![{\displaystyle {\displaystyle
\sum_{k=-\infty}^{\infty}\frac{q^{k\alpha+k}}{\qPochhammer{-cq^k}{q}{\infty}}\qLaguerre[\alpha]{m}@{cq^k}{q}\qLaguerre[\alpha]{n}@{cq^k}{q}
{}=\frac{\qPochhammer{q,-cq^{\alpha+1},-c^{-1}q^{-\alpha}}{q}{\infty}}
{\qPochhammer{q^{\alpha+1},-c,-c^{-1}q}{q}{\infty}}\frac{\qPochhammer{q^{\alpha+1}}{q}{n}}{\qPochhammer{q}{q}{n}q^n}\,\Kronecker{m}{n}
}}](/index.php?title=Special:MathShowImage&hash=c4dcf0e1fa51113adf3668f42df3112e&mode=latexml)
Constraint(s)
Proof
We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.
Symbols List
& : logical and
: sum : http://drmf.wmflabs.org/wiki/Definition:sum
:
-Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
:
-Laguerre polynomial : http://drmf.wmflabs.org/wiki/Definition:qLaguerre
: Kronecker delta : http://dlmf.nist.gov/front/introduction#Sx4.p1.t1.r4
Bibliography
Equation in Section 14.21 of KLS.
URL links
We ask users to provide relevant URL links in this space.