DLMF Results: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
! DLMF !! Formula !! Maple !! Mathematica !! Symbolic<br>Maple !! Symbolic<br>Mathematica !! Numeric<br>Maple !! Numeric<br>Mathematica | ! DLMF !! Formula !! Maple !! Mathematica !! Symbolic<br>Maple !! Symbolic<br>Mathematica !! Numeric<br>Maple !! Numeric<br>Mathematica | ||
|- | |- | ||
| [ | | [https://dlmf.nist.gov/1.2.E1 1.2.E1] || <math>\binom{n}{k} = \frac{n!}{(n-k)!k!}</math> || <code>binomial(n,k)=(factorial(n))/(factorial(n - k)*factorial(k))</code> || <code>Binomial[n,k]=Divide[(n)!,(n - k)!*(k)!]</code> || Successful || Successful || - || - | ||
|- | |- | ||
|} | |} |
Revision as of 13:01, 17 January 2020
DLMF | Formula | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|
1.2.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{n}{k} = \frac{n!}{(n-k)!k!}} | binomial(n,k)=(factorial(n))/(factorial(n - k)*factorial(k)) |
Binomial[n,k]=Divide[(n)!,(n - k)!*(k)!] |
Successful | Successful | - | - |
Results of the Digital Library of Mathematical Functions
- Algebraic and Analytic Methods
- Asymptotic Approximations
- Numerical Methods
- Elementary Functions
- Gamma Function
- Exponential, Logarithmic, Sine, and Cosine Integrals
- Error Functions, Dawson’s and Fresnel Integrals
- Incomplete Gamma and Related Functions
- Airy and Related Functions
- Bessel Functions
- Struve and Related Functions
- Parabolic Cylinder Functions
- Confluent Hypergeometric Functions
- Legendre and Related Functions
- Hypergeometric Function
- Generalized Hypergeometric Functions and Meijer G-Function
- q-Hypergeometric and Related Functions
- Orthogonal Polynomials
- Elliptic Integrals
- Theta Functions
- Multidimensional Theta Functions
- Jacobian Elliptic Functions
- Weierstrass Elliptic and Modular Functions
- Bernoulli and Euler Polynomials
- Zeta and Related Functions
- Combinatorial Analysis
- Functions of Number Theory
- Mathieu Functions and Hill’s Equation
- Lamé Functions
- Spheroidal Wave Functions
- Heun Functions
- Painlevé Transcendents
- Coulomb Functions
- 3j,6j,9j Symbols
- Functions of Matrix Argument
- Integrals with Coalescing Saddles