Results of Bernoulli and Euler Polynomials

From DRMF
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
24.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{t}{e^{t}-1} = \sum_{n=0}^{\infty}\BernoullinumberB{n}\frac{t^{n}}{n!}} (t)/(exp(t)- 1)= sum(bernoulli(n)*((t)^(n))/(factorial(n)), n = 0..infinity) Divide[t,Exp[t]- 1]= Sum[BernoulliB[n]*Divide[(t)^(n),(n)!], {n, 0, Infinity}] Failure Successful Skip -
24.2#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{2n+1} = 0} bernoulli(2*n + 1)= 0 BernoulliB[2*n + 1]= 0 Failure Failure Successful
Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[BernoulliB[Plus[1, Times[2, n]]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[BernoulliB[Plus[1, Times[2, n]]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[BernoulliB[Plus[1, Times[2, n]]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[BernoulliB[Plus[1, Times[2, n]]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
24.2#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n+1}\BernoullinumberB{2n} > 0} (- 1)^(n + 1)* bernoulli(2*n)> 0 (- 1)^(n + 1)* BernoulliB[2*n]> 0 Failure Failure Successful Successful
24.2.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{te^{xt}}{e^{t}-1} = \sum_{n=0}^{\infty}\BernoullipolyB{n}@{x}\frac{t^{n}}{n!}} (t*exp(x*t))/(exp(t)- 1)= sum(bernoulli(n, x)*((t)^(n))/(factorial(n)), n = 0..infinity) Divide[t*Exp[x*t],Exp[t]- 1]= Sum[BernoulliB[n, x]*Divide[(t)^(n),(n)!], {n, 0, Infinity}] Failure Successful Skip -
24.2.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{n} = \BernoullipolyB{n}@{0}} bernoulli(n)= bernoulli(n, 0) BernoulliB[n]= BernoulliB[n, 0] Successful Successful - -
24.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2e^{t}}{e^{2t}+1} = \sum_{n=0}^{\infty}\EulernumberE{n}\frac{t^{n}}{n!}} Error Divide[2*Exp[t],Exp[2*t]+ 1]= Sum[EulerE[n]*Divide[(t)^(n),(n)!], {n, 0, Infinity}] Error Successful - -
24.2#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulernumberE{2n+1} = 0} Error EulerE[2*n + 1]= 0 Error Failure -
Fail
Complex[1.4142135623730951, 1.4142135623730951] <- {Rule[EulerE[Plus[1, Times[2, n]]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730951, -1.4142135623730951] <- {Rule[EulerE[Plus[1, Times[2, n]]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, -1.4142135623730951] <- {Rule[EulerE[Plus[1, Times[2, n]]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-1.4142135623730951, 1.4142135623730951] <- {Rule[EulerE[Plus[1, Times[2, n]]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
24.2#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\EulernumberE{2n} > 0} Error (- 1)^(n)* EulerE[2*n]> 0 Error Failure - Successful
24.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2e^{xt}}{e^{t}+1} = \sum_{n=0}^{\infty}\EulerpolyE{n}@{x}\frac{t^{n}}{n!}} (2*exp(x*t))/(exp(t)+ 1)= sum(euler(n, x)*((t)^(n))/(factorial(n)), n = 0..infinity) Divide[2*Exp[x*t],Exp[t]+ 1]= Sum[EulerE[n, x]*Divide[(t)^(n),(n)!], {n, 0, Infinity}] Failure Successful Skip -
24.2.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulernumberE{n} = 2^{n}\EulerpolyE{n}@{\tfrac{1}{2}}} Error EulerE[n]= (2)^(n)* EulerE[n, Divide[1,2]] Error Successful - -
24.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{n}@{x+1}-\BernoullipolyB{n}@{x} = nx^{n-1}} bernoulli(n, x + 1)- bernoulli(n, x)= n*(x)^(n - 1) BernoulliB[n, x + 1]- BernoulliB[n, x]= n*(x)^(n - 1) Successful Successful - -
24.4.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{n}@{x+1}+\EulerpolyE{n}@{x} = 2x^{n}} euler(n, x + 1)+ euler(n, x)= 2*(x)^(n) EulerE[n, x + 1]+ EulerE[n, x]= 2*(x)^(n) Successful Successful - -
24.4.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{n}@{1-x} = (-1)^{n}\BernoullipolyB{n}@{x}} bernoulli(n, 1 - x)=(- 1)^(n)* bernoulli(n, x) BernoulliB[n, 1 - x]=(- 1)^(n)* BernoulliB[n, x] Successful Failure - Successful
24.4.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{n}@{1-x} = (-1)^{n}\EulerpolyE{n}@{x}} euler(n, 1 - x)=(- 1)^(n)* euler(n, x) EulerE[n, 1 - x]=(- 1)^(n)* EulerE[n, x] Successful Failure - Successful
24.4.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\BernoullipolyB{n}@{-x} = \BernoullipolyB{n}@{x}+nx^{n-1}} (- 1)^(n)* bernoulli(n, - x)= bernoulli(n, x)+ n*(x)^(n - 1) (- 1)^(n)* BernoulliB[n, - x]= BernoulliB[n, x]+ n*(x)^(n - 1) Failure Failure Successful Successful
24.4.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n+1}\EulerpolyE{n}@{-x} = \EulerpolyE{n}@{x}-2x^{n}} (- 1)^(n + 1)* euler(n, - x)= euler(n, x)- 2*(x)^(n) (- 1)^(n + 1)* EulerE[n, - x]= EulerE[n, x]- 2*(x)^(n) Failure Failure Successful Successful
24.4.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=1}^{m}k^{n} = \frac{\BernoullipolyB{n+1}@{m+1}-\BernoullinumberB{n+1}}{n+1}} sum((k)^(n), k = 1..m)=(bernoulli(n + 1, m + 1)- bernoulli(n + 1))/(n + 1) Sum[(k)^(n), {k, 1, m}]=Divide[BernoulliB[n + 1, m + 1]- BernoulliB[n + 1],n + 1] Failure Failure Skip Successful
24.4.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=1}^{m}(-1)^{m-k}k^{n} = \frac{\EulerpolyE{n}@{m+1}+(-1)^{m}\EulerpolyE{n}@{0}}{2}} sum((- 1)^(m - k)* (k)^(n), k = 1..m)=(euler(n, m + 1)+(- 1)^(m)* euler(n, 0))/(2) Sum[(- 1)^(m - k)* (k)^(n), {k, 1, m}]=Divide[EulerE[n, m + 1]+(- 1)^(m)* EulerE[n, 0],2] Failure Failure Skip Successful
24.4.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{m-1}(a+dk)^{n} = {\frac{d^{n}}{n+1}\left(\BernoullipolyB{n+1}@{m+\frac{a}{d}}-\BernoullipolyB{n+1}@{\frac{a}{d}}\right)}} sum((a + d*k)^(n), k = 0..m - 1)=((d)^(n))/(n + 1)*(bernoulli(n + 1, m +(a)/(d))- bernoulli(n + 1, (a)/(d))) Sum[(a + d*k)^(n), {k, 0, m - 1}]=Divide[(d)^(n),n + 1]*(BernoulliB[n + 1, m +Divide[a,d]]- BernoulliB[n + 1, Divide[a,d]]) Failure Failure Skip Skip
24.4.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{m-1}(-1)^{k}(a+dk)^{n} = {\frac{d^{n}}{2}\left((-1)^{m-1}\EulerpolyE{n}@{m+\frac{a}{d}}+\EulerpolyE{n}@{\frac{a}{d}}\right)}} sum((- 1)^(k)*(a + d*k)^(n), k = 0..m - 1)=((d)^(n))/(2)*((- 1)^(m - 1)* euler(n, m +(a)/(d))+ euler(n, (a)/(d))) Sum[(- 1)^(k)*(a + d*k)^(n), {k, 0, m - 1}]=Divide[(d)^(n),2]*((- 1)^(m - 1)* EulerE[n, m +Divide[a,d]]+ EulerE[n, Divide[a,d]]) Failure Failure Skip Skip
