ) ! ⁒ z β„“ = ( Ξ» ) n n ! ⁒ F 1 2 ⁑ ( - n , Ξ» + 1 - Ξ» - n + 1 ; z ) superscript subscript β„“ 0 𝑛 Pochhammer πœ† 1 β„“ Pochhammer πœ† 𝑛 β„“ β„“ 𝑛 β„“ superscript 𝑧 β„“ Pochhammer πœ† 𝑛 𝑛 Gauss-hypergeometric-F-as-2F1 𝑛 πœ† 1 πœ† 𝑛 1 𝑧 {\displaystyle{\displaystyle\sum_{\ell=0}^{n}\frac{{\left(\lambda+1\right)_{% \ell}}{\left(\lambda\right)_{n-\ell}}}{\ell!\,(n-\ell)!}\,z^{\ell}=\frac{{% \left(\lambda\right)_{n}}}{n!}{{}_{2}F_{1}}\left({-n,\lambda+1\atop-\lambda-n+% 1};z\right)}} sum((pochhammer(lambda + 1, ell)*pochhammer(lambda, n - ell))/(factorial(ell)*factorial(n - ell))*(z)^(ell), ell = 0..n)=(pochhammer(lambda, n))/(factorial(n))*hypergeom([- n , lambda + 1], [- lambda - n + 1], z) Sum[Divide[Pochhammer[\[Lambda]+ 1, \[ScriptL]]*Pochhammer[\[Lambda], n - \[ScriptL]],(\[ScriptL])!*(n - \[ScriptL])!]*(z)^(\[ScriptL]), {\[ScriptL], 0, n}]=Divide[Pochhammer[\[Lambda], n],(n)!]*HypergeometricPFQ[{- n , \[Lambda]+ 1}, {- \[Lambda]- n + 1}, z] Successful Successful - -
18.34.E1 y n ⁑ ( x ; a ) = F 0 2 ⁑ ( - n , n + a - 1 - ; - x 2 ) Bessel-polynomial-y 𝑛 π‘₯ π‘Ž Gauss-hypergeometric-pFq 2 0 𝑛 𝑛 π‘Ž 1 π‘₯ 2 {\displaystyle{\displaystyle y_{n}\left(x;a\right)={{}_{2}F_{0}}\left({-n,n+a-% 1\atop-};-\frac{x}{2}\right)}} Error Pochhammer[n + a - 1, n] (x/2)^n Hypergeometric1F1[-n, -2 n - a + 2, 2/x]= HypergeometricPFQ[{- n , n + a - 1}, {-}, -Divide[x,2]] Error Failure - Error
18.34.E1 F 0 2 ⁑ ( - n , n + a - 1 - ; - x 2 ) = ( n + a - 1 ) n ⁒ ( x 2 ) n ⁒ F 1 1 ⁑ ( - n - 2 ⁒ n - a + 2 ; 2 x ) Gauss-hypergeometric-pFq 2 0 𝑛 𝑛 π‘Ž 1 π‘₯ 2 Pochhammer 𝑛 π‘Ž 1 𝑛 superscript π‘₯ 2 𝑛 Kummer-confluent-hypergeometric-M-as-1F1 𝑛 2 𝑛 π‘Ž 2 2 π‘₯ {\displaystyle{\displaystyle{{}_{2}F_{0}}\left({-n,n+a-1\atop-};-\frac{x}{2}% \right)={\left(n+a-1\right)_{n}}\left(\frac{x}{2}\right)^{n}{{}_{1}F_{1}}\left% ({-n\atop-2n-a+2};\frac{2}{x}\right)}} hypergeom([- n , n + a - 1], [-], -(x)/(2))= pochhammer(n + a - 1, n)*((x)/(2))^(n)* hypergeom([- n], [- 2*n - a + 2], (2)/(x)) HypergeometricPFQ[{- n , n + a - 1}, {-}, -Divide[x,2]]= Pochhammer[n + a - 1, n]*(Divide[x,2])^(n)* HypergeometricPFQ[{- n}, {- 2*n - a + 2}, Divide[2,x]] Error Failure - Error
