![{\displaystyle {\displaystyle
\int_0^{\infty}\frac{x^{\alpha}}{\qPochhammer{-x}{q}{\infty}}\qLaguerre[\alpha]{m}@{x}{q}\qLaguerre[\alpha]{n}@{x}{q}\,d_qx
{}=\frac{1-q}{2}\,\frac{\qPochhammer{q,-q^{\alpha+1},-q^{-\alpha}}{q}{\infty}}
{\qPochhammer{q^{\alpha+1},-q,-q}{q}{\infty}}\frac{\qPochhammer{q^{\alpha+1}}{q}{n}}{\qPochhammer{q}{q}{n}q^n}\,\Kronecker{m}{n}
}}](/index.php?title=Special:MathShowImage&hash=2e34eaa384406beb0e70a0458e29cb55&mode=latexml)
Constraint(s)
Proof
We ask users to provide proof(s), reference(s) to proof(s), or further clarification on the proof(s) in this space.
Symbols List
: integral : http://dlmf.nist.gov/1.4#iv
:
-Pochhammer symbol : http://dlmf.nist.gov/5.18#i http://dlmf.nist.gov/17.2#SS1.p1
:
-Laguerre polynomial : http://drmf.wmflabs.org/wiki/Definition:qLaguerre
: Kronecker delta : http://dlmf.nist.gov/front/introduction#Sx4.p1.t1.r4
Bibliography
Equation in Section 14.21 of KLS.
URL links
We ask users to provide relevant URL links in this space.