24.4.E21 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{n}@{x} = 2^{n-1}\left(\BernoullipolyB{n}@{\tfrac{1}{2}x}+\BernoullipolyB{n}@{\tfrac{1}{2}x+\tfrac{1}{2}}\right)} bernoulli(n, x)= (2)^(n - 1)*(bernoulli(n, (1)/(2)*x)+ bernoulli(n, (1)/(2)*x +(1)/(2))) BernoulliB[n, x]= (2)^(n - 1)*(BernoulliB[n, Divide[1,2]*x]+ BernoulliB[n, Divide[1,2]*x +Divide[1,2]]) Failure Failure Successful Successful
24.4.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{n-1}@{x} = \frac{2}{n}\left(\BernoullipolyB{n}@{x}-2^{n}\BernoullipolyB{n}@{\tfrac{1}{2}x}\right)} euler(n - 1, x)=(2)/(n)*(bernoulli(n, x)- (2)^(n)* bernoulli(n, (1)/(2)*x)) EulerE[n - 1, x]=Divide[2,n]*(BernoulliB[n, x]- (2)^(n)* BernoulliB[n, Divide[1,2]*x]) Failure Failure Successful Successful
24.4.E23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{n-1}@{x} = \frac{2^{n}}{n}\left(\BernoullipolyB{n}@{\tfrac{1}{2}x+\tfrac{1}{2}}-\BernoullipolyB{n}@{\tfrac{1}{2}x}\right)} euler(n - 1, x)=((2)^(n))/(n)*(bernoulli(n, (1)/(2)*x +(1)/(2))- bernoulli(n, (1)/(2)*x)) EulerE[n - 1, x]=Divide[(2)^(n),n]*(BernoulliB[n, Divide[1,2]*x +Divide[1,2]]- BernoulliB[n, Divide[1,2]*x]) Failure Failure Successful Successful
24.4.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{n}@{0} = (-1)^{n}\BernoullipolyB{n}@{1}} bernoulli(n, 0)=(- 1)^(n)* bernoulli(n, 1) BernoulliB[n, 0]=(- 1)^(n)* BernoulliB[n, 1] Failure Failure Successful Successful
24.4.E25 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\BernoullipolyB{n}@{1} = \BernoullinumberB{n}} (- 1)^(n)* bernoulli(n, 1)= bernoulli(n) (- 1)^(n)* BernoulliB[n, 1]= BernoulliB[n] Failure Failure Successful Successful
24.4.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{n}@{0} = -\EulerpolyE{n}@{1}} euler(n, 0)= - euler(n, 1) EulerE[n, 0]= - EulerE[n, 1] Successful Successful - -
24.4.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\EulerpolyE{n}@{1} = -\frac{2}{n+1}(2^{n+1}-1)\BernoullinumberB{n+1}} - euler(n, 1)= -(2)/(n + 1)*((2)^(n + 1)- 1)* bernoulli(n + 1) - EulerE[n, 1]= -Divide[2,n + 1]*((2)^(n + 1)- 1)* BernoulliB[n + 1] Failure Failure Error Successful
24.4.E27 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{n}@{\tfrac{1}{2}} = -(1-2^{1-n})\BernoullinumberB{n}} bernoulli(n, (1)/(2))= -(1 - (2)^(1 - n))* bernoulli(n) BernoulliB[n, Divide[1,2]]= -(1 - (2)^(1 - n))* BernoulliB[n] Successful Successful - -
24.4.E28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{n}@{\tfrac{1}{2}} = 2^{-n}\EulernumberE{n}} Error EulerE[n, Divide[1,2]]= (2)^(- n)* EulerE[n] Error Successful - -
24.4.E29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{2n}@{\tfrac{1}{3}} = \BernoullipolyB{2n}@{\tfrac{2}{3}}} bernoulli(2*n, (1)/(3))= bernoulli(2*n, (2)/(3)) BernoulliB[2*n, Divide[1,3]]= BernoulliB[2*n, Divide[2,3]] Failure Failure Successful
Fail
Complex[0.0, 2.8284271247461903] <- {Rule[BernoulliB[Times[2, n], Rational[1, 3]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[BernoulliB[Times[2, n], Rational[2, 3]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[BernoulliB[Times[2, n], Rational[1, 3]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[BernoulliB[Times[2, n], Rational[2, 3]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
2.8284271247461903 <- {Rule[BernoulliB[Times[2, n], Rational[1, 3]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[BernoulliB[Times[2, n], Rational[2, 3]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -2.8284271247461903] <- {Rule[BernoulliB[Times[2, n], Rational[1, 3]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[BernoulliB[Times[2, n], Rational[2, 3]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
24.4.E29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{2n}@{\tfrac{2}{3}} = -\tfrac{1}{2}(1-3^{1-2n})\BernoullinumberB{2n}} bernoulli(2*n, (2)/(3))= -(1)/(2)*(1 - (3)^(1 - 2*n))* bernoulli(2*n) BernoulliB[2*n, Divide[2,3]]= -Divide[1,2]*(1 - (3)^(1 - 2*n))* BernoulliB[2*n] Failure Failure Successful Successful
24.4.E30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{2n-1}@{\tfrac{1}{3}} = -\EulerpolyE{2n-1}@{\tfrac{2}{3}}} euler(2*n - 1, (1)/(3))= - euler(2*n - 1, (2)/(3)) EulerE[2*n - 1, Divide[1,3]]= - EulerE[2*n - 1, Divide[2,3]] Failure Failure Successful
Fail
Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[EulerE[Plus[-1, Times[2, n]], Rational[1, 3]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[EulerE[Plus[-1, Times[2, n]], Rational[2, 3]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
2.8284271247461903 <- {Rule[EulerE[Plus[-1, Times[2, n]], Rational[1, 3]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[EulerE[Plus[-1, Times[2, n]], Rational[2, 3]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[0.0, 2.8284271247461903] <- {Rule[EulerE[Plus[-1, Times[2, n]], Rational[1, 3]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[EulerE[Plus[-1, Times[2, n]], Rational[2, 3]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
2.8284271247461903 <- {Rule[EulerE[Plus[-1, Times[2, n]], Rational[1, 3]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[EulerE[Plus[-1, Times[2, n]], Rational[2, 3]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
24.4.E30 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\EulerpolyE{2n-1}@{\tfrac{2}{3}} = -\frac{(1-3^{1-2n})(2^{2n}-1)}{2n}\BernoullinumberB{2n}} - euler(2*n - 1, (2)/(3))= -((1 - (3)^(1 - 2*n))*((2)^(2*n)- 1))/(2*n)*bernoulli(2*n) - EulerE[2*n - 1, Divide[2,3]]= -Divide[(1 - (3)^(1 - 2*n))*((2)^(2*n)- 1),2*n]*BernoulliB[2*n] Failure Failure Successful Successful
24.4.E31 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{n}@{\tfrac{1}{4}} = (-1)^{n}\BernoullipolyB{n}@{\tfrac{3}{4}}} bernoulli(n, (1)/(4))=(- 1)^(n)* bernoulli(n, (3)/(4)) BernoulliB[n, Divide[1,4]]=(- 1)^(n)* BernoulliB[n, Divide[3,4]] Failure Successful Successful -