18.34#Ex1 y n ⁒ ( x ) = y n ⁑ ( x ; 2 ) subscript 𝑦 𝑛 π‘₯ Bessel-polynomial-y 𝑛 π‘₯ 2 {\displaystyle{\displaystyle y_{n}(x)=y_{n}\left(x;2\right)}} Error Subscript[y, n]*(x)= Pochhammer[n + 2 - 1, n] (x/2)^n Hypergeometric1F1[-n, -2 n - 2 + 2, 2/x] Error Failure - Successful
18.34.E4 y n + 1 ⁑ ( x ; a ) = ( A n ⁒ x + B n ) ⁒ y n ⁑ ( x ; a ) - C n ⁒ y n - 1 ⁑ ( x ; a ) Bessel-polynomial-y 𝑛 1 π‘₯ π‘Ž subscript 𝐴 𝑛 π‘₯ subscript 𝐡 𝑛 Bessel-polynomial-y 𝑛 π‘₯ π‘Ž subscript 𝐢 𝑛 Bessel-polynomial-y 𝑛 1 π‘₯ π‘Ž {\displaystyle{\displaystyle y_{n+1}\left(x;a\right)=(A_{n}x+B_{n})y_{n}\left(% x;a\right)-C_{n}y_{n-1}\left(x;a\right)}} Error Pochhammer[n + 1 + a - 1, n + 1] (x/2)^n + 1 Hypergeometric1F1[-n + 1, -2 n + 1 - a + 2, 2/x]=(Subscript[A, n]*x + Subscript[B, n])* Pochhammer[n + a - 1, n] (x/2)^n Hypergeometric1F1[-n, -2 n - a + 2, 2/x]- Subscript[C, n]*Pochhammer[n - 1 + a - 1, n - 1] (x/2)^n - 1 Hypergeometric1F1[-n - 1, -2 n - 1 - a + 2, 2/x] Error Failure - Skip
18.34.E7 x 2 ⁒ y n β€²β€² ⁑ ( x ; a ) + ( a ⁒ x + 2 ) ⁒ y n β€² ⁑ ( x ; a ) - n ⁒ ( n + a - 1 ) ⁒ y n ⁑ ( x ; a ) = 0 superscript π‘₯ 2 diffop Bessel-polynomial-y 𝑛 2 π‘₯ π‘Ž π‘Ž π‘₯ 2 diffop Bessel-polynomial-y 𝑛 1 π‘₯ π‘Ž 𝑛 𝑛 π‘Ž 1 Bessel-polynomial-y 𝑛 π‘₯ π‘Ž 0 {\displaystyle{\displaystyle x^{2}y_{n}''\left(x;a\right)+(ax+2)y_{n}'\left(x;% a\right)-n(n+a-1)y_{n}\left(x;a\right)=0}} Error (x)^(2)* (D[Pochhammer[n + a - 1, n] (temp/2)^n Hypergeometric1F1[-n, -2 n - a + 2, 2/temp], {temp, 2}]/.temp-> x)+(a*x + 2)* (D[Pochhammer[n + a - 1, n] (temp/2)^n Hypergeometric1F1[-n, -2 n - a + 2, 2/temp], {temp, 1}]/.temp-> x)- n*(n + a - 1)* Pochhammer[n + a - 1, n] (x/2)^n Hypergeometric1F1[-n, -2 n - a + 2, 2/x]= 0 Error Successful - -
18.34.E8 lim Ξ± β†’ ∞ ⁑ P n ( Ξ± , a - Ξ± - 2 ) ⁑ ( 1 + Ξ± ⁒ x ) P n ( Ξ± , a - Ξ± - 2 ) ⁑ ( 1 ) = y n ⁑ ( x ; a ) subscript β†’ 𝛼 Jacobi-polynomial-P 𝛼 π‘Ž 𝛼 2 𝑛 1 𝛼 π‘₯ Jacobi-polynomial-P 𝛼 π‘Ž 𝛼 2 𝑛 1 Bessel-polynomial-y 𝑛 π‘₯ π‘Ž {\displaystyle{\displaystyle\lim_{\alpha\to\infty}\frac{P^{(\alpha,a-\alpha-2)% }_{n}\left(1+\alpha x\right)}{P^{(\alpha,a-\alpha-2)}_{n}\left(1\right)}=y_{n}% \left(x;a\right)}} Error Limit[Divide[JacobiP[n, \[Alpha], a - \[Alpha]- 2, 1 + \[Alpha]*x],JacobiP[n, \[Alpha], a - \[Alpha]- 2, 1]], \[Alpha] -> Infinity]= Pochhammer[n + a - 1, n] (x/2)^n Hypergeometric1F1[-n, -2 n - a + 2, 2/x] Error Failure - Error