24.4.E31 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\BernoullipolyB{n}@{\tfrac{3}{4}} = -\frac{1-2^{1-n}}{2^{n}}\BernoullinumberB{n}-\frac{n}{4^{n}}\EulernumberE{n-1}} Error (- 1)^(n)* BernoulliB[n, Divide[3,4]]= -Divide[1 - (2)^(1 - n),(2)^(n)]*BernoulliB[n]-Divide[n,(4)^(n)]*EulerE[n - 1] Error Failure - Successful
24.4.E32 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{2n}@{\tfrac{1}{6}} = \BernoullipolyB{2n}@{\tfrac{5}{6}}} bernoulli(2*n, (1)/(6))= bernoulli(2*n, (5)/(6)) BernoulliB[2*n, Divide[1,6]]= BernoulliB[2*n, Divide[5,6]] Failure Failure Successful
Fail
Complex[0.0, 2.8284271247461903] <- {Rule[BernoulliB[Times[2, n], Rational[1, 6]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[BernoulliB[Times[2, n], Rational[5, 6]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[BernoulliB[Times[2, n], Rational[1, 6]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[BernoulliB[Times[2, n], Rational[5, 6]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
2.8284271247461903 <- {Rule[BernoulliB[Times[2, n], Rational[1, 6]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[BernoulliB[Times[2, n], Rational[5, 6]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -2.8284271247461903] <- {Rule[BernoulliB[Times[2, n], Rational[1, 6]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[BernoulliB[Times[2, n], Rational[5, 6]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
24.4.E32 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{2n}@{\tfrac{5}{6}} = \tfrac{1}{2}(1-2^{1-2n})(1-3^{1-2n})\BernoullinumberB{2n}} bernoulli(2*n, (5)/(6))=(1)/(2)*(1 - (2)^(1 - 2*n))*(1 - (3)^(1 - 2*n))* bernoulli(2*n) BernoulliB[2*n, Divide[5,6]]=Divide[1,2]*(1 - (2)^(1 - 2*n))*(1 - (3)^(1 - 2*n))* BernoulliB[2*n] Failure Failure Successful Successful
24.4.E33 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{2n}@{\tfrac{1}{6}} = \EulerpolyE{2n}@{\tfrac{5}{6}}} euler(2*n, (1)/(6))= euler(2*n, (5)/(6)) EulerE[2*n, Divide[1,6]]= EulerE[2*n, Divide[5,6]] Failure Failure Successful
Fail
Complex[0.0, 2.8284271247461903] <- {Rule[EulerE[Times[2, n], Rational[1, 6]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[EulerE[Times[2, n], Rational[5, 6]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[EulerE[Times[2, n], Rational[1, 6]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[EulerE[Times[2, n], Rational[5, 6]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
2.8284271247461903 <- {Rule[EulerE[Times[2, n], Rational[1, 6]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[EulerE[Times[2, n], Rational[5, 6]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -2.8284271247461903] <- {Rule[EulerE[Times[2, n], Rational[1, 6]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[EulerE[Times[2, n], Rational[5, 6]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
24.4.E33 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{2n}@{\tfrac{5}{6}} = \frac{1+3^{-2n}}{2^{2n+1}}\EulernumberE{2n}} Error EulerE[2*n, Divide[5,6]]=Divide[1 + (3)^(- 2*n),(2)^(2*n + 1)]*EulerE[2*n] Error Failure - Successful
24.4.E34 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{x}\BernoullipolyB{n}@{x} = n\BernoullipolyB{n-1}@{x}} diff(bernoulli(n, x), x)= n*bernoulli(n - 1, x) D[BernoulliB[n, x], x]= n*BernoulliB[n - 1, x] Successful Successful - -
24.4.E35 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{x}\EulerpolyE{n}@{x} = n\EulerpolyE{n-1}@{x}} diff(euler(n, x), x)= n*euler(n - 1, x) D[EulerE[n, x], x]= n*EulerE[n - 1, x] Successful Successful - -
24.4.E37 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{n}@{x+h} = (B(x)+h)^{n}} bernoulli(n, x + h)=(B*(x)+ h)^(n) BernoulliB[n, x + h]=(B*(x)+ h)^(n) Failure Failure
Fail
-.9142135620-1.414213562*I <- {B = 2^(1/2)+I*2^(1/2), h = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
-1.328427124-2.828427124*I <- {B = 2^(1/2)+I*2^(1/2), h = 2^(1/2)+I*2^(1/2), n = 1, x = 2}
-1.742640686-4.242640686*I <- {B = 2^(1/2)+I*2^(1/2), h = 2^(1/2)+I*2^(1/2), n = 1, x = 3}
1.580880229-10.58578643*I <- {B = 2^(1/2)+I*2^(1/2), h = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
... skip entries to safe data
Fail
Complex[-0.9142135623730951, -1.4142135623730951] <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[h, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 1]}
Complex[-1.3284271247461903, -2.8284271247461903] <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[h, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 2]}
Complex[-1.7426406871192857, -4.242640687119286] <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[h, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 3]}
Complex[1.580880229039761, -10.585786437626906] <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[h, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 1]}
... skip entries to safe data
24.4.E39 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{n}@{x+h} = (E(x)+h)^{n}} euler(n, x + h)=(E*(x)+ h)^(n) EulerE[n, x + h]=(E*(x)+ h)^(n) Failure Failure
Fail
-.9142135620-1.414213562*I <- {E = 2^(1/2)+I*2^(1/2), h = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
-1.328427124-2.828427124*I <- {E = 2^(1/2)+I*2^(1/2), h = 2^(1/2)+I*2^(1/2), n = 1, x = 2}
-1.742640686-4.242640686*I <- {E = 2^(1/2)+I*2^(1/2), h = 2^(1/2)+I*2^(1/2), n = 1, x = 3}
1.414213562-10.58578643*I <- {E = 2^(1/2)+I*2^(1/2), h = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
... skip entries to safe data
Fail
-2.218281828459045 <- {Rule[h, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 1]}
-3.93656365691809 <- {Rule[h, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 2]}
-5.654845485377136 <- {Rule[h, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 3]}
Complex[-13.66330459287579, -6.27424849394514] <- {Rule[h, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 1]}
... skip entries to safe data
24.5.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}\frac{2^{2k}\BernoullinumberB{2k}}{(2k)!(2n+1-2k)!} = \frac{1}{(2n)!}} sum(((2)^(2*k)* bernoulli(2*k))/(factorial(2*k)*factorial(2*n + 1 - 2*k)), k = 0..n)=(1)/(factorial(2*n)) Sum[Divide[(2)^(2*k)* BernoulliB[2*k],(2*k)!*(2*n + 1 - 2*k)!], {k, 0, n}]=Divide[1,(2*n)!] Failure Failure Skip Successful
24.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{n} = \frac{1}{n+1}\sum_{k=1}^{n}\sum_{j=1}^{k}(-1)^{j}j^{n}{\binom{n+1}{k-j}}\Bigg{/}{\binom{n}{k}}} bernoulli(n)=(1)/(n + 1)*sum(sum((- 1)^(j)* (j)^(n)*binomial(n + 1,k - j)/binomial(n,k), j = 1..k), k = 1..n) BernoulliB[n]=Divide[1,n + 1]*Sum[Sum[(- 1)^(j)* (j)^(n)*Binomial[n + 1,k - j]/Binomial[n,k], {j, 1, k}], {k, 1, n}] Failure Failure Skip Successful
24.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{2n} = (-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t}} bernoulli(2*n)=(- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity) BernoulliB[2*n]=(- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}] Failure Failure Skip Successful
24.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n+1}\frac{4n}{1-2^{1-2n}}\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}+1}\diff{t} = (-1)^{n+1}\frac{2n}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\sech@{\pi t}\diff{t}} (- 1)^(n + 1)*(4*n)/(1 - (2)^(1 - 2*n))*int(((t)^(2*n - 1))/(exp(2*Pi*t)+ 1), t = 0..infinity)=(- 1)^(n + 1)*(2*n)/(1 - (2)^(1 - 2*n))*int((t)^(2*n - 1)* exp(- Pi*t)*sech(Pi*t), t = 0..infinity) (- 1)^(n + 1)*Divide[4*n,1 - (2)^(1 - 2*n)]*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]+ 1], {t, 0, Infinity}]=(- 1)^(n + 1)*Divide[2*n,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Sech[Pi*t], {t, 0, Infinity}] Successful Failure - Skip
24.7.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{2n} = (-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t}} bernoulli(2*n)=(- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity) BernoulliB[2*n]=(- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}] Failure Failure Skip Successful
24.7.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n+1}4n\int_{0}^{\infty}\frac{t^{2n-1}}{e^{2\pi t}-1}\diff{t} = (-1)^{n+1}2n\int_{0}^{\infty}t^{2n-1}e^{-\pi t}\csch@{\pi t}\diff{t}} (- 1)^(n + 1)* 4*n*int(((t)^(2*n - 1))/(exp(2*Pi*t)- 1), t = 0..infinity)=(- 1)^(n + 1)* 2*n*int((t)^(2*n - 1)* exp(- Pi*t)*csch(Pi*t), t = 0..infinity) (- 1)^(n + 1)* 4*n*Integrate[Divide[(t)^(2*n - 1),Exp[2*Pi*t]- 1], {t, 0, Infinity}]=(- 1)^(n + 1)* 2*n*Integrate[(t)^(2*n - 1)* Exp[- Pi*t]*Csch[Pi*t], {t, 0, Infinity}] Successful Failure - Skip
24.7.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{2n} = (-1)^{n+1}\frac{\pi}{1-2^{1-2n}}\int_{0}^{\infty}t^{2n}\sech^{2}@{\pi t}\diff{t}} bernoulli(2*n)=(- 1)^(n + 1)*(Pi)/(1 - (2)^(1 - 2*n))*int((t)^(2*n)* (sech(Pi*t))^(2), t = 0..infinity) BernoulliB[2*n]=(- 1)^(n + 1)*Divide[Pi,1 - (2)^(1 - 2*n)]*Integrate[(t)^(2*n)* (Sech[Pi*t])^(2), {t, 0, Infinity}] Failure Failure Skip Error
24.7.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{2n} = (-1)^{n+1}\pi\int_{0}^{\infty}t^{2n}\csch^{2}@{\pi t}\diff{t}} bernoulli(2*n)=(- 1)^(n + 1)* Pi*int((t)^(2*n)* (csch(Pi*t))^(2), t = 0..infinity) BernoulliB[2*n]=(- 1)^(n + 1)* Pi*Integrate[(t)^(2*n)* (Csch[Pi*t])^(2), {t, 0, Infinity}] Failure Failure Skip Error
24.7.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{2n} = (-1)^{n}\frac{2n(2n-1)}{\pi}\*\int_{0}^{\infty}t^{2n-2}\ln@{1-e^{-2\pi t}}\diff{t}} bernoulli(2*n)=(- 1)^(n)*(2*n*(2*n - 1))/(Pi)* int((t)^(2*n - 2)* ln(1 - exp(- 2*Pi*t)), t = 0..infinity) BernoulliB[2*n]=(- 1)^(n)*Divide[2*n*(2*n - 1),Pi]* Integrate[(t)^(2*n - 2)* Log[1 - Exp[- 2*Pi*t]], {t, 0, Infinity}] Failure Failure Skip Successful
24.7.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulernumberE{2n} = (-1)^{n}2^{2n+1}\int_{0}^{\infty}t^{2n}\sech@{\pi t}\diff{t}} Error EulerE[2*n]=(- 1)^(n)* (2)^(2*n + 1)* Integrate[(t)^(2*n)* Sech[Pi*t], {t, 0, Infinity}] Error Failure - Skip
24.7.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{2n}@{x} = (-1)^{n+1}2n\*\int_{0}^{\infty}\frac{\cos@{2\pi x}-e^{-2\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n-1}\diff{t}} bernoulli(2*n, x)=(- 1)^(n + 1)* 2*n * int((cos(2*Pi*x)- exp(- 2*Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n - 1), t = 0..infinity) BernoulliB[2*n, x]=(- 1)^(n + 1)* 2*n * Integrate[Divide[Cos[2*Pi*x]- Exp[- 2*Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n - 1), {t, 0, Infinity}] Failure Failure Skip Error
24.7.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{2n+1}@{x} = (-1)^{n+1}(2n+1)\*\int_{0}^{\infty}\frac{\sin@{2\pi x}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}} bernoulli(2*n + 1, x)=(- 1)^(n + 1)*(2*n + 1)* int((sin(2*Pi*x))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity) BernoulliB[2*n + 1, x]=(- 1)^(n + 1)*(2*n + 1)* Integrate[Divide[Sin[2*Pi*x],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}] Failure Failure Skip Error
24.7.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{2n}@{x} = (-1)^{n}4\int_{0}^{\infty}\frac{\sin@{\pi x}\cosh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n}\diff{t}} euler(2*n, x)=(- 1)^(n)* 4*int((sin(Pi*x)*cosh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n), t = 0..infinity) EulerE[2*n, x]=(- 1)^(n)* 4*Integrate[Divide[Sin[Pi*x]*Cosh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n), {t, 0, Infinity}] Failure Failure Skip Error
24.7.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{2n+1}@{x} = (-1)^{n+1}4\*\int_{0}^{\infty}\frac{\cos@{\pi x}\sinh@{\pi t}}{\cosh@{2\pi t}-\cos@{2\pi x}}t^{2n+1}\diff{t}} euler(2*n + 1, x)=(- 1)^(n + 1)* 4 * int((cos(Pi*x)*sinh(Pi*t))/(cosh(2*Pi*t)- cos(2*Pi*x))*(t)^(2*n + 1), t = 0..infinity) EulerE[2*n + 1, x]=(- 1)^(n + 1)* 4 * Integrate[Divide[Cos[Pi*x]*Sinh[Pi*t],Cosh[2*Pi*t]- Cos[2*Pi*x]]*(t)^(2*n + 1), {t, 0, Infinity}] Failure Failure Skip Error
24.7.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{n}@{x} = \frac{1}{2\pi i}\int_{-c-i\infty}^{-c+i\infty}(x+t)^{n}\left(\frac{\pi}{\sin@{\pi t}}\right)^{2}\diff{t}} bernoulli(n, x)=(1)/(2*Pi*I)*int((x + t)^(n)*((Pi)/(sin(Pi*t)))^(2), t = - c - I*infinity..- c + I*infinity) BernoulliB[n, x]=Divide[1,2*Pi*I]*Integrate[(x + t)^(n)*(Divide[Pi,Sin[Pi*t]])^(2), {t, - c - I*Infinity, - c + I*Infinity}] Failure Failure Skip
Fail