18.35.E4 ( Ξ» - i ⁒ Ο„ a , b ⁒ ( ΞΈ ) ) n n ! ⁒ e i ⁒ n ⁒ ΞΈ ⁒ F 1 2 ⁑ ( - n , Ξ» + i ⁒ Ο„ a , b ⁒ ( ΞΈ ) - n - Ξ» + 1 + i ⁒ Ο„ a , b ⁒ ( ΞΈ ) ; e - 2 ⁒ i ⁒ ΞΈ ) = βˆ‘ β„“ = 0 n ( Ξ» + i ⁒ Ο„ a , b ⁒ ( ΞΈ ) ) β„“ β„“ ! ⁒ ( Ξ» - i ⁒ Ο„ a , b ⁒ ( ΞΈ ) ) n - β„“ ( n - β„“ ) ! ⁒ e i ⁒ ( n - 2 ⁒ β„“ ) ⁒ ΞΈ Pochhammer πœ† imaginary-unit subscript 𝜏 π‘Ž 𝑏 πœƒ 𝑛 𝑛 superscript 𝑒 imaginary-unit 𝑛 πœƒ Gauss-hypergeometric-F-as-2F1 𝑛 πœ† imaginary-unit subscript 𝜏 π‘Ž 𝑏 πœƒ 𝑛 πœ† 1 imaginary-unit subscript 𝜏 π‘Ž 𝑏 πœƒ superscript 𝑒 2 imaginary-unit πœƒ superscript subscript β„“ 0 𝑛 Pochhammer πœ† imaginary-unit subscript 𝜏 π‘Ž 𝑏 πœƒ β„“ β„“ Pochhammer πœ† imaginary-unit subscript 𝜏 π‘Ž 𝑏 πœƒ 𝑛 β„“ 𝑛 β„“ superscript 𝑒 imaginary-unit 𝑛 2 β„“ πœƒ {\displaystyle{\displaystyle\frac{{\left(\lambda-\mathrm{i}\tau_{a,b}(\theta)% \right)_{n}}}{n!}e^{\mathrm{i}n\theta}\*{{}_{2}F_{1}}\left({-n,\lambda+\mathrm% {i}\tau_{a,b}(\theta)\atop-n-\lambda+1+\mathrm{i}\tau_{a,b}(\theta)};e^{-2% \mathrm{i}\theta}\right)=\sum_{\ell=0}^{n}\frac{{\left(\lambda+\mathrm{i}\tau_% {a,b}(\theta)\right)_{\ell}}}{\ell!}\frac{{\left(\lambda-\mathrm{i}\tau_{a,b}(% \theta)\right)_{n-\ell}}}{(n-\ell)!}e^{\mathrm{i}(n-2\ell)\theta}}} (pochhammer(lambda - I*tau[a , b]*(theta), n))/(factorial(n))*exp(I*n*theta)* hypergeom([- n , lambda + I*tau[a , b]*(theta)], [- n - lambda + 1 + I*tau[a , b]*(theta)], exp(- 2*I*theta))= sum((pochhammer(lambda + I*tau[a , b]*(theta), ell))/(factorial(ell))*(pochhammer(lambda - I*tau[a , b]*(theta), n - ell))/(factorial(n - ell))*exp(I*(n - 2*ell)* theta), ell = 0..n) Divide[Pochhammer[\[Lambda]- I*Subscript[\[Tau], a , b]*(\[Theta]), n],(n)!]*Exp[I*n*\[Theta]]* HypergeometricPFQ[{- n , \[Lambda]+ I*Subscript[\[Tau], a , b]*(\[Theta])}, {- n - \[Lambda]+ 1 + I*Subscript[\[Tau], a , b]*(\[Theta])}, Exp[- 2*I*\[Theta]]]= Sum[Divide[Pochhammer[\[Lambda]+ I*Subscript[\[Tau], a , b]*(\[Theta]), \[ScriptL]],(\[ScriptL])!]*Divide[Pochhammer[\[Lambda]- I*Subscript[\[Tau], a , b]*(\[Theta]), n - \[ScriptL]],(n - \[ScriptL])!]*Exp[I*(n - 2*\[ScriptL])* \[Theta]], {\[ScriptL], 0, n}] Successful Successful - -