Complex[1.1891344833338187, 1.6392926414123716] <- {Rule[c, Rational[1, 2]], Rule[BernoulliB[n, x], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Integrate[Times[Power[Pi, 2], Power[Plus[t, x], n], Power[Csc[Times[Pi, t]], 2]], {t, DirectedInfinity[Complex[0, -1]], DirectedInfinity[Complex[0, 1]]}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.6392926414123716, 1.6392926414123716] <- {Rule[c, Rational[1, 2]], Rule[BernoulliB[n, x], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Integrate[Times[Power[Pi, 2], Power[Plus[t, x], n], Power[Csc[Times[Pi, t]], 2]], {t, DirectedInfinity[Complex[0, -1]], DirectedInfinity[Complex[0, 1]]}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.6392926414123716, 1.1891344833338187] <- {Rule[c, Rational[1, 2]], Rule[BernoulliB[n, x], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Integrate[Times[Power[Pi, 2], Power[Plus[t, x], n], Power[Csc[Times[Pi, t]], 2]], {t, DirectedInfinity[Complex[0, -1]], DirectedInfinity[Complex[0, 1]]}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.1891344833338187, 1.1891344833338187] <- {Rule[c, Rational[1, 2]], Rule[BernoulliB[n, x], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Integrate[Times[Power[Pi, 2], Power[Plus[t, x], n], Power[Csc[Times[Pi, t]], 2]], {t, DirectedInfinity[Complex[0, -1]], DirectedInfinity[Complex[0, 1]]}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
24.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{2n}@{x} = (-1)^{n+1}\frac{2(2n)!}{(2\pi)^{2n}}\sum_{k=1}^{\infty}\frac{\cos@{2\pi kx}}{k^{2n}}} bernoulli(2*n, x)=(- 1)^(n + 1)*(2*factorial(2*n))/((2*Pi)^(2*n))*sum((cos(2*Pi*k*x))/((k)^(2*n)), k = 1..infinity) BernoulliB[2*n, x]=(- 1)^(n + 1)*Divide[2*(2*n)!,(2*Pi)^(2*n)]*Sum[Divide[Cos[2*Pi*k*x],(k)^(2*n)], {k, 1, Infinity}] Failure Failure Skip
Fail
2.0 <- {Rule[n, 1], Rule[x, 2]}
6.0 <- {Rule[n, 1], Rule[x, 3]}
4.0 <- {Rule[n, 2], Rule[x, 2]}
36.0 <- {Rule[n, 2], Rule[x, 3]}
... skip entries to safe data
24.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{2n+1}@{x} = (-1)^{n+1}\frac{2(2n+1)!}{(2\pi)^{2n+1}}\sum_{k=1}^{\infty}\frac{\sin@{2\pi kx}}{k^{2n+1}}} bernoulli(2*n + 1, x)=(- 1)^(n + 1)*(2*factorial(2*n + 1))/((2*Pi)^(2*n + 1))*sum((sin(2*Pi*k*x))/((k)^(2*n + 1)), k = 1..infinity) BernoulliB[2*n + 1, x]=(- 1)^(n + 1)*Divide[2*(2*n + 1)!,(2*Pi)^(2*n + 1)]*Sum[Divide[Sin[2*Pi*k*x],(k)^(2*n + 1)], {k, 1, Infinity}] Failure Failure Skip
Fail
3.0 <- {Rule[n, 1], Rule[x, 2]}
15.0 <- {Rule[n, 1], Rule[x, 3]}
5.0 <- {Rule[n, 2], Rule[x, 2]}
85.0 <- {Rule[n, 2], Rule[x, 3]}
... skip entries to safe data
24.8.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{2n}@{x} = (-1)^{n}\frac{4(2n)!}{\pi^{2n+1}}\sum_{k=0}^{\infty}\frac{\sin@{(2k+1)\pi x}}{(2k+1)^{2n+1}}} euler(2*n, x)=(- 1)^(n)*(4*factorial(2*n))/((Pi)^(2*n + 1))*sum((sin((2*k + 1)* Pi*x))/((2*k + 1)^(2*n + 1)), k = 0..infinity) EulerE[2*n, x]=(- 1)^(n)*Divide[4*(2*n)!,(Pi)^(2*n + 1)]*Sum[Divide[Sin[(2*k + 1)* Pi*x],(2*k + 1)^(2*n + 1)], {k, 0, Infinity}] Failure Failure Skip
Fail
2.0 <- {Rule[n, 1], Rule[x, 2]}
6.0 <- {Rule[n, 1], Rule[x, 3]}
2.0 <- {Rule[n, 2], Rule[x, 2]}
30.0 <- {Rule[n, 2], Rule[x, 3]}
... skip entries to safe data
24.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{2n-1}@{x} = (-1)^{n}\frac{4(2n-1)!}{\pi^{2n}}\sum_{k=0}^{\infty}\frac{\cos@{(2k+1)\pi x}}{(2k+1)^{2n}}} euler(2*n - 1, x)=(- 1)^(n)*(4*factorial(2*n - 1))/((Pi)^(2*n))*sum((cos((2*k + 1)* Pi*x))/((2*k + 1)^(2*n)), k = 0..infinity) EulerE[2*n - 1, x]=(- 1)^(n)*Divide[4*(2*n - 1)!,(Pi)^(2*n)]*Sum[Divide[Cos[(2*k + 1)* Pi*x],(2*k + 1)^(2*n)], {k, 0, Infinity}] Failure Failure Skip
Fail
2.0 <- {Rule[n, 1], Rule[x, 2]}
2.0 <- {Rule[n, 1], Rule[x, 3]}
2.0 <- {Rule[n, 2], Rule[x, 2]}
14.0 <- {Rule[n, 2], Rule[x, 3]}
... skip entries to safe data
24.8.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{4n+2} = (8n+4)\sum_{k=1}^{\infty}\frac{k^{4n+1}}{e^{2\pi k}-1}} bernoulli(4*n + 2)=(8*n + 4)* sum(((k)^(4*n + 1))/(exp(2*Pi*k)- 1), k = 1..infinity) BernoulliB[4*n + 2]=(8*n + 4)* Sum[Divide[(k)^(4*n + 1),Exp[2*Pi*k]- 1], {k, 1, Infinity}] Failure Failure Skip Skip
24.8.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{2n} = \frac{(-1)^{n+1}4n}{2^{2n}-1}\sum_{k=1}^{\infty}\frac{k^{2n-1}}{e^{\pi k}+(-1)^{k+n}}} bernoulli(2*n)=((- 1)^(n + 1)* 4*n)/((2)^(2*n)- 1)*sum(((k)^(2*n - 1))/(exp(Pi*k)+(- 1)^(k + n)), k = 1..infinity) BernoulliB[2*n]=Divide[(- 1)^(n + 1)* 4*n,(2)^(2*n)- 1]*Sum[Divide[(k)^(2*n - 1),Exp[Pi*k]+(- 1)^(k + n)], {k, 1, Infinity}] Failure Failure Skip Skip
24.8.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\BernoullinumberB{2n}}{4n}\left(\alpha^{n}-(-\beta)^{n}\right) = \alpha^{n}\sum_{k=1}^{\infty}\frac{k^{2n-1}}{e^{2\alpha k}-1}-(-\beta)^{n}\sum_{k=1}^{\infty}\frac{k^{2n-1}}{e^{2\beta k}-1}} (bernoulli(2*n))/(4*n)*((alpha)^(n)-(- beta)^(n))= (alpha)^(n)* sum(((k)^(2*n - 1))/(exp(2*alpha*k)- 1), k = 1..infinity)-(- beta)^(n)* sum(((k)^(2*n - 1))/(exp(2*beta*k)- 1), k = 1..infinity) Divide[BernoulliB[2*n],4*n]*((\[Alpha])^(n)-(- \[Beta])^(n))= (\[Alpha])^(n)* Sum[Divide[(k)^(2*n - 1),Exp[2*\[Alpha]*k]- 1], {k, 1, Infinity}]-(- \[Beta])^(n)* Sum[Divide[(k)^(2*n - 1),Exp[2*\[Beta]*k]- 1], {k, 1, Infinity}] Failure Failure Skip Error
24.8.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulernumberE{2n} = (-1)^{n}\sum_{k=1}^{\infty}\frac{k^{2n}}{\cosh@{\tfrac{1}{2}\pi k}}-4\sum_{k=0}^{\infty}\frac{(-1)^{k}(2k+1)^{2n}}{e^{2\pi(2k+1)}-1}} Error EulerE[2*n]=(- 1)^(n)* Sum[Divide[(k)^(2*n),Cosh[Divide[1,2]*Pi*k]], {k, 1, Infinity}]- 4*Sum[Divide[(- 1)^(k)*(2*k + 1)^(2*n),Exp[2*Pi*(2*k + 1)]- 1], {k, 0, Infinity}] Error Failure - Skip
24.9.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\BernoullinumberB{2n}| > |\BernoullipolyB{2n}@{x}|} abs(bernoulli(2*n))>abs(bernoulli(2*n, x)) Abs[BernoulliB[2*n]]>Abs[BernoulliB[2*n, x]] Failure Failure Skip Successful
24.9.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (2-2^{1-2n})|\BernoullinumberB{2n}| >= |\BernoullipolyB{2n}@{x}-\BernoullinumberB{2n}|} (2 - (2)^(1 - 2*n))*abs(bernoulli(2*n))> =abs(bernoulli(2*n, x)- bernoulli(2*n)) (2 - (2)^(1 - 2*n))*Abs[BernoulliB[2*n]]> =Abs[BernoulliB[2*n, x]- BernoulliB[2*n]] Failure Failure Skip Successful
24.9.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 4^{-n}|\EulernumberE{2n}| > (-1)^{n}\EulerpolyE{2n}@{x}} Error (4)^(- n)*Abs[EulerE[2*n]]>(- 1)^(n)* EulerE[2*n, x] Error Failure - Successful
24.9.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\EulerpolyE{2n}@{x} > 0} (- 1)^(n)* euler(2*n, x)> 0 (- 1)^(n)* EulerE[2*n, x]> 0 Failure Failure
Fail
0. < 0. <- {n = 1, x = 1}
0. < -2. <- {n = 1, x = 2}
0. < -6. <- {n = 1, x = 3}
0. < 0. <- {n = 2, x = 1}
... skip entries to safe data
Successful
24.9.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2(2n+1)!}{(2\pi)^{2n+1}} > (-1)^{n+1}\BernoullipolyB{2n+1}@{x}} (2*factorial(2*n + 1))/((2*Pi)^(2*n + 1))>(- 1)^(n + 1)* bernoulli(2*n + 1, x) Divide[2*(2*n + 1)!,(2*Pi)^(2*n + 1)]>(- 1)^(n + 1)* BernoulliB[2*n + 1, x] Failure Failure
Fail
3. < .4837730163e-1 <- {n = 1, x = 2}
15. < .4837730163e-1 <- {n = 1, x = 3}
7. < .2607362729e-1 <- {n = 3, x = 2}
455. < .2607362729e-1 <- {n = 3, x = 3}
Successful
24.9.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n+1}\BernoullipolyB{2n+1}@{x} > 0} (- 1)^(n + 1)* bernoulli(2*n + 1, x)> 0 (- 1)^(n + 1)* BernoulliB[2*n + 1, x]> 0 Failure Failure
Fail
0. < 0. <- {n = 1, x = 1}
0. < 0. <- {n = 2, x = 1}
0. < -5. <- {n = 2, x = 2}
0. < -85. <- {n = 2, x = 3}
... skip entries to safe data
Successful
24.9.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{4(2n-1)!}{\pi^{2n}}\frac{2^{2n}-1}{2^{2n}-2} > (-1)^{n}\EulerpolyE{2n-1}@{x}} (4*factorial(2*n - 1))/((Pi)^(2*n))*((2)^(2*n)- 1)/((2)^(2*n)- 2)>(- 1)^(n)* euler(2*n - 1, x) Divide[4*(2*n - 1)!,(Pi)^(2*n)]*Divide[(2)^(2*n)- 1,(2)^(2*n)- 2]>(- 1)^(n)* EulerE[2*n - 1, x] Failure Failure
Fail
2.250000000 < .2639824007 <- {n = 2, x = 2}
13.75000000 < .2639824007 <- {n = 2, x = 3}
Successful
24.9.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\EulerpolyE{2n-1}@{x} > 0} (- 1)^(n)* euler(2*n - 1, x)> 0 (- 1)^(n)* EulerE[2*n - 1, x]> 0 Failure Failure
Fail
0. < -.5000000000 <- {n = 1, x = 1}
0. < -1.500000000 <- {n = 1, x = 2}
0. < -2.500000000 <- {n = 1, x = 3}
0. < -.2500000000 <- {n = 2, x = 1}
... skip entries to safe data
Successful
24.9.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 5\sqrt{\pi n}\left(\frac{n}{\pi e}\right)^{2n} > (-1)^{n+1}\BernoullinumberB{2n}} 5*sqrt(Pi*n)*((n)/(Pi*exp(1)))^(2*n)>(- 1)^(n + 1)* bernoulli(2*n) 5*Sqrt[Pi*n]*(Divide[n,Pi*E])^(2*n)>(- 1)^(n + 1)* BernoulliB[2*n] Failure Failure
Fail
.1666666667 < .1215223702 <- {n = 1}
Successful
24.9.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n+1}\BernoullinumberB{2n} > 4\sqrt{\pi n}\left(\frac{n}{\pi e}\right)^{2n}} (- 1)^(n + 1)* bernoulli(2*n)> 4*sqrt(Pi*n)*((n)/(Pi*exp(1)))^(2*n) (- 1)^(n + 1)* BernoulliB[2*n]> 4*Sqrt[Pi*n]*(Divide[n,Pi*E])^(2*n) Failure Failure Successful Successful
24.9.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 8\sqrt{\frac{n}{\pi}}\left(\frac{4n}{\pi e}\right)^{2n}\left(1+\frac{1}{12n}\right) > (-1)^{n}\EulernumberE{2n}} Error 8*Sqrt[Divide[n,Pi]]*(Divide[4*n,Pi*E])^(2*n)*(1 +Divide[1,12*n])>(- 1)^(n)* EulerE[2*n] Error Failure - Successful
24.9.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\EulernumberE{2n} > 8\sqrt{\frac{n}{\pi}}\left(\frac{4n}{\pi e}\right)^{2n}} Error (- 1)^(n)* EulerE[2*n]> 8*Sqrt[Divide[n,Pi]]*(Divide[4*n,Pi*E])^(2*n) Error Failure - Successful
24.9.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2(2n)!}{(2\pi)^{2n}}\frac{1}{1-2^{\beta-2n}} >= (-1)^{n+1}\BernoullinumberB{2n}\geq\frac{2(2n)!}{(2\pi)^{2n}}\frac{1}{1-2^{-2n}}} (2*factorial(2*n))/((2*Pi)^(2*n))*(1)/(1 - (2)^(beta - 2*n))> =(- 1)^(n + 1)* bernoulli(2*n)>=(2*factorial(2*n))/((2*Pi)^(2*n))*(1)/(1 - (2)^(- 2*n)) Divide[2*(2*n)!,(2*Pi)^(2*n)]*Divide[1,1 - (2)^(\[Beta]- 2*n)]> =(- 1)^(n + 1)* BernoulliB[2*n]>=Divide[2*(2*n)!,(2*Pi)^(2*n)]*Divide[1,1 - (2)^(- 2*n)] Failure Failure Error Successful
24.9.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \beta = 2+\frac{\ln@{1-6\pi^{-2}}}{\ln@@{2}}} beta = 2 +(ln(1 - 6*(Pi)^(- 2)))/(ln(2)) \[Beta]= 2 +Divide[Log[1 - 6*(Pi)^(- 2)],Log[2]] Failure Failure
Fail
.765019736+1.414213562*I <- {beta = 2^(1/2)+I*2^(1/2)}
.765019736-1.414213562*I <- {beta = 2^(1/2)-I*2^(1/2)}
-2.063407388-1.414213562*I <- {beta = -2^(1/2)-I*2^(1/2)}
-2.063407388+1.414213562*I <- {beta = -2^(1/2)+I*2^(1/2)}
Fail
Complex[0.7650197375731231, 1.4142135623730951] <- {Rule[β, Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.7650197375731231, -1.4142135623730951] <- {Rule[β, Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.0634073871730667, -1.4142135623730951] <- {Rule[β, Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[-2.0634073871730667, 1.4142135623730951] <- {Rule[β, Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
24.9.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{4^{n+1}(2n)!}{\pi^{2n+1}} > (-1)^{n}\EulernumberE{2n}} Error Divide[(4)^(n + 1)*(2*n)!,(Pi)^(2*n + 1)]>(- 1)^(n)* EulerE[2*n] Error Failure - Successful
24.9.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\EulernumberE{2n} > \frac{4^{n+1}(2n)!}{\pi^{2n+1}}\frac{1}{1+3^{-1-2n}}} Error (- 1)^(n)* EulerE[2*n]>Divide[(4)^(n + 1)*(2*n)!,(Pi)^(2*n + 1)]*Divide[1,1 + (3)^(- 1 - 2*n)] Error Failure - Successful
24.13.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{x+1}\BernoullipolyB{n}@{t}\diff{t} = x^{n}} int(bernoulli(n, t), t = x..x + 1)= (x)^(n) Integrate[BernoulliB[n, t], {t, x, x + 1}]= (x)^(n) Failure Failure Skip Successful
24.13.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{x+(1/2)}\BernoullipolyB{n}@{t}\diff{t} = \frac{\EulerpolyE{n}@{2x}}{2^{n+1}}} int(bernoulli(n, t), t = x..x +(1/ 2))=(euler(n, 2*x))/((2)^(n + 1)) Integrate[BernoulliB[n, t], {t, x, x +(1/ 2)}]=Divide[EulerE[n, 2*x],(2)^(n + 1)] Failure Failure Skip Successful
24.13.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1/2}\BernoullipolyB{n}@{t}\diff{t} = \frac{1-2^{n+1}}{2^{n}}\frac{\BernoullinumberB{n+1}}{n+1}} int(bernoulli(n, t), t = 0..1/ 2)=(1 - (2)^(n + 1))/((2)^(n))*(bernoulli(n + 1))/(n + 1) Integrate[BernoulliB[n, t], {t, 0, 1/ 2}]=Divide[1 - (2)^(n + 1),(2)^(n)]*Divide[BernoulliB[n + 1],n + 1] Failure Failure Skip Successful