18.38.E1 V n ⁒ ( x ) = 2 ⁒ n ⁒ H n + 1 ⁑ ( x ) ⁒ H n - 1 ⁑ ( x ) / ( H n ⁑ ( x ) ) 2 subscript 𝑉 𝑛 π‘₯ 2 𝑛 Hermite-polynomial-H 𝑛 1 π‘₯ Hermite-polynomial-H 𝑛 1 π‘₯ superscript Hermite-polynomial-H 𝑛 π‘₯ 2 {\displaystyle{\displaystyle V_{n}(x)=\ifrac{2nH_{n+1}\left(x\right)H_{n-1}% \left(x\right)}{(H_{n}\left(x\right))^{2}}}} V[n]*(x)=(2*n*HermiteH(n + 1, x)*HermiteH(n - 1, x))/((HermiteH(n, x))^(2)) Subscript[V, n]*(x)=Divide[2*n*HermiteH[n + 1, x]*HermiteH[n - 1, x],(HermiteH[n, x])^(2)] Failure Failure
Fail
.414213562+1.414213562*I <- {V[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
1.078427124+2.828427124*I <- {V[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 2}
2.353751797+4.242640686*I <- {V[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 3}
9.414213562+1.414213562*I <- {V[n] = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
... skip entries to safe data
Skip
18.38.E3 βˆ‘ m = 0 n P m ( Ξ± , 0 ) ⁑ ( x ) β‰₯ 0 superscript subscript π‘š 0 𝑛 Jacobi-polynomial-P 𝛼 0 π‘š π‘₯ 0 {\displaystyle{\displaystyle\sum_{m=0}^{n}P^{(\alpha,0)}_{m}\left(x\right)>=0}} sum(JacobiP(m, alpha, 0, x), m = 0..n)> = 0 Sum[JacobiP[m, \[Alpha], 0, x], {m, 0, n}]> = 0 Failure Failure Skip Successful
18.39.E5 Ξ· n ⁒ ( x ) = Ο€ - 1 4 ⁒ 2 - 1 2 ⁒ n ⁒ ( n ! ⁒ b ) - 1 2 ⁒ H n ⁑ ( x / b ) ⁒ e - x 2 / 2 ⁒ b 2 subscript πœ‚ 𝑛 π‘₯ superscript πœ‹ 1 4 superscript 2 1 2 𝑛 superscript 𝑛 𝑏 1 2 Hermite-polynomial-H 𝑛 π‘₯ 𝑏 superscript 𝑒 superscript π‘₯ 2 2 superscript 𝑏 2 {\displaystyle{\displaystyle\eta_{n}(x)=\pi^{-\frac{1}{4}}2^{-\frac{1}{2}n}(n!% \,b)^{-\frac{1}{2}}H_{n}\left(x/b\right)e^{-x^{2}/2b^{2}}}} eta[n]*(x)= (Pi)^(-(1)/(4))* (2)^(-(1)/(2)*n)*(factorial(n)*b)^(-(1)/(2))* HermiteH(n, x/ b)*exp(- (x)^(2)/ 2*(b)^(2)) Subscript[\[Eta], n]*(x)= (Pi)^(-Divide[1,4])* (2)^(-Divide[1,2]*n)*((n)!*b)^(-Divide[1,2])* HermiteH[n, x/ b]*Exp[- (x)^(2)/ 2*(b)^(2)] Failure Failure
Fail
1.789526128+1.400506842*I <- {b = 2^(1/2)+I*2^(1/2), eta[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
3.556814811+3.011841849*I <- {b = 2^(1/2)+I*2^(1/2), eta[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 2}
3.176214405+4.606180986*I <- {b = 2^(1/2)+I*2^(1/2), eta[n] = 2^(1/2)+I*2^(1/2), n = 1, x = 3}
1.266982360+1.020980529*I <- {b = 2^(1/2)+I*2^(1/2), eta[n] = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
... skip entries to safe data
Successful