24.13.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{1/4}^{3/4}\BernoullipolyB{n}@{t}\diff{t} = \frac{\EulernumberE{n}}{2^{2n+1}}} Error Integrate[BernoulliB[n, t], {t, 1/ 4, 3/ 4}]=Divide[EulerE[n],(2)^(2*n + 1)] Error Failure - Successful
24.13.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\BernoullipolyB{n}@{t}\BernoullipolyB{m}@{t}\diff{t} = \frac{(-1)^{n-1}m!n!}{(m+n)!}\BernoullinumberB{m+n}} int(bernoulli(n, t)*bernoulli(m, t), t = 0..1)=((- 1)^(n - 1)* factorial(m)*factorial(n))/(factorial(m + n))*bernoulli(m + n) Integrate[BernoulliB[n, t]*BernoulliB[m, t], {t, 0, 1}]=Divide[(- 1)^(n - 1)* (m)!*(n)!,(m + n)!]*BernoulliB[m + n] Failure Failure Skip Successful
24.13.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\EulerpolyE{n}@{t}\diff{t} = -2\frac{\EulerpolyE{n+1}@{0}}{n+1}} int(euler(n, t), t = 0..1)= - 2*(euler(n + 1, 0))/(n + 1) Integrate[EulerE[n, t], {t, 0, 1}]= - 2*Divide[EulerE[n + 1, 0],n + 1] Failure Failure Skip Successful
24.13.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -2\frac{\EulerpolyE{n+1}@{0}}{n+1} = \frac{4(2^{n+2}-1)}{(n+1)(n+2)}\BernoullinumberB{n+2}} - 2*(euler(n + 1, 0))/(n + 1)=(4*((2)^(n + 2)- 1))/((n + 1)*(n + 2))*bernoulli(n + 2) - 2*Divide[EulerE[n + 1, 0],n + 1]=Divide[4*((2)^(n + 2)- 1),(n + 1)*(n + 2)]*BernoulliB[n + 2] Failure Failure Successful Successful
24.13.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1/2}\EulerpolyE{2n}@{t}\diff{t} = -\frac{\EulerpolyE{2n+1}@{0}}{2n+1}} int(euler(2*n, t), t = 0..1/ 2)= -(euler(2*n + 1, 0))/(2*n + 1) Integrate[EulerE[2*n, t], {t, 0, 1/ 2}]= -Divide[EulerE[2*n + 1, 0],2*n + 1] Failure Failure Skip Successful
24.13.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -\frac{\EulerpolyE{2n+1}@{0}}{2n+1} = \frac{2(2^{2n+2}-1)\BernoullinumberB{2n+2}}{(2n+1)(2n+2)}} -(euler(2*n + 1, 0))/(2*n + 1)=(2*((2)^(2*n + 2)- 1)* bernoulli(2*n + 2))/((2*n + 1)*(2*n + 2)) -Divide[EulerE[2*n + 1, 0],2*n + 1]=Divide[2*((2)^(2*n + 2)- 1)* BernoulliB[2*n + 2],(2*n + 1)*(2*n + 2)] Failure Failure Successful Successful
24.13.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1/2}\EulerpolyE{2n-1}@{t}\diff{t} = \frac{\EulernumberE{2n}}{n2^{2n+1}}} Error Integrate[EulerE[2*n - 1, t], {t, 0, 1/ 2}]=Divide[EulerE[2*n],n*(2)^(2*n + 1)] Error Failure - Successful
24.13.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\EulerpolyE{n}@{t}\EulerpolyE{m}@{t}\diff{t} = (-1)^{n}4\frac{(2^{m+n+2}-1)m!n!}{(m+n+2)!}\BernoullinumberB{m+n+2}} int(euler(n, t)*euler(m, t), t = 0..1)=(- 1)^(n)* 4*(((2)^(m + n + 2)- 1)* factorial(m)*factorial(n))/(factorial(m + n + 2))*bernoulli(m + n + 2) Integrate[EulerE[n, t]*EulerE[m, t], {t, 0, 1}]=(- 1)^(n)* 4*Divide[((2)^(m + n + 2)- 1)* (m)!*(n)!,(m + n + 2)!]*BernoulliB[m + n + 2] Failure Failure Skip Successful
24.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle -2^{n+1}\EulerpolyE{n+1}@{0} = -2^{n+2}(1-2^{n+2})\frac{\BernoullinumberB{n+2}}{n+2}} - (2)^(n + 1)* euler(n + 1, 0)= - (2)^(n + 2)*(1 - (2)^(n + 2))*(bernoulli(n + 2))/(n + 2) - (2)^(n + 1)* EulerE[n + 1, 0]= - (2)^(n + 2)*(1 - (2)^(n + 2))*Divide[BernoulliB[n + 2],n + 2] Failure Failure Successful Successful
24.14.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{j=0}^{m}\sum_{k=0}^{n}\binom{m}{j}\binom{n}{k}\frac{\BernoullinumberB{j}\BernoullinumberB{k}}{m+n-j-k+1} = (-1)^{m-1}\frac{m!n!}{(m+n)!}\BernoullinumberB{m+n}} sum(sum(binomial(m,j)*binomial(n,k)*(bernoulli(j)*bernoulli(k))/(m + n - j - k + 1), k = 0..n), j = 0..m)=(- 1)^(m - 1)*(factorial(m)*factorial(n))/(factorial(m + n))*bernoulli(m + n) Sum[Sum[Binomial[m,j]*Binomial[n,k]*Divide[BernoulliB[j]*BernoulliB[k],m + n - j - k + 1], {k, 0, n}], {j, 0, m}]=(- 1)^(m - 1)*Divide[(m)!*(n)!,(m + n)!]*BernoulliB[m + n] Failure Failure Skip Successful
24.15.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle G_{n} = 2(1-2^{n})\BernoullinumberB{n}} G[n]= 2*(1 - (2)^(n))* bernoulli(n) Subscript[G, n]= 2*(1 - (2)^(n))* BernoulliB[n] Failure Failure
Fail
.414213562+1.414213562*I <- {G[n] = 2^(1/2)+I*2^(1/2), n = 1}
2.414213562+1.414213562*I <- {G[n] = 2^(1/2)+I*2^(1/2), n = 2}
1.414213562+1.414213562*I <- {G[n] = 2^(1/2)+I*2^(1/2), n = 3}
.414213562-1.414213562*I <- {G[n] = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Successful
24.15.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tan@@{t} = \sum_{n=0}^{\infty}T_{n}\frac{t^{n}}{n!}} tan(t)= sum(T[n]*((t)^(n))/(factorial(n)), n = 0..infinity) Tan[t]= Sum[Subscript[T, n]*Divide[(t)^(n),(n)!], {n, 0, Infinity}] Failure Failure Skip Skip
24.15.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle T_{2n-1} = (-1)^{n-1}\frac{2^{2n}(2^{2n}-1)}{2n}\BernoullinumberB{2n}} T[2*n - 1]=(- 1)^(n - 1)*((2)^(2*n)*((2)^(2*n)- 1))/(2*n)*bernoulli(2*n) Subscript[T, 2*n - 1]=(- 1)^(n - 1)*Divide[(2)^(2*n)*((2)^(2*n)- 1),2*n]*BernoulliB[2*n] Failure Failure
Fail
.414213562+1.414213562*I <- {T[2*n-1] = 2^(1/2)+I*2^(1/2), n = 1}
-.585786438+1.414213562*I <- {T[2*n-1] = 2^(1/2)+I*2^(1/2), n = 2}
-14.58578644+1.414213562*I <- {T[2*n-1] = 2^(1/2)+I*2^(1/2), n = 3}
.414213562-1.414213562*I <- {T[2*n-1] = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Successful
24.15.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{n} = \sum_{k=0}^{n}(-1)^{k}\frac{k!\StirlingnumberS@{n}{k}}{k+1}} bernoulli(n)= sum((- 1)^(k)*(factorial(k)*Stirling2(n, k))/(k + 1), k = 0..n) BernoulliB[n]= Sum[(- 1)^(k)*Divide[(k)!*StirlingS2[n, k],k + 1], {k, 0, n}] Failure Successful Skip -
24.15.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{n} = \sum_{k=0}^{n}(-1)^{k}\binom{n+1}{k+1}\StirlingnumberS@{n+k}{k}\bigg{/}\binom{n+k}{k}} bernoulli(n)= sum((- 1)^(k)*binomial(n + 1,k + 1)*Stirling2(n + k, k)/binomial(n + k,k), k = 0..n) BernoulliB[n]= Sum[(- 1)^(k)*Binomial[n + 1,k + 1]*StirlingS2[n + k, k]/Binomial[n + k,k], {k, 0, n}] Failure Failure Skip
Fail
Complex[0.0, 2.8284271247461903] <- {Rule[BernoulliB[n], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, k], Binomial[Plus[1, n], Plus[1, k]], Power[Binomial[Plus[k, n], k], -1], StirlingS2[Plus[k, n], k]], {k, 0, n}], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.8284271247461903, 2.8284271247461903] <- {Rule[BernoulliB[n], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, k], Binomial[Plus[1, n], Plus[1, k]], Power[Binomial[Plus[k, n], k], -1], StirlingS2[Plus[k, n], k]], {k, 0, n}], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
2.8284271247461903 <- {Rule[BernoulliB[n], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, k], Binomial[Plus[1, n], Plus[1, k]], Power[Binomial[Plus[k, n], k], -1], StirlingS2[Plus[k, n], k]], {k, 0, n}], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
Complex[0.0, -2.8284271247461903] <- {Rule[BernoulliB[n], Times[Complex[1, -1], Power[2, Rational[1, 2]]]], Rule[Sum[Times[Power[-1, k], Binomial[Plus[1, n], Plus[1, k]], Power[Binomial[Plus[k, n], k], -1], StirlingS2[Plus[k, n], k]], {k, 0, n}], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
24.15.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}(-1)^{n+k}\Stirlingnumbers@{n+1}{k+1}\BernoullinumberB{k} = \frac{n!}{n+1}} sum((- 1)^(n + k)* Stirling1(n + 1, k + 1)*bernoulli(k), k = 0..n)=(factorial(n))/(n + 1) Sum[(- 1)^(n + k)* StirlingS1[n + 1, k + 1]*BernoulliB[k], {k, 0, n}]=Divide[(n)!,n + 1] Failure Failure Skip Successful
24.16.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{t}{\ln@{1+t}} = \sum_{n=0}^{\infty}b_{n}t^{n}} (t)/(ln(1 + t))= sum(b[n]*(t)^(n), n = 0..infinity) Divide[t,Log[1 + t]]= Sum[Subscript[b, n]*(t)^(n), {n, 0, Infinity}] Failure Failure Skip Skip
24.16.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \beta_{n}(\lambda) = n!b_{n}\lambda^{n}+\sum_{k=1}^{\floor{\ifrac{n}{2}}}\frac{n}{2k}\BernoullinumberB{2k}\Stirlingnumbers@{n-1}{2k-1}\lambda^{n-2k}} beta[n]*(lambda)= factorial(n)*b[n]*(lambda)^(n)+ sum((n)/(2*k)*bernoulli(2*k)*Stirling1(n - 1, 2*k - 1)*(lambda)^(n - 2*k), k = 1..floor((n)/(2))) Subscript[\[Beta], n]*(\[Lambda])= (n)!*Subscript[b, n]*(\[Lambda])^(n)+ Sum[Divide[n,2*k]*BernoulliB[2*k]*StirlingS1[n - 1, 2*k - 1]*(\[Lambda])^(n - 2*k), {k, 1, Floor[Divide[n,2]]}] Failure Failure Skip Skip
24.16.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullipolyB{n}@{x} = B_{n,\chi_{0}}(x-1)} bernoulli(n, x)= B[n , chi[0]]*(x - 1) BernoulliB[n, x]= Subscript[B, n , Subscript[\[Chi], 0]]*(x - 1) Failure Failure
Fail
.5000000000 <- {B[n,chi[0]] = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
.85786438e-1-1.414213562*I <- {B[n,chi[0]] = 2^(1/2)+I*2^(1/2), n = 1, x = 2}
-.328427124-2.828427124*I <- {B[n,chi[0]] = 2^(1/2)+I*2^(1/2), n = 1, x = 3}
.1666666667 <- {B[n,chi[0]] = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
... skip entries to safe data
Fail
0.5 <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 1], Rule[Subscript[χ, 0], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
0.16666666666666666 <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 1], Rule[Subscript[χ, 0], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
0.5 <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 1], Rule[x, 1], Rule[Subscript[χ, 0], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
0.16666666666666666 <- {Rule[B, Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[n, 2], Rule[x, 1], Rule[Subscript[χ, 0], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
24.16.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \EulerpolyE{n}@{x} = -\frac{2^{1-n}}{n+1}B_{n+1,\chi_{4}}(2x-1)} euler(n, x)= -((2)^(1 - n))/(n + 1)*B[n + 1 , chi[4]]*(2*x - 1) EulerE[n, x]= -Divide[(2)^(1 - n),n + 1]*Subscript[B, n + 1 , Subscript[\[Chi], 4]]*(2*x - 1) Failure Failure
Fail
1.207106781+.7071067810*I <- {B[n+1,chi[4]] = 2^(1/2)+I*2^(1/2), n = 1, x = 1}
3.621320343+2.121320343*I <- {B[n+1,chi[4]] = 2^(1/2)+I*2^(1/2), n = 1, x = 2}
6.035533905+3.535533905*I <- {B[n+1,chi[4]] = 2^(1/2)+I*2^(1/2), n = 1, x = 3}
.2357022604+.2357022604*I <- {B[n+1,chi[4]] = 2^(1/2)+I*2^(1/2), n = 2, x = 1}
... skip entries to safe data
Successful
24.19#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \BernoullinumberB{2n} = \dfrac{N_{2n}}{D_{2n}}} bernoulli(2*n)=(N[2*n])/(D[2*n]) BernoulliB[2*n]=Divide[Subscript[N, 2*n],Subscript[D, 2*n]] Failure Failure
Fail
-.8333333333 <- {D[2*n] = 2^(1/2)+I*2^(1/2), N[2*n] = 2^(1/2)+I*2^(1/2), n = 1}
-1.033333333 <- {D[2*n] = 2^(1/2)+I*2^(1/2), N[2*n] = 2^(1/2)+I*2^(1/2), n = 2}
-.9761904762 <- {D[2*n] = 2^(1/2)+I*2^(1/2), N[2*n] = 2^(1/2)+I*2^(1/2), n = 3}
.1666666667+1.000000000*I <- {D[2*n] = 2^(1/2)+I*2^(1/2), N[2*n] = 2^(1/2)-I*2^(1/2), n = 1}
... skip entries to safe data
Fail
Complex[0.41421356237309515, 1.4142135623730951] <- {Rule[BernoulliB[Times[2, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[D, Times[2, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[N, Times[2, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730951, 2.414213562373095] <- {Rule[BernoulliB[Times[2, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[D, Times[2, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[N, Times[2, n]], Times[Complex[1, -1], Power[2, Rational[1, 2]]]]}
Complex[2.414213562373095, 1.4142135623730951] <- {Rule[BernoulliB[Times[2, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[D, Times[2, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[N, Times[2, n]], Times[Complex[-1, -1], Power[2, Rational[1, 2]]]]}
Complex[1.4142135623730951, 0.41421356237309515] <- {Rule[BernoulliB[Times[2, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[D, Times[2, n]], Times[Complex[1, 1], Power[2, Rational[1, 2]]]], Rule[Subscript[N, Times[2, n]], Times[Complex[-1, 1], Power[2, Rational[1, 2]]]]}
... skip entries to safe data
24.19.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{t^{2}}{\cosh@@{t}-1} = -2\sum_{n=0}^{\infty}(2n-1)\BernoullinumberB{2n}\frac{t^{2n}}{(2n)!}} ((t)^(2))/(cosh(t)- 1)= - 2*sum((2*n - 1)* bernoulli(2*n)*((t)^(2*n))/(factorial(2*n)), n = 0..infinity) Divide[(t)^(2),Cosh[t]- 1]= - 2*Sum[(2*n - 1)* BernoulliB[2*n]*Divide[(t)^(2*n),(2*n)!], {n, 0, Infinity}] Failure Failure Skip